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ABSTRACT:

The current context of availability of Earth Observation satellite data at high spatial and temporal resolutions makes it possible to
map large areas. Although supervised classification is the most widely adopted approach, its performance is highly dependent on
the availability and the quality of training data. However, gathering samples from field surveys or through photo interpretation is
often expensive and time-consuming especially when the area to be classified is large. In this paper we propose the use of an active
learning-based technique to address this issue by reducing the labelling effort required for supervised classification while increasing
the generalisation capabilities of the classifier across space. Experiments were conducted to identify poplar plantations in three
different sites in France using Sentinel-2 time series. In order to characterise the age of the identified poplar stands, temporal means
of Sentinel-1 backscatter coefficients were computed. The results are promising and show the good capacities of the active learning-
based approach to achieve similar performance (Poplar F-score > 90%) to traditional passive learning (i.e. with random selection
of samples) with up to 50% fewer training samples. Sentinel-1 annual means have demonstrated their potential to differentiate two

stand ages with an overall accuracy of 83% regardless of the cultivar considered.

1. INTRODUCTION

Poplar (Poplus spp.) is a fast-growing and wood producing tree
which is considered as an important economic resource due to
the increasing demand for its by-products such as lightweight
packaging and plywood. In France, poplar cultivation is a key
local industry. However, over the last two decades this sec-
tor has faced several economic, social and environmental up-
heavals that have led to a continuous decrease in planted sur-
faces. The future of poplar depends mainly on areas replanted
after harvesting. It is therefore crucial to have spatially expli-
cit information on newly planted and lost areas, which provides
essential baseline data for industrial and socio-economic dy-
namics. Accurate and updated maps of poplar plantations are
not yet available at the national scale. The update rate of the
French forest database (10 to 20 years) is unsuitable for this
species because of its short rotation cycle (15 years on average).
The availability of Sentinel data with high spatial and temporal
resolutions has provided new opportunities for identifying and
characterising poplar plantations over large areas.

Several works have already demonstrated the potential of re-
motely sensed data for mapping plantations and few have par-
ticularly focused on poplars like (Chardenon, Flouzat, 1981),
(Borry et al., 1993) and (Heyman et al., 2003). Nevertheless, in
most cases, the studies were conducted at a local scale and the
reported performances were highly dependent on the data used
to train and validate the classification models. Consequently,
these models generally exhibit limited generalisation capabilit-
ies and their application over large areas remains challenging.

In this paper, Sentinel-2 optical time series are used to differen-
tiate poplars from other deciduous species in three study sites.
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In order to minimise the number of samples required for train-
ing and to build a generic model tailored to the different study
sites, we propose the use of a transfer learning-based approach,
namely Active Learning. Secondly, we were interested in char-
acterising the age of poplar plantations. Due to the sensitivity
of SAR to vegetation structure, we explored the potential of
Sentinel-1 data to distinguish between two main stand ages.

2. POPLAR IDENTIFICATION WITH SENTINEL-2
TIME SERIES

In this section, we investigate the potential of Sentinel-2 data
to identify poplar plantations. We first assess its ability to re-
cognise the plantations at a local scale (Sentinel-2 tile) (Section
2.3). We secondly focus on the adaptation of the resulting local
classifiers to distinct areas with active learning (Section 2.4).

2.1 Study area

Three poplar sites with contrasting silvicultural practices and
climatic conditions were chosen with the forest partners. They
are located in northeastern, central and southwestern France and
are covered by three Sentinel-2 tiles with a surface area of 100
km? each (tile codes respectively: 31UEQ, 30TYT and 31TCJ)
(Figure 1).

2.2 Reference data

Samples for deciduous forest classes were retrieved from the
national forest database (BD Forét®IGN). A photo interpret-
ation was conducted to collect poplar references in order to
ensure updated samples. It should be noted that the poplar
samples created correspond to plantations older than two years

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLI11-B3-2020-1457-2020 | © Authors 2020. CC BY 4.0 License. 1457



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020
XXIV ISPRS Congress (2020 edition)

50°00'N

45°00'N

i i 1 L
5°00'0 0°00 5°00'E 10°00'E

Figure 1. Overview of the three study sites represented by three
Sentinel-2 tiles: 31UEQ, 30TYT and 31TC]J.

old because below this limit, the plantations cannot be dif-
ferentiated. Regardless of the photo interpretation’s bias, this
phase is considerably time-consuming because it needs to be
performed repeatedly for each study site until achieving a stat-
istically representative data set.

2.3 Tile-scale classification with Sentinel-2

Sentinel-2 optical time series from 2017 were downloaded from
Theia platform over the three study tiles (Table 1). They are
level 2A products (surface reflectance) provided with a cloud
mask and after atmospheric correction.

Tile Relative orbit | No. dates

code number in 2017
31UEQ 51 26
30TYT 94 34
31TC) 51 36

Table 1. Properties of the Sentinel-2 tiles used in the study

A temporal gap-filling was applied to the Sentinel-2 images in
order to replace cloudy pixels with an interpolated value based
on the nearest cloud-free pixels of the temporal time series
(Inglada, 2016). The time series were then resampled at 10-m
spatial resolution with a 10-day time step common to all tiles.
In order to assess the potential of Sentinel-2 to recognise poplar
plantations at local scale in the same tile, a random forest (RF)
supervised classification was performed in each tile independ-
ently.

Reference polygons were randomly split into 50% for train-
ing and 50% for testing with a stand-based stratified random
sampling. Sampling was repeated 30 times in order to ac-
count for variability related to random selection. However, with
this approach we assume that samples are available everywhere
which is not practical at large scale. It was necessary to define a
more automatic process able to detect poplars with good classi-
fication performances but with a minimum of training samples.
It is in this context that we propose the use of Active Learning
(AL).

2.4 Towards a large-scale generalisation with AL

Over the past decade, AL has received the attention of the re-
mote sensing community (Tuia et al., 2011). It has mostly been
applied to select a reduced set of training samples required for
classification tasks (Tuia et al., 2009), (Ma et al., 2018). Only a
few works have addressed transfer learning between two distant
regions (Matasci et al., 2012), (Alajlan et al., 2014).

AL is based on the assumption that an algorithm is able to reach
better classification results not by focusing on the number of
samples (randomly selected), but rather on their quality while
choosing the most relevant ones (Settles, 2012). The AL pro-
cess uses a ranking criterion to select in an intelligent way the
most informative samples from a pool of candidates. The se-
lection is guided by the algorithm needs which is iteratively
enriched with new and carefully chosen training samples un-
til certain predefined stopping criteria are met (e.g. maximum
score or maximum number of iterations).

In this study, AL was performed between the three Sentinel-
2 tiles (in pairs) along the six possible directions of learning
(north-east to south-west, south-west to center, etc.). In each
case, the process started with a trained classifier on a first tile
(source) and is used to predict a second one (target). At each
iteration 10 samples were queried until reaching a maximum
of 1000 samples (100 iterations). Uncertainty was used as an
informativeness criterion to select the best samples (i.e. the
most uncertain instances are considered to be the most inform-
ative) and two measures were tested: entropy (H) and margin
sampling (MS). As detailed in Equation 1, while entropy un-
certainty measure takes the probabilities of belonging to all the
model classes into account, the MS metric considers only the
first two most probable labels (Equation 2).

T = argmafoPg(y | z)log Po(y | x) (1)

Yy
whrs = argmin [Py (1 | @) — Py (32 | )] @

x™ = the best instance selected

y = all possible labels of x

Py = the probability value under the model 6
y1,y2 = first and second most probable labels

where

In this paper we present only the results obtained with MS un-
certainty metric. For comparison purposes, the AL process was
run against a classifier using the same number of samples but
randomly selected.

3. STAND AGE RETRIEVAL WITH SENTINEL-1

Several studies have demonstrated the sensitivity of SAR in-
formation and in particular C-band data to monitor vegeta-
tion dynamics due to their sensitivity to structure (Bouman,
Hoekman, 1993), (Satalino et al., 2014), (Veloso et al., 2017),
(Vreugdenhil et al., 2018). Specifically, the VH/VV ratio
has proved to be of great interest for monitoring the vegeta-
tion growth cycle and showed a strong correlation with NDVI
(Vreugdenhil et al., 2018), (Frison et al., 2018).

In this section, we investigate the potential of Sentinel-1 for
stand age assessment.
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Field data for 94 poplar plots located in the south of France
were provided by the forest partners (Table 2). For each plot,
the plantation year as well as the cultivar type were reported.
The poplar stands are between two and seven years old, but not
all ages are available for each cultivar.

Cultivar | No. plots | No. pixels
Koster 34 3083
145/50 28 3708
1214 22 934
Soligo 7 589
Raspalje 3 760

Table 2. Field data summary

Sentinel-1 Ground Range Detected (GRD) data from 2017 were
downloaded from the French distribution and processing plat-
form (PEPS) over the study zone. They were acquired in In-
terferometric Wide swath mode (IW) in an ascending orbit dir-
ection (Relative orbit 30). The images were calibrated, ortho-
rectified and filtered from speckle noise with a spatio-temporal
filter using the S1-Tiling tool (Koleck, 2017). Annual means of
radar backscatter coefficients were then calculated for VV and
VH polarisations as well as their ratio VH/VV. A color compos-
ite image of the three derived means is shown in Figure 2 with
examples of poplar plots at different ages.

Figure 2. Multi-polarisation color composite of annual means of
Sentinel-1 backscatter coefficients (Red: o3\, Green: o¥ j;,
Blue: 0% ).

%

Considering the lack of representativeness of age classes and
the scarcity of plots per cultivar, a supervised random forest
classification was carried out on the entire data set in order to
identify two main age groups: young plantations (two to four
years old) and mature plantations (four to seven years old). The
classification was performed at two scales: plot scale (the plot
is defined by the average value of all its pixels) and pixel scale
(all pixels are considered regardless of the plot).

As in the previous section, samples were randomly split into
50% for training and 50% for testing with a stand-based strati-
fied random sampling. Sampling was repeated 30 times in order
to account for variability related to random selection.

4. RESULTS AND DISCUSSION

4.1 Sentinel-2-based classification:  high capacity to
identify poplar plantations at local and global scales

The random forest classification results are reported in Table ??
for each of the three study tiles. As mentioned earlier, the aim is
to assess the potential of Sentinel-2 data to discriminate poplar
plantations from the other deciduous species at a local scale, in
this case the tile extent.

Tile No. samples! |  No. OA Poplar

code per class classes? (+30) F-score .30
31UEQ 1250 6 73.7% 89.5%
30TYT 2000 6 74.9% 99.3%
31TCJ 3850 6 80.0% 97.9%

! Training samples represent 50% of the available reference data. The
number is given in pixels of 10m? area.

2 The classes are the same for both central (30TYT) and southwest-
ern (31TCJ) tiles: poplar, locust, chestnut, oak, open mixed forest
and closed mixed forest. The chestnut is absent in the northeastern
(31UEQ) tile but there is instead the beech class.

Table 3. Local classification results for each Sentinel-2 tile
averaged over 30 independent repetitions.

The local classification results of Table ?? showed high capa-
city of Sentinel-2 data to identify poplars with F-score values of
90%, 99% and 98% respectively for the north-eastern, central
and south-western tiles. However, when we tested the predict-
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Figure 3. Changes in the average OA scores on the
south-western target tile according to the number of added
samples with the active learning (green) and random (red)
models. The initial classifier is trained on the north-eastern

source tile.

ive capabilities of these different local models, low accuracies
were obtained. This is due to the non-stationarity of class dis-
tributions between the different study tiles. When we adap-
ted the initial models with active learning based on the mar-
gin sampling uncertainty metric (ALxss), the performance in-
creased rapidly as samples were added but considerably faster
than with a random selection of samples. The OA varied ac-
cording to the adopted direction of the transfer (i.e. accord-
ing to the tile on which the initial model is trained) but in all
cases its values were up to 5.5% higher with ALpss. An ex-
ample is given in Figure 3 for a transfer from the north-esatern
to the south-western tile. As it can also be observed, the OA
values computed on the initial tile (source) remain fairly con-
stant while adding new samples from the target for both ALy/s
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and random selection. After querying new samples, the initial
model improved its generalisation capabilities to better classify
the target tile while still performing as well on the source tile.

When we focused on the poplar class and for the same F-score,
the number of samples randomly selected was about eight times
higher than those queried by ALj;s. Furthermore, the num-
ber of ALyss queries was related to the starting F-score. As
shown in the example of Figure 4, when this value was high
enough (i.e. the initial model was able to accurately recog-
nise the poplar plantations of the second tile), very few poplar
samples were selected by AL /s (green bars) unlike the random
strategy which selected many samples (red bars) regardless of
the initial performance (poplar F-score = 95%). ALjss minim-
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Figure 4. Changes in the average poplar F-score on the
south-western target tile according to the number of added
samples. The initial classifier is trained on the north-eastern
source tile.

ised the need to label target poplar samples without sacrificing
the classification performance. As reported in (Di, Crawford,
2011), when the class accuracy is high, the active learner avoids
querying irrelevant samples.

Similarly to the poplar class, we have assessed the contribu-
tion of AL for the remaining deciduous classes. We particularly
noted its potential regarding the hardest classes to discriminate
(i.e. missing classes from the initial model or highly overlap-
ping classes) as already demonstrated in (Joshi et al., 2009).
The AL results based on entropy uncertainty metric were worse
than with margin sampling. Indeed, as entropy takes the prob-
abilities of belonging to all the classes into account, the AL se-
lection is influenced by low probabilities of unimportant classes
and is consequently less robust to noise.

4.2 SAR sensitivity to stand age classes

The annual means of the backscatter coefficients (VV, VH and
VH/VV) were analysed and their relation to field data (stand
ages) was evaluated at both the plot and pixel and scales. De-
termination coefficients (r?) describing this relationship are re-
ported in Table 4.

Whether the analysis was performed for plots or pixels, a
weak correlation was observed with the VV polarisation. The
VH/VYV ratio was however capable of reproducing 67% of ob-
served variability in the plots and 42% when considering all the
pixels. These results are inline with the classification results
reported in Table 5.

r’ VV | VH | VH/VV
Plots | 0.05 | 0.59 0.67
Pixels | 0.06 | 0.43 0.42

Table 4. Determination coefficients (r) between annual means
of Sentinel-1 backscatter coefficients (dB) and the field-derived
stand ages.
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Figure 5. Plots-based correlation between field stand ages and
VH/VV annual backscatter coefficient (r2=0.67).

Classification results with the three bands VV, VH and their ra-
tio VH/VV showed good performance at both plot and pixel
scale with overall accuracy (OA) values of 82.5% and 83.1%
respectively. When only the VH/V'V ratio was considered, the
results were slightly lower: -2.8% and -5% of OA for respect-
ively plot and pixel scales. Although the best performances
were recorded with the combination of the three bands, this
highlighted the interest of the VH/VYV ratio to reproduce very
close results.

Features | Classification | OA(.30) | F-score(,s0)
VV+VH Plot-based 82.5% 81.7%
+VH/VV Pixel-based 83.1% 83.0%
Plot-based 79.7% 79.6%
H
VH/VY Pixel-based 78.1% 78.0%

Table 5. Pixel and plot-based classification results with annual
SAR backscatter coefficients.

The observed misclassifications could be related to the differ-
ences between the development stages according to the con-
sidered cultivar. Indeed, for a given cultivar the growing can be
fast since the first year of plantation whereas for others it can
take three to five years to get a detectable canopy. A classific-
ation was therefore carried out for each cultivar. Overall ac-
curacies (pixel-based classification) ranged from 65% to 99%
but as reported before, the number of samples available per cul-
tivar was limited and not sufficiently representative of the two
stand age classes.

5. CONCLUSION

In this letter, we proposed a combined use of optical and SAR
imagery to monitor poplar plantations. The active learning ap-
proach showed promising results on Sentinel-2 data for identi-
fying poplar plantations in two contrasting study sites by taking
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advantage of the initial knowledge gained during local classi-
fication tasks and querying only if necessary a reduced set of
relevant training samples. It is important to note that the AL
may be penalised by noisy references that are most likely to
be selected by the algorithm. Compared to entropy, the margin
sampling uncertainty measure is more robust to noise. These
results are very promising and have opened up interesting leads
for national transfer. Temporal means of Sentinel-1 backscat-
ter coefficients demonstrated their sensitivity to the plantation
structure and their potential to differentiate two main stand ages
particularly with the VH/VV ratio. Sentinel-1 temporal inform-
ation could be further leveraged by filling the gaps in optical
series during cloudy periods, creating forest mask based on sea-
sonal backscattering means or by calculating phenological fea-
tures to discriminate cultivar groups.
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