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ABSTRACT 

 

Ocean surface phytoplankton responses to the tropical cyclone (TC)/storms have been extensively studied using satellite 

observations by aggregating the data into a weekly or bi-weekly composite. The reason behind is the significant limitations found in 

the satellite-based observation is the missing of valid data due to cloud cover, especially at the time of cyclone track passage. The 

data loss during the cyclone is found to be a significant barrier to efficiently investigate the response of chl-a and SST during 

cyclone track passage. Therefore it is necessary to rectify the above limitation to effectively study the impact of TC on the 

chlorophyll-a concentration (chl-a) and the sea surface temperature (SST) to achieve a complete understanding of their response to 

the TC prevailed in the Arabian Sea. Intending to resolve the limitation mentioned above, this study aims to reconstruct the MODIS-

Aqua chl-a, and SST data using Data Interpolating Empirical Orthogonal Function (DINEOF) for all the 31 cyclonic events occurred 

in the Arabian Sea during 2003-2018 (16 years). Reconstructed satellite retrieved data covering all the cyclonic events were further 

used to investigate the chl-a and SST dynamics during TC. From the results, the exciting fact has been identified that only two TC 

over the eastern-AS were able to induce phytoplankton bloom. On investigating this scenario using sea surface temperature, it was 

disclosed that the availability of nutrients decides the suitable condition for the phytoplankton to proliferate in the surface ocean. 

Relevant to the precedent criterion, the results witnessed that the 2 TC (Phyan and Ockhi cyclone) prevailed in the eastern AS 

invoked a suitable condition for phytoplankton bloom. Other TC found to be less provocative either due to less intensity, origination 

region or the unsuitable condition. Thereby, gap-free reconstructed daily satellite-derived data efficiently investigates the response of 

bio-geophysical parameters during cyclonic events. Moreover, this study sensitised that though several TC strikes the AS, only two 

could impact phytoplankton productivity and SST found to highly consistent with the chl-a variability during the cyclone passage.  

 

 

1.INTRODUCTION 

 

The unusual physical dynamics such as tropical cyclone (TC) 

triggers the biogeochemical properties present in the ocean, 

which disturbs the distribution and dynamics of phytoplankton 

(Lin, 2012; Wang & Zhao, 2008). Tropical cyclone passage on 

the sea causes two significant impacts that are generally 

encountered, first and foremost is intense wind and later is the 

sizeable freshwater discharge due to heavy rains near the shore 

(Corredor-Acosta et al, 2018). Most importantly during TC, the 

ocean faces fluctuation in the physical properties like cooling of 

sea surface temperature (SST) caused by vertical mixing of the 

water column (i.e. upwelling) (Lin 2012; Subrahmanyam et al, 

2002). Such episodic events could bring more deep-seated 

nutrients to the upper surface that might induce the favourable 

conditions for certain phytoplankton types (Subrahmanyam et 

al, 2002). Therefore, TC passages profoundly influence 

phytoplankton production (Bharathi and Sarma, 2019).  Most of 

the existing studies carried out in the Arabian Sea (AS) and the 

Bay of Bengal (BoB) highly focus on the dynamics of 

chlorophyll-a concentration  (chl-a) (a proxy of phytoplankton 

biomass)  variability because it is the primary pigment present 

in the phytoplankton and also principal identifying constituent 

through optical remote sensing (Prasanna Kumar et al, 2010; 

Chen et al, 2013). The Satellite-based ocean colour observation 

helps to continuously monitor the phytoplankton production in 

terms of chlorophyll-a concentration (Prasanna Kumar et al, 

2007; IOCCG 2014).  Most notably, satellite ocean colour 

observation has become a better tool to investigate the  

 

 

distribution phytoplankton blooms as it provides better spatial 

coverage on a large scale and temporal resolution (Moisan et al. 

2012). Especially during a tropical cyclone, it is very 

challenging to conduct in-situ measurements, so satellite-based 

observation is efficient in terms of continuous data and cost-

effective (Taylor et al, 2013). Despite merits, a significant 

constraint usually undergone on satellite observation is data 

loss due to heavy cloud cover at the time of cyclone passage 

(Shropshire, Li, and He 2016). This limitation can be overcome 

by reconstructing the data using DINEOF method which helps 

to keenly observe the changes in geophysical variables 

(Rebekah, Inamdar, and Gedam 2019; Jayaram et al, 2018; 

Beckers and Rixen 2003).  

In this study, we concentrate on how the cyclonic events impact 

the phytoplankton distribution in the Arabian Sea. To 

investigate this, we have taken 31 cyclone events occurred in 

the Arabian Sea over the past 16 years (2003-2018).  We 

acquired freely available cyclone track data from IMD for 

conducting our study. To clearly understand the response of 

chl-a to the cyclonic event, the temporal datasets includes pre-

cyclone and post-cyclone periods are taken into account. The 

data used for analysis are (1) chlorophyll-a concentration data 

from MODIS Aqua (2) sea surface temperature data from 

MODIS Aqua (3) Wind data from IMD. The paper is organised 

as follows: study area and cyclone information in Section 2, 

data methods are introduced in Section 3. The reconstruction of 

chl-a data, estimation chl-a variability during the cyclonic 

events and comparison with SST and wind are discussed in 

Section 4. Finally, Section 5 summarises the conclusion.
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2. STUDY SITE AND CYCLONIC EVENTS 

  

The Arabian Sea, the north eastern part of the Indian Ocean is a 

semi-enclosed basin partially covered by land located in the 

northern part of the Indian Ocean bounded within 43oE to 79oE 

longitude and 6oN to 30oN latitude. This region experiences a 

unique seasonal reversal wind pattern due to monsoon effects 

which support the biological productivity (Prasanna Kumar et 

al, 2010). Owing to this, AS is considered to be an extremely 

complex oceanic basin, encompassing eutrophic upwelling, 

downwelling and oligotrophic stratified environments 

(Prasanna Kumar et al, 2010). A tropical cyclone in the AS 

usually occurs during spring (April-May) and fall (October-

November). Most of the intense TC originates from BoB and 

often drives to the AS (Mangesh et al, 2016). These cyclonic 

events could be associated with the upwelling of available 

nutrients, and this process leads to trigger biological 

productivity. In the Arabian Sea, over 31 TC cases were 

reported from the year 2003-2018 shown in Figure 1. The 

minimum duration of cyclone in the AS is found to be one day 

and a maximum of up to two weeks.   

 

 
Figure 1. Tracks of tropical cyclones observed between 2003-

2018 in the Arabian Sea. 

 

3. DATA AND METHODS 

 

3.1 Satellite observation data 

 

The eight-day composite of chlorophyll-a concentration, sea 

surface temperature (SST) was acquired from MODIS-Aqua 

sensor which is a freely available data obtained from the NASA 

Ocean Color website (https://oceandata.sci.gsfc.nasa.gov/ 

MODIS-Aqua/). The spatial resolutions of these products are 4 

km x 4 km, and it is the standard level 3 product. These 

products were acquired for the period from the year 2003-2018 

with global coverage and further clipped to the latitude and 

longitude within range of the Arabian Sea from 0ºN – 31ºN and 

43ºE – 79ºE respectively. Also, the wind data acquired from 

IMD cyclone track data. 

 

3.2 Algorithm of DINEOF method 

 

Gaps in the data during the passage of cyclone are relatively 

large due to cloud cover. The data loss during the cyclone is the 

major constraint because it would be a barrier to efficiently 

investigate the distribution of chl-a at the time of cyclone track 

passage (Shropshire, Li, and He 2016). Though data loss could 

not be avoided, this limitation could be resolved by 

reconstructing the satellite-derived data using Data 

Interpolation Empirical Orthogonal Function (DINEOF) 

(Beckers and Rixen 2003). Missing data values in the chl-a and 

SST time series data can be filled through the DINEOF method. 

The DINEOF is an empirical orthogonal function based method 

developed by Becker and Rixen (2003) to reconstruct the 

missing data value efficiently without the need for any other 

additional information about the data. Necessarily, the input 

data should be log-transformed to avoid redundancy while 

reconstruction (Alvera-Azcárate et al, 2005; Jayaram et al, 

2018). Before beginning the procedure, 10 % of the original 

data is automatically kept aside by the model for cross-

validation (Beckers and Rixen 2003; A. Alvera-Azcárate et al, 

2005). To start with, the log-transformed data is provided as 

input data with which the DINEOF first evaluate the percentage 

of missing data values and also the input spatio-temporal 

components. The input data is transformed into a matrix format, 

assuming temporal datasets as T which overpasses of the spatial 

coverage of Chl-a products over the same region and each 

overpass of Chl-a product have S pixels,. Therefore the matrix 

with the size of T x S is formed as  

 

                   𝑋 = (

𝑎1,1 𝑎1,2 … 
𝑎2,1 𝑎2,2 …

⋮
𝑎𝑆,1

⋮
𝑎𝑆,2

⋮
𝑎𝑆,3 

   

𝑎1,𝑇

𝑎2,𝑇

⋮
𝑎𝑆,𝑇

 
)                (1)       

Where X is the log-transformed data, S is the spatial pixel of an 

image and T is the temporal size of the data. Followed by the 

input data demeaning process is done, and the missing data 

values are assigned to zero. Then the Singular Vector 

Decomposition (SVD) process is carried out to calculate the 

EOF and the missing data are replaced with the obtained 

values. The formulation of SVD is   

 

                           𝑋 = 𝑈 ∑ 𝑉                                 (2) 

where U is the EOF, which indicates the spatial distribution 

mode of the matrix; V is the principle component (PC), which 

indicates the temporal distribution mode of the matrix; and ∑ 

contains the singular values of the matrix. The matrix could be 

accurately reconstructed using Eq. (2) with decomposed U, V, 

and ∑. This process is continued until the convergence standard 

achieved. After each EOF modes, the obtained values are cross-

validated with the original values to estimate the accuracy. The 

procedure, as mentioned earlier, is repeated until the percentage 

of error reduces when cross-validating with 10 % of original 

values. The efficiency of the reconstructing the missing data 

majorly depends on the percentage of missing data and number 

of time series data (Alvera-Azcárate et al, 2016). Thereby, gap-

free reconstructed satellite-derived data provides a better 

approach to study the response of such parameters during 

cyclonic events. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Reconstruction of missing data 

 

The reconstruction of chl-a data obtained from MODIS-Aqua 

chl-a products that cover the cyclonic events in the Arabian Sea 

is achieved using DINEOF method. The spatial data coverage 

of chl-a data before and after the cyclone is shown in Figure 2 a 

and 2 b.  Form the figure; it is understood that the reconstructed 

chl-a data provides more details about the chl-a variability 

during and after the cyclone passage. On comparing the images 

before and after the reconstruction, it is found that the DINEOF 

method could fill missing data that covers the cyclone passage 

efficiently even though the data loss is high. For the detailed 

information about the data uncertainty, the percentage of data 

loss of all 31 cyclones track is shown in Figure 3.  
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SI NO Cyclone case Start date End date 
Duration in 

days 

Surface wind in 

(kt) 
Rate of change chl-a 

Change in SST 

(∆SST) 

1 ARB_2003_6 12/11/2003 15/11/2003 4 42 0.02 -0.50 

2 ARB_2004_1 05/05/2004 10/05/2004 6 43 -0.14 -0.66 

3 ARB_2004_3 10/06/2004 13/06/2004 4 29 0.02 -0.69 

4 ONIL 30/09/2004 03/10/2004 4 36 0.04 -1.97 

5 ARB_2004_9 02/11/2004 07/11/2004 6 26 0.00 0.23 

6 AGNI 29/11/2004 02/12/2004 4 37 -0.01 0.21 

7 ARB_2005_2 21/06/2005 22/06/2005 2 25 0.01 -1.57 

8 ARB_2005_6 14/09/2005 16/09/2005 3 25 0.02 1.04 

9 ARB_2005_1 13/01/2006 14/01/2006 2 26 -0.02 0.80 

10 MUKDA 21/09/2006 24/09/2006 4 39 -0.01 0.97 

11 GONU 01/06/2007 07/06/2007 7 55 0.00 -1.34 

12 ARB_2007_11 27/10/2007 31/10/2007 5 30 0.05 -1.20 

13 ARB_2007_12 01/11/2007 01/11/2007 1 25 0.01 -0.31 

14 ARB_2008_2 05/06/2008 06/06/2008 2 26 0.00 0.00 

15 ARB_2008_6 19/10/2008 22/10/2008 4 32 -0.04 -0.01 

16 PHYAN 09/11/2009 11/11/2009 3 29 0.09 -2.84 

17 BANDU 19/05/2010 22/05/2010 4 32 0.02 -1.25 

18 ARB_2011_2 11/06/2011 12/06/2011 2 23 0.01 -1.62 

19 KEILA 29/10/2011 04/11/2011 6 26 0.03 -1.81 

20 ARB_2011_8 06/11/2011 10/11/2011 5 30 0.00 0.51 

21 ARB_2011_9 26/11/2011 01/12/2011 6 27 0.00 -0.84 

22 MURJAN 22/10/2012 26/10/2012 5 28 0.00 -0.16 

23 ARB_2012_5 22/12/012 24/12/2012 3 27 0.00 0.46 

24 ARB_2013_6 08/11/2013 11/11/2013 4 29 0.00 -0.22 

25 NANAUK 10/06/2014 14/06/2014 5 40 0.01 -0.30 

26 NILOFAR 25/10/2014 31/10/2014 6 60 0.05 -1.42 

27 ASHOBAA 07/06/2015 12/06/2015 6 36 -0.08 -0.07 

28 ARB_2016_2 27/06/2016 29/06/2016 3 25 0.01 -1.87 

29 ARB_2016_10 17/12/2016 18/12/2016 2 24 0.01 0.17 

30 OCKHI 30/11/2017 05/12/2017 6 60 0.19 -3.03 

31 LUBAN 06/10/2018 15/10/2018 10 48 0.04 -1.56 

Table 1. Summary of 31 cyclone cases occurred in the Arabian Sea from 2003 to 2018

 

 
 

 

 
 

Figure 2. (a) The spatial coverage of chl-a (a) and (c) before (b) 

and (d) after reconstruction Phyan and Ockhi cyclone. The 

black line in the image is the cyclone track. 

 

 
 

Figure 3. Percentage of uncertainty in the MODIS Aqua chl-a 

data acquired during the cyclonic events. The cyclone cases are 

specified in Table 1 in ascending order as per the year occurred. 

 

4.2 Cyclone induced phytoplankton bloom 

 

The mesoscale variability of chl-a and bloom trigger due to 

cyclonic event is examined using reconstructed chl-a data. For 

an in-depth understanding of chl-a variability due to cyclone, a 

total of 31 cyclone cases occurred in the AS from 2003-2018 is 

taken for analysis. Cyclone track data from IMD is used to 

extract corresponding chl-a concentration on each transit point 

for all 31 cyclone cases under three stages (pre, during and 

post-cyclone). Through reconstructed chl-a, the above 

extraction process is efficiently achieved. On comparing the 31 
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cyclone cases, it is found that only in few cyclone cases could 

initiate phytoplankton blooms even though the intensity is high. 

In Figure 4, only two cyclones (Phyan and Ockhi) could induce 

phytoplankton bloom compared to other cases. Variability of 

chl-a during phayan pre-cyclone stage ranges from 0.1 to 1 mg 

m-3 and during post-cyclone ranges from 4-8 mg m-3. Followed 

by the variability of Ockhi cyclone during pre –cyclone stage 

ranges from 0.1-0.3 mg m-3 and during post-cyclone phase 

ranges from 0.7-1.5 mg m-3. On observing these two cases in 

detail, it clearly shows the relative extreme increase of chl-a 

concentration (i.e. bloom) from pre cyclone to the post-cyclone 

stage (highlighted in the black box in Figure 4). 

Moreover, one similarity observed in both the cyclone cases is 

that the cyclone transit originated in the eastern-AS and 

terminated in the same eastern AS. The rate of change of Phyan 

and Ockhi are 0.09 and 0.19, respectively. Other 29 cases show 

very less and even negative chl-a rate of change due to the non-

favourable condition (i.e. less nutrient), which reduces the 

upwelling process. 

 

4.3 Comparison with SST and wind intensity  

 

Sea surface temperature data acquired from the MODIS-Aqua 

and wind intensity data from IMD is compared with the 

extracted chl-a from the reconstructed data based on the 

cyclone passage information for all 31 cases. Further, the data 

is applied to investigate the associated cyclone induced SST 

cooling and wind intensity responsible for a phytoplankton 

bloom. Figure 5 (a) illustrates the rate of change (ROC) of chl-a 

observed in all 31 cyclone cases and the corresponding change 

in SST. The ROC of chl-a highly coincides with the ∆SST.  It 

can be noted that the cooling response induced by Phyan and 

Ockhi case is -2.84 0 C and -3.030 C, respectively. However, 

∆SST in other cases is mostly around ~+0.4 o C to ~-1.5 o C. 

 
 

Figure 4. Observation of chl-a before, middle and after the 

passage of 31 cyclone tracks. The cyclone cases information is 

specified in Table 1 in ascending order as per the year occurred. 

 

 

In addition, when comparing with the wind intensity (shown in 

Figure 5 (b)), it can be observed that it play a partial role on 

chl-a variability because in some cases under the serial number 

(refere Table 1) 2, 12 and 26 (ARB_2004_1, ARB_2007_11 

and NILOFAR respectively). However, the wind intensity is 

high; it could not influence the chl-a compared to SST. On the 

whole, the ∆SST shows consistency with the chl-a ROC. 

Besides one similarity found on both the cyclone cases is that 

the cyclone originated and terminated in the eastern part of the 

Arabian Sea. This suggests that, though AS has encounters 

many numbers of cyclone cases even with the high intense 

wind, it has contributed only little to the biological 

productivity. The impact of cyclone induced phytoplankton 

bloom is less compared to seasonal variability in the AS

 

Figure 5. Comparison of (a) SST cooling response and (b) wind intensity with the chl-a. (The cyclone cases information is specified 

in Table 1 in ascending order as per the year occurred). 
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5.CONCLUSION 

 

Using the reconstruction of chl-a data, this study investigates 

the cyclone induced phytoplankton bloom in the Arabian Sea 

for 16 years (2003-2018). The reconstructed data gives better 

accuracy and highly supports to observe chl-a variability during 

the cyclone passage. Totally 31 cyclone cases have been 

observed in this study.  It was found that over 31 cyclone cases, 

only two cases could induce phytoplankton bloom in the 

Arabian Sea. Even the prominent cyclone cases, i.e. Nilofar, 

could not be able to induce bloom. This is because the nutrient 

upwelling during the cyclone is the cause for the phytoplankton 

bloom, and it could be identified through the SST cooling 

range.  Indeed, the observation also supports this scenario; the 

corresponding SST cooling range found in the cyclone passage 

is highly consistent with the chl-a proliferation. The overall 

study demonstrates the biological response of the Arabian Sea 

during the passage of a cyclone.  In summary, the potential use 

of gap-filled chl-a to investigate its response to the cyclone 

occurred in the AS over 16 years is highlighted. 
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