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ABSTRACT:  
 
Water quality is an important index of the ecological environment, which changes rapidly and needs to be monitored chronically. In 
urban ecological environment, water quality problem is not only more serious, but also more complex in time and space. Remote 
sensing water quality monitoring can cover a large area in a short time. Therefore, remote sensing can be adopted to make up for the 
shortcomings of traditional water quality monitoring methods in space coverage and temporal resolution. In order to monitor the narrow 
rivers in urban area, low altitude remote sensing is needed. This paper proposes a multi-spectral water quality monitoring method based 
on UAV platform, which can quickly monitor an entire urban water area and conduct multi-temporal observation for key indices of 
water quality within one day. It is helpful to find and locate the polluted areas which affect the water environment quickly. Also, it can 
show the changes of water quality on the time axis. The result can provide a decision-making basis for water environment treatment. 
 
 

1. INTRODUCTION 

Water quality of the urban river directly affects the ecological 
environment quality. However, due to the time and space 
uncertainty of rain and wastewater discharge, water quality of the 
river changes frequently. Therefore, it is necessary to monitor the 
whole water area with high accuracy and multi-temporal, and to 
obtain the water quality of rivers in time. The traditional methods 
of urban river water quality monitoring are to use high-precision 
manual sampling or set up monitoring stations (Behmel et al., 
2016). But the efficiency of manual sampling is low. Monitoring 
station cost is extremely high. Moreover, monitoring the water 
quality trend of the whole river is a big challenge for water 
quality monitoring.  
 
Multi-spectral remote sensing technology can monitor water 
quality in a large area rapidly. At present, there has been a large 
number of researches on remote sensing water quality monitoring 
(Gholizadeh et al., 2016). They have developed from qualitative 
monitoring to quantitative monitoring, and have achieved certain 
results. A large number of these studies are focused on case 1 
waters and case 2 waters such as seas, large rivers and lakes 
(Wang, Yang, 2019). When it comes to the urban river, more 
efficient and higher resolution methods are needed due to the 
frequent changes in water quality (Vidon et al., 2008) and narrow 
river width. Also, specific water quality indices need 
corresponding sensitive bands to monitor because of the complex 
factors which affect the urban water environment (Liu et al., 
2016).  
 
Unmanned aerial vehicle (UAV) remote sensing has the 
characteristics of flexibility, efficiency and high resolution 
(Stöcker et al., 2017), which is an effective solution for the multi-
temporal monitoring of urban river water quality. This paper 
proposed a UAV-borne multi-spectral remote sensing method for 
multi-temporal monitoring of urban river water quality. Water 
quality monitoring process of an entire urban river can be 
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shortened within one day. In this method, narrowband multi-
spectral array camera is used for monitoring to improve the 
observation precision which can freely customize the bands for 
specific water quality indices. Based on the orthophoto map and 
image registration, the river area is clipped, which can save time 
from establishing orthophoto map and increase the efficiency. 
Aiming at the problem of solar radiance changes on the ground, 
collecting data from the sky and the ground synchronously is 
carried out to ensure the accuracy of the image correction and the 
river reflectance calculation. Support Vector Machine (SVM) is 
used to classify the water quality. 
 

2. METHODOLOGY 

2.1. Reflectance Calculation and Band Selection for Water 
Quality Monitoring 

The data set of water quality indices and spectrum is constructed, 
in order to prepare for the band selection. The water samples and 
spectral data of urban rivers are collected simultaneously.  
 
Above-water measurement (Fargion, Mueller, 2000; Lee et al., 
1997) is used to collect spectrum. The water leaving radiance L୵ 
above the water surface does not change much in the range of 
zenith angle 0° ~ 40 °. The angle between observation plane of 
the spectrometer and incident plane of the sun is 90°≤φV≤ 135°, 
in order to avoid the damage of the light field caused by the 
specular reflection of the sun and the shadow of surrounding 
objects. The angle between the spectrometer and normal line of 
the water surface is 30°≤θV≤45°. In this way, most of the 
specular reflection of the sun can be avoided, and the shadow 
effect of the surrounding objects can be reduced. The purpose of 
spectral information preprocessing is to obtain the normalized 
reflectance of the whole band. The following is the specific 
process. 
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A. water leaving radiance calculation 
 

L୵ = Lୱ୵ − r ∗ Lୱ୩୷                         (1) 

 
Where, L is the water leaving radiance. Lୱ୵ is the total radiance 
signal received by the spectrometer. Lୱ୩୷  is the sky diffusion 
light. r  is the Fresnel reflection coefficient of the air-water 
interface to the sky light, which is generally 0.028. 
B. water surface incident irradiance calculation 
 

Eୢ(0ା) = L୮* π/ρ୮                             (2) 
 

Where, Eୢ(0ା) is the water surface incident irradiance. L୮ is the 
radiance measured from standard reflecting board. ρ୮  is the 
reflectance of standard reflecting board. Before measurement, the 
standard reflecting board should be strictly calibrated. In this 
paper, a white standard reflecting board is used, the reflectance 
of which is 99%. 
C. reflectance calculation 
According to formula (1) and formula (2), the calculation formula 
of reflectance Rrs can be obtained as follow. 
 

 Rrs =
୵

ౚ(శ)
=

౩౭-୰*౩ౡ౯

౦*/౦
                         (3) 

 
D. normalized reflectance calculation 
Due to the influence of weather, background and measurement 
angle, the reflectance may change. It is necessary to normalize 
the reflectance of all bands. The calculation formula of 
normalized reflectance Rrs′ can be obtained as follow. 
 

  Rrs୧′ =
ୖ୰ୱ

ට∑ ୖొ
సభ ୰ୱ

మ
                                (4) 

 
Where, N is the number of the bands. i is one of the bands. 
 
The water quality indices which need to be monitored are 
analyzed in the laboratory. This laboratory has passed the China 
Metrology Accreditation (CMA). The samples of different water 
quality situations are collected, which are representative. 
 
By analyzing the correlation between spectral data and water 
quality indices and the information entropy, the bands mounted 
on the multi-spectral camera are selected. K-means clustering 
algorithm is used to eliminate the abnormal data. Correlation 
coefficient between the normalized reflectance and the 
concentration of water quality indices is calculated. The 
correlation coefficient formula is as follow, and the correlation 
coefficient curve can be obtained. 
 

R(Rrs′, I) =
େ୭୴(ୖ୰ୱᇱ,୍)

ඥୟ୰[ୖ୰ୱᇱ]ୟ୰[୍]
                         (5) 

 
Where, I  is the concentration of water quality indices. 
Cov(Rrs′, I) is the covariance between Rrs′ and I. Var[Rrs′] is 
the variance of Rrs′, and Var[I] is the variance of I. 
 
The information entropies of each band are calculated. The 
formula of information entropy is as follow.  
 

 H(band) = − ∑ p(Rrsᇱ
୧) log൫p(Rrsᇱ

୧)൯୬
୧ୀଵ           (6) 

 
Where, H(band) represents the information entropy of a certain 
band, p(Rrs′୧) represents the occurrence probability of a certain 
band reflectance value Rrs′୧. The larger information entropy is, 
the more abundant information is contained in the band. 

 
Considering the correlation coefficient and information entropy, 
the band with larger correlation coefficient and information 
entropy is selected as the mount band of multispectral camera. 
Also, considering the performance parameters of camera, the 
band width is determined to ensure imaging quality. 
 
2.2. Remote Sensing Data Collection and Image Correction 

Orthophoto map of the monitoring area is established which is 
used as the base map for remote sensing image registration. The 
vector map of the river area is extracted from the base map. In 
this way, time can be saved from establishing the orthophoto map 
and increase the efficiency. 

 
The patrol route is used in multi-spectral images acquisition to 
take the place of traditional photogrammetry route, which can 
reduce data quantity and data acquisition time (Cabreira et al., 
2019). UAV flies along the river centerline. Set the images to 
overlap three times to ensure redundant observation. In order to 
improve the signal-noise ratio of the image and avoid the specular 
reflection of the river water, the solar elevation angle shall be 
between 35° and 65° during the collection of the images (Wang, 
2006). 
 
At the same time of collecting the remote sensing image of the 
ground, solar radiance is collected simultaneously. Use a 99% 
standard reflector and spectrometer to collect the water entering 
radiance. Both the images and solar radiance data use the GPS 
(Global Positioning System) Timing System. The solar radiance 
curve can be obtained by cubic spline interpolation. This curve 
can be used as a reference for relative radiometric correction and 
ground surface reflectance calculation. 
 
The images are corrected, according to the absolute radiometric 
calibration (Minarík et al., 2019) and geometric calibration 
(Nocerino et al., 2017) of the camera in advance. The general 
position of each image is determined on the base map according 
to the GPS information. SIFT (Scale-invariant feature transform) 
is used to match the corresponding points and then the points are 
checked manually. Registration is carried out by image space 
transformation to the base map. The vector map of river area is 
used to clip the river part from remote sensing images. Based on 
the solar radiance curve, the corrected image and formula (3), the 
river reflectance image is obtained. The process of remote 
sensing data collection and image correction is shown in Figure 
1. 
 
2.3. Water Quality Classification Modeling 

The reflectance of the selected bands and water quality indices 
data are set to be the training data. Based on the training data, 
SVM water quality classification model is established. The 
concentration of each water quality index is divided into six 
classes according to the National Standard of the People's 
Republic of China "Environmental quality standards for surface 
water" (GB3838-2002). The six classes are Class Ⅰ, Class Ⅱ, 
Class Ⅲ, Class Ⅳ, Class Ⅴ and Worse than Class Ⅴ. Class Ⅰ is 
the best water quality and Worse than Class Ⅴ is the worst. 
 
Using the reflectance of each selected band as the n-dimensional 
vector of the training set. The labels are divided into six classes 
according to the six water quality classes. Optimal kernel 
function, slack variable, penalty parameter and gamma 
coefficient are selected to construct a hyperplane. The penalty 
parameter follows the classification optimization problems 
below: 
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min
ଵ

ଶ
||w|| + C ∑ ξ୧

୧
୧ୀଵ                              (7) 

s. t. y୧[(wx୧) + b] ≥ 1 − ξ୧ (i = 1, 2, … … , n)(ξ୧ ≥ 0)     (8) 
 

Where, w  is the coefficients of hyperplane equation. ξ  is the 
slack variable, which is the allowed amount of deviation from 
functional margin for corresponding training data points. C is the 
penalty parameter. The larger C is, the more strict classification 
is. But it is easy to be over-fitting, and the generalization ability 
is poor. On the contrary, the smaller C is, the easier it is to be 
under-fitting. When using kernel functions of 'RBF', 'poly' and 
'sigmoid', the gamma coefficient needs to be optimized. The 
formula of gamma coefficient is as follows: 
 

gamma =
ଵ

ଶ∗మ
                                   (9) 

 
Where, 𝜎  is the standard deviation parameter in the normal 
distribution. If gamma is larger, it is easier to be over-fitting, and 
has poor generalization ability. Conversely, the smaller gamma 
is, the easier it is to be under-fitting. In addition, SVM one-vs-
rest strategy is used to classify six classes. When the sample 
number in each class of water quality index is unbalanced, the 
balanced class weight method is used for training. 
 
Finally, the water quality classification is carried out according 
to the SVM water quality classification model. The water quality 
classification result map is obtained. 
 

3. EXPERIMENT AND RESULTS 

3.1. In-Situ Data Collection and Analysis 

The water quality indices which are monitored in this paper are 
total phosphorus (TP), ammonia nitrogen (NH3-N) and chemical 
oxygen demand (COD). These indices are important factors of 
urban water environment pollution. A total of 186 samples were 
collected in Shanghai China. ASD Handheld 2 Pro was used to 

collect spectral data. The samples follow the principle of water 
quality diversity and are representative. The class distribution of 
each water quality index of the samples is shown in the Table 1 
below. 

Water Quality Class COD NH3-N TP 
Class Ⅰ 

118* 
10 5 

Class Ⅱ 28 13 
Class Ⅲ 39 20 63 
Class Ⅳ  22 11 57 
Class Ⅴ 5 51 31 

Worse than Class Ⅴ 2 66 17 
* The Class Ⅰ and Class Ⅱ of COD is the same in National Standard of 
the People's Republic of China. 

Table 1. Class distribution of each water quality index of the 
samples 

 
After eliminating the abnormal data and unstable bands caused 
by the atmospheric conditions, the correlation coefficients 
between the collected water spectrums and the quality index 
concentrations of water samples are analyzed. Also, the 
information entropy values of each band are calculated. The 
correlation coefficient curves and information entropy curve are 
shown in the Figure 2. It can be seen that the absolute value of 
the correlation coefficient is larger around 675nm, 705nm and 
714nm. The information entropy is relatively large between 
518nm and 710nm. Therefore, considering the correlation 
coefficient and information entropy, 675nm and 705nm are 
selected. 

 
Figure 1. Process of remote sensing data collection and image correction 
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(a) 

 
(b) 

Figure 2. Correlation coefficient curves of water samples and 
spectrum information entropy curve  

(a) Correlation coefficient curves (b) Information entropy curve 
 
3.2. Experiment Setting 

The experiment was performed on partial basin of the Taopu 
River in Shanghai, China. This river is an important tributary of 
the Shanghai urban area. The total length of the experimental 
basin is about 6 km and the width is about 30 m.  
 
A narrowband multi-spectral array camera was adopted to collect 
images. The picture frame of this camera is 6000 × 4000 pixels. 
The spatial resolution of 100m altitude is 1.2cm and the spectral 
resolution is 10nm. The bands it carries are RGB, 675nm, 705nm 
and 850nm as near infrared supplement which is important band 
for water remote sensing (Ruddick et al., 2006). 
 
Experiments were processed on May 7，May 22, July 4, and 
August 8, 2019. The altitude of the flight route was set as 300m 
and each of the monitoring flights costs about 20min. The 
number of images acquired for each flight was about 200. The 
method proposed in this paper was used for water quality 
classification. It cost within one day to get the classification result. 
 
The checkpoints are evenly distributed in the study area. Water 
quality samples were taken as the checkpoints when the UAV 
was flying directly above. In May 7, July 4 and August 8, a total 
of 25 checkpoints have been set up. The study site, flight path 
and distribution of checkpoints are shown in Figure 3 below. 

 
Figure 3. Study site, flight paths and checkpoints of Taopu 

River water quality monitoring 
 
3.3. Experiment Results 

SVM classification models are respectively trained for the three 
water quality indices. The training data are the reflectance of 
675nm, 705nm and 850nm, and the labels are marked according 
to the six classes of water quality. The precision of the 
classification models are tested by the method of 5-fold cross-
validation. Confusion matrices and precision of the three water 
quality classification models are shown in the Table 2 and Figure 
4. 

 COD NH3-N TP 
Average Precision 0.86 0.74 0.76 

Table 2. Precision of the water quality SVM classification 
models 

 
According to the six classes, classification results are represented 
by six colors which are shown in Figure 5. From the results it can 
be seen that the situation of COD is between Class Ⅱ and Class 
Ⅴ. NH3-N is between Class Ⅴ and Worse than Class Ⅴ. TP is 
between Class Ⅱ and Class Ⅴ. Compared with the checkpoints, 
the classification precision of COD, NH3-N and TP are 72%, 96%, 
and76%. The statistics of water quality classification precision 
are shown in Table 3. 
Classification Results COD NH3-N TP 
Correct classification 18 24 19 
Overestimate 1 class 1 1 1 

Underestimate 1 class 5 0 5 
Overestimate 2 classes 1 0 0 
Classification precision 72% 96% 76% 

Table 3. Statistics of water quality classification precision 
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(a) 

(b) 

 
(c) 

Figure 4. Confusion Matrices of water quality SVM 
classification models 

 (a) COD (b) NH3-N (c) TP 
 

4. DISCUSSION AND CONCLUSION 

4.1. Discussion 

From the result, it can be obviously seen that the water quality 
situation is not stable and is in constant change. Sometimes, the 
changes can be tremendous which needs multi-temporal 
observation. COD, NH3-N and TP of Taopu River show different 
states on four days. Also, the water quality of the whole river 
basin is not the same. The water quality of the Taopu River is 
better in the middle part but poor at the north and south ends. The 
reason for this trend is that the river at both ends of the north and 
South are blocked. There are tributaries in the middle section, 
which can ensure the flow of river water. From the classification 
results of TP on May 22 and June 4, we can see some water 
quality catastrophe points. These points are suspected to be 
sewage outlets. According to the field investigation, sewage 
outlets do exist in these places. 
 
Because the quality of ammonia nitrogen in Taopu River is stable 
between class Ⅴ and worse than class Ⅴ, the precision of 
classification can reach 96%. More experiments need to be 
carried out in more places to verify the practical application 
precision of the classification models. Chemical oxygen demand 
of the samples collected in Shanghai is mainly concentrated in 
Class Ⅰ and class Ⅱ, which reduces the generalization of the 
classification models. The number of sample needs to be 
expanded to balance the quantity of each water quality class. 
 
4.2. Conclusion 

The method proposed in this paper addresses the problems of 
frequent changes in the water quality of urban river and their 
spatial inconsistencies. UAV-borne multi-spectral remote 
sensing technology is used to achieve the purpose of multi-
temporal monitoring of surface water quality. While improving 
the monitoring efficiency, the precision of the classification 
results is guaranteed. The result can be a decision-making basis 
for water environment treatment. Basing on this method, 
improving the ability of recognition and increasing the bands can 
further broaden the scope of application. Furthermore, this 
method can be used as a reference for mission oriented UAV-
borne multi-spectral remote sensing applications. 
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