
EVALUATION OF SEMANTIC SEGMENTATION METHODS FOR DEFORESTATION
DETECTION IN THE AMAZON

R. B. Andrade1, G. A. O. P. Costa1,∗, G. L. A. Mota1, M. X. Ortega2,
R. Q. Feitosa2, P. J. Soto2, C. Heipke3

1 Dept. of Informatics and Computer Science, Rio de Janeiro State University (UERJ), Brazil
renanbides@gmail.com, (gilson.costa, guimota)@ime.uerj.br

2 Dept. of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
(mortega, raul, psoto)@ele.puc-rio.br

3 Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover (LUH), Germany
heipke@ipi.uni-hannover.de

Commission III, WG III/7

KEY WORDS: Amazon Forest, Deforestation, Semantic Segmentation, Change Detection, Deep Learning, DeepLabv3+

ABSTRACT:

Deforestation is a wide-reaching problem, responsible for serious environmental issues, such as biodiversity loss and global climate
change. Containing approximately ten percent of all biomass on the planet and home to one tenth of the known species, the
Amazon biome has faced important deforestation pressure in the last decades. Devising efficient deforestation detection methods
is, therefore, key to combat illegal deforestation and to aid in the conception of public policies directed to promote sustainable
development in the Amazon. In this work, we implement and evaluate a deforestation detection approach which is based on a Fully
Convolutional, Deep Learning (DL) model: the DeepLabv3+. We compare the results obtained with the devised approach to those
obtained with previously proposed DL-based methods (Early Fusion and Siamese Convolutional Network) using Landsat OLI-8
images acquired at different dates, covering a region of the Amazon forest. In order to evaluate the sensitivity of the methods to the
amount of training data, we also evaluate them using varying training sample set sizes. The results show that all tested variants of
the proposed method significantly outperform the other DL-based methods in terms of overall accuracy and F1-score. The gains in
performance were even more substantial when limited amounts of samples were used in training the evaluated methods.

1. INTRODUCTION

Covering an area of approximately 5.5 million km2, which is
equivalent to approximately one third the size of the South Amer-
ican continent, the Amazon rainforest encompasses half of the
remaining tropical forest area on the planet (World Wildlife
Fund, 2020a). Home to the largest collection of plants and an-
imal species on the planet, the Amazon biome contains unpar-
alleled biodiversity: it is the natural habitat of one tenth of the
known species in the world (The Worldwatch Institute, 2015).

The forest covers most of the Amazon river basin, source of
20% of all free-flowing fresh water on Earth (Assunção, Rocha,
2019). Additionally, the Amazon forest produces vast quantit-
ies of water for most of South America’s extents. The so-called
“flying rivers”, formed by masses of air loaded with water vapor
generated through evapotranspiration, carry moisture to most
of Brazil and regulate rainfall regimes in the central, south-
east and southern regions of South America (Lovejoy, Nobre,
2018). The induced rain is responsible for irrigating crops and
for filling the rivers and dams used to generate electrical energy
by a large number of hydropower plants.

Moreover, tropical rainforests store from 90 to 140 billion met-
ric tons of carbon, and are known to help stabilize the world-
wide climate. The Amazon forest alone contains 10% of all
biomass on the planet (De Sy et al., 2015). Unfortunately, for
decades the Amazon biome has faced several threats as a result
∗ Corresponding author

of unsustainable economic development, primarily caused by
the extension of agricultural activities at industrial scale, such as
soybean cropping and cattle farming, forest fires, illegal mining
and logging and expansion of informal settlements (Goodman
et al., 2019, Malingreau et al., 2012, Nogueron et al., 2006). All
these factors are directly associated with deforestation.

According to the National Institute for Space Research (INPE)
(Shimabukuro et al., 2013), deforestation accelerated signific-
antly in the Brazilian Legal Amazon area during the 1990’s and
early 2000’s. Likewise, the World Wildlife Fund (World Wild-
life Fund, 2020b) estimates that more than a quarter of the rain-
forest will vanish by 2030, if the current rate of deforestation
continues.

Deforestation is one of the largest sources of CO2 emissions re-
lated to anthropogenic activities. It is a wide-reaching problem,
responsible for the reduction of carbon storage, greenhouse gas
emissions, and other serious environmental issues such as bio-
diversity losses and climate change (De Sy et al., 2015).

The above mentioned facts indicate the importance of the pre-
servation of the Amazon biome, and Remote Sensing (RS) data
provide key capability to monitor this environment. It can be
used not only in the combat of illegal activities, but also in the
planning and development of public policies to promote sus-
tainable development in the region (Sathler et al., 2018).

Since the late 1980’s, the Brazilian National Institute for Space
Research (INPE) has been using RS data to monitor the Brazi-
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lian Legal Amazon area (BLA). Since 1988, the Amazon Defor-
estation Monitoring Project (PRODES) has produced annual re-
ports about deforestation of native vegetation in the BLA, deliv-
ering deforestation maps derived from Landsat images (Valeri-
ano et al., 2004). Relying on MODIS data the Near Real-Time
Deforestation Detection project (DETER-A) started in 2004 to
support actions from governmental agencies against illegal de-
forestation (Shimabukuro et al., 2006). With the change in
the deforestation patterns observed in the last decade, in which
most deforestation polygons started to show areas of less than
25 ha, a new version of the project, the DETER-B, was launched
in 2015, in order to monitor, on a daily basis, changes in veget-
ation cover of as small as 1 ha, from the WFI/CBERS-4 and
AWiFS/IRS sensor systems (Diniz et al., 2015).

All the above mentioned projects, however, rely mostly on visual
interpretation and manual operations. This is due basically to
the high level of accuracy expected for the official information
provided by those projects to different stakeholders. There is,
therefore, a demand for automatic methods that can support
such projects in ways that can further improve the accuracies
obtained and, at the same time, diminish the need for human
intervention, so as to improve their response times.

In this work, we evaluate an approach based on a specific Deep
Learning (DL) Fully Convolutional Network (FCN) architec-
ture, the DeepLabv3+ (Chen et al., 2018b), which we adapted
to deforestation change detection. We also compare the results
obtained with this approach to the ones reported in a previous
work (Ortega et al., 2019) over the same study area. Addition-
ally, we investigate the different methods’ demands for training
samples in relation to the delivered accuracies. In short, the
major contributions in this work are:

• We adapted the previously proposed semantic segmenta-
tion method DeepLabv3+ to deforestation change detec-
tion, and evaluated the method’s performance over an area
of the Amazon forest.

• We evaluated the impact of varying hyperparameter val-
ues of the proposed method in the deforestation detection
accuracy.

• We evaluated the sensitivity of the proposed method to the
amount of labeled samples used in training stage.

• We compared the performance of the proposed method
to those delivered by deep learning-based methods previ-
ously employed in deforestation detection in the Amazon
region.

The remainder of this article is organized as follows. In the next
section we review related works. Section 3 describes the Deep-
Labv3+ architecture, while section 4 presents the adaptations
of the original module carried out in this research. In Section 4
we also describe the other change detection methods, to which
the proposed method is compared. Section 5 is dedicated to the
description of the experiments. In Section 6 we present and ana-
lyze the results of the experiments, and in Section 7 we present
the conclusions and directions for further work.

2. RELATED WORK

This section presents some DL patch-wise classification and se-
mantic segmentation approaches.

2.1 Patch-wise Classification

Patch-wise classification change detection produces a global
decision by considering two distinct patches of the same ob-
ject acquired at distinct time instances. Among the outstanding
methods that can be found in the literature, (Chu et al., 2016)
proposes a CD method that uses a pair of Deep Belief Net-
works (DBN), one for each patch. A modified backpropaga-
tion algorithm minimizes the DBNs’ outputs distances for non-
changed examples and maximizes them for the changed ones.
The DBN outputs are submitted to PCA/k-means clustering,
which produces the final result. In experiments using very high
resolution (VHR) images of urban areas, the method outper-
formed traditional approaches.

A similar idea underlies the Siamese Convolutional Neural Net-
works (S-CNN) applied in (Daudt et al., 2018), which corres-
ponds to a pair of convolutional nets with shared weights. Con-
volutional outputs are concatenated and a fully connected net-
work delivers the decision. An alternative approach to S-CNN
is also presented by the authors: the so-called Early Fusion
(EF), which consists of concatenating two image pairs as the in-
put of the convolutional network. In the experiments, Sentinel-2
RS images of urban areas were employed to compare the per-
formance of EF and S-CNN to some baseline methods. The
authors reported that the EF and S-CNN delivered the best res-
ults, and that the EF method was slightly superior to the S-CNN
method.

2.2 Semantic Segmentation

Semantic segmentation is characterized by producing pixel lev-
el decisions, in contrast to global patch-wise classification. A
successful method for the semantic segmentation of VHR im-
ages is presented in (Wang et al., 2019). It employs an en-
semble of several multiscale multiconnection ResNets and a
class-specific attention model. Experiments compared it to six
state-of-the-art models, including the DeepLabv3+, in two ur-
ban benchmark datasets (Mnih, 2013, ISPRS, 2020). In order to
reduce the loss of spatial features and strengthen object bound-
aries, the so-called dense-coordconv network (DCCN) was pro-
posed in (Yao et al., 2019). In the experiments, the authors com-
pared DCCN with other deep convolutional neural networks (U-
net, SegNet, DeepLabv3), showing that DCCN delivered higher
accuracies. Aiming at increasing the robustness of segmenta-
tion in blurred or partially damaged VHR RS images, (Peng et
al., 2019) proposes the RobustDenseNet and the use of multi-
modal data (NIR, RGB and DSM). Experiments compared the
proposed model with DeepLabv3+ on the ISPRS Postdam 2D
dataset (ISPRS, 2020), with randomly added motion blur to
spectral data, and randomly deleted colors of small areas. The
results show the superiority of the proposed model over Dee-
pLabv3+. (Guo et al., 2020) used a pre-trained modified aligned
Xception (Chollet, 2016) and the DeepLabv3+ model combined
with transfer learning strategies for extraction of snow cover
from high spatial resolution RS images.

An FCN architecture inspired by U-Net is presented in (de Jong,
Bosman, 2019). One of its benefits is that it can take advantage
of previously trained U-Nets. Another important aspect is its
multi-scale structure, which is able to generate multiple scales
difference images. This method was applied to high resolu-
tion RS images of the ISPRS Vaihingen dataset (ISPRS, 2020),
achieving over 90% overall accuracy. A Fully Atrous convolu-
tional neural network (FACNN) architecture for semantic seg-
mentation and CD was introduced in (Zhang et al., 2019). Test-
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ing results using VHR images showed that the FACNN signific-
antly outperforms several recent FCN models (FCN-16, U-Net,
Dense-Det, DeepLabv3 and SR-FCN (Ji et al., 2019)) in land
cover classification.

2.3 Deforestation Mapping

The work (Ortega et al., 2019) presents an evaluation of meth-
ods for automatic deforestation detection, an Early Fusion (EF)
Convolutional Network and a Siamese Convolutional Network
(S-CNN), taking a Support Vector Machine (SVM) as baseline.
These patch classification methods were evaluated on a data-
set covering the Brazilian Legal Amazon. The DL-based ap-
proaches outperformed the SVM baseline, both in terms of F1-
score and Overall Accuracy, with a superiority of S-CNN over
EF.

To the best of our knowledge, (Ortega et al., 2019) is the only
research reported in the literature dedicated to monitoring Ama-
zon deforestation based on DL. The research presented herein
uses the same dataset. But, instead of employing patch-wise
classification methods, this work is dedicated to the investiga-
tion of the benefits of using a particular semantic segmentation
architecture, the DeepLabv3+ in deforestation monitoring.

3. THE DEEPLAB V3+ MODEL

The first DeepLab module was proposed in (Chen et al., 2014).
Its major novelty is the particular implementation of the ‘hole
algorithm’, which has been previously proposed for improving
efficiency on the computation of the undecimated wavelet trans-
form (Mallat, 2018), and came to be known in the DL field
by the terms atrous or dilated convolution. Dilated convolu-
tion is designed to enlarge the field-of-view of traditional filters,
thus incorporating larger image contexts, without increasing the
number of parameters or the amount of computations.

The second DeepLab version introduced atrous spatial pyramid
pooling (ASPP). ASPP were designed to probe a feature layer
with filters with different fields-of-view, by performing a se-
quence of dilated convolutions with different sampling rates,
thus capturing image context at multiple scales (Chen et al.,
2018a).

The first two versions of DeepLab relied on a fully connected
Conditional Random Field (CRF) (Krähenbühl, Koltun, 2011)
to enhance the level of detail (e.g., of object boundaries) of the
outcome of the convolutional networks. The CRF component
was droped in the third DeepLab module (Chen et al., 2017),
in which the ASPP component was augmented by using image-
level features, or image pooling (Liu et al., 2015), which encode
global image context.

Finally, the DeepLabv3+ model (Chen et al., 2018b) adopts an
encoder-decoder structure using the original DeepLabv3 as an
encoder. The simple decoder module was devised to enhance
segmentation results especially along object boundaries. Spe-
cifically, the last feature map before the logits layer in the ori-
ginal DeepLabv3 model is used as the encoder output.

The encoder features from DeepLabv3 are usually computed
with an output stride of 16, the output stride being the ratio of
the input image spatial resolution to the output feature map spa-
tial resolution. In order to recover object segmentation details
which are not recovered through a simple bilinear upsampling

by a factor 16, the encoder output feature map in DeepLabv3+ is
first bilinearly upsampled by a factor of 4 and then concatenated
with the corresponding low-level feature map from the network
backbone that has the same spatial resolution. Before concaten-
ation, a 1×1 convolution is applied on the low-level features to
reduce the number of channels associated with those features,
so that they do not outweigh the importance of the encoder’s
output. After concatenation, 3×3 convolutions are applied to
refine the features, finally followed by another simple bilinear
upsampling by a factor of 4 (Chen et al., 2018b).

In (Chen et al., 2018b) the authors also used the Xception model
(Chollet, 2016), adapted for the task of semantic segmentation,
as the backbone of the encoder network. A deeper model, as in
(Dai et al., 2017), was used. The max pooling operations were
replaced by depthwise separable convolution with striding, and
batch normalization (Ioffe, Szegedy, 2015) and ReLU activa-
tion were added after each 3×3 depthwise convolution, as in
the MobileNet design (Howard et al., 2017).

4. DEFORESTATION DETECTION METHODS

In this section, we shortly describe the methods evaluated in this
work for deforestation detection, the previously proposed Early
Fusion (EF) and Siamese Convolutional Network (S-CNN), and
the one introduced in this work, based on fully convolutional
semantic segmentation with the DeepLabv3+ model (DL).

4.1 Early Fusion (EF)

The EF method is based on the CNN model proposed in (Daudt
et al., 2018), originally employed for change detection in urban
areas. It is composed of a number of convolutions and pooling
layers, followed by a fully connected layer and a softmax layer,
to carry out the final classification.

The term Early Fusion is related to the concatenation of co-
registered images from two different epochs, before further pro-
cessing. The images are stacked along the spectral dimension to
generate a unique (synthetic) input image for subsequent patch
extraction.

The image patches are defined and extracted through a sliding
window procedure. Each patch is submitted to classification,
and the corresponding class label is assigned to the central pixel
of each patch.

The EF model evaluated in this work is composed of three con-
volutional layers (Conv) with ReLU as activation function, two
max-pooling (MaxPool) layers and two fully connected layers,
the last one being a softmax with two outputs, associated with
the deforestation and no-deforestation classes. The input tensor
has dimensions 15×15×16 (H×W×C), the first Conv layer has
96 7×7×16 filters, using padding. It is followed by a MaxPool
(2×2) layer, which generates a 7×7×96 tensor. The second
Conv layer has 192 5×5×96 filters, it is also followed by a
MaxPool (2×2) layer, resulting in a 3×3×192 tensor. The last
Conv layer has 256 3×3×192 filters, generating a 3×3×256
tensor which is flattened (amounting to a 2304 feature vector)
and connected to the softmax layer.

4.2 Siamese Convolutional Network (S-CNN)

A Siamese convolutional network comprises two identical CNN
branches that share the same hyperparameters and weight val-
ues (Zhang et al., 2018). The model evaluated in this work is
also based in the work of (Daudt et al., 2018).
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Corresponding patches from co-registered images of two dif-
ferent epochs are processed individually on each branch of the
network, generating feature vectors that are concatenated and
associated to a fully connected layer followed by a softmax
layer with two outputs (Zhang et al., 2018). Similar to the EF
approach, a class label is assigned to the central pixel of each
patch.

Each branch of the network is similar to the architecture de-
scribed in the previous section, with the difference that the in-
put tensor has dimensions 15×15×8, and the filters in the first
Conv layer have sizes 7×7×8. Also, the final feature vectors
are concatenated into a 4608 sized one, and connected to the
softmax layer.

4.3 DeepLab-based Change Detection (DLCD)

As in the EF approach, the proposed DeepLab-based deforest-
ation detection (DLCD) technique takes as input a synthetic
image, created through stacking along the spectral dimension
two co-registered images from different epochs. But different
from the previously described methods, which were devised for
patch, or image classification in the computer vision termino-
logy, DLCD delivers dense labeling of input patches through a
FCN.

Since the size of the deforestation areas (or objects) in the data-
set evaluated in this work are much smaller than the objects
present in the images of the datasets tested in (Chen et al.,
2018b) (i.e., PASCAL VOC 2012 and Cityscapes), and the vast
majority of the samples/pixels are of the no-deforestation (or
background) class, we experimented with patches of smaller
sizes than in (Chen et al., 2018b) and obtained better and more
consistent results with a patch size of 64×64 pixels.

In order to adjust the network architecture to the selected input
patch size and to an output stride of 8, we changed the rates of
the convolutions in the atrous spatial pyramid pooling to 3 and
6 (originally, rates 12 and 24 were employed), and removed the
convolution with the highest rate because it would degenerate
into a 1×1 convolution. We also used rate 1 in the middle block,
and rates 1 and 2 in the exit blocks convolutions of the adapted
Xception backbone (originally, rates 2 and 4 were employed in
the exit blocks). Figure 1 shows the architecture of the DLCD
model.

5. EXPERIMENTS

5.1 Data Set Description

The study area is located in the Brazilian Legal Amazon, more
specifically in Pará State, Brazil, centered on coordinates of 03o

17’ 23” S and 050o 55’ 08” W. This area has faced a significant
deforestation process in the period tracked and monitored by
PRODES (Valeriano et al., 2004).

Figure 2 shows the study area on August 2nd, 2016 and Figure
3 shows the same area on July 20th, 2017. These dates were
chosen due to the lower presence of clouds, a common problem
over all the Brazilian Legal Amazon region.

Figure 4 shows the reference change map of deforestation that
occurred between December 2016 and December 2017. This
data is freely available at the PRODES database (http://terrabra
silis.dpi.inpe.br/map/deforestation). However, some polygons

Figure 1. DLCD model. Layer descriptions contain: convolution
type (Conv for regular convolution; SConv for depthwise

separable convolution), number of filters, filter size, stride,
dilation rate.

Figure 2. T1: August, 2016.

Figure 3. T2: July, 2017.

of the reference were not considered in the analysis, because
they had been deforested in previous years.

The reference deforestation polygons represent transitions from
forest to no-forest. In this work image pixels that intersect such
polygons are considered as samples of the deforestation class.
The other pixels are associated with the no-deforestation class,
which includes areas where the forest cover remains unchanged
and areas where deforestation has previously occurred.

The dataset comprises a pair of Landsat 8-OLI images, with
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30m spatial resolution. We applied an atmospheric correction
to each scene, and clipped them to the target area. The fi-
nal images have 1100×2600 pixels and seven spectral bands
(Coastal/Aerosol, Blue, Green, Red, NIR, SWIR-1, and SWIR-
2). Following (Ortega et al., 2019), we also included an ad-
ditional band in those images, which corresponds to the Nor-
malized Difference Vegetation Index (NDVI) (Carlson, Ripley,
1997) calculated for every pixel using the Red and the NIR
bands.

The dataset is extremely imbalanced considering the ratio of
the deforested area in the studied period to the area in which
deforestation did not occur. Table 1 shows the proportions of
the deforestation area in relation to the total area in the study
region. The training, validation and test set rows in Table 1
show the proportions in relation to the total area covered by the
tiles considered in the respective sets (see next section).

We observe that highly imbalanced datasets pose a challenge
for predictive modeling as the learning process of most clas-
sification algorithms is often biased toward the majority class
examples, so that minority ones are not well modeled into the
final system (Guo, Viktor, 2004). As described in the next sec-
tion, in this work we explore different techniques to deal with
class imbalance in the training process of the proposed method.

Table 1. Deforestation area in the study region.

Deforestation Area (pixels) Proportion (%)
Total 72298 2.6

Training set 24438 3.3
Validation set 8807 2.3

Test set 39053 2.3

5.2 Experimental Setup

Following (Ortega et al., 2019) the experiments relied on the
two optical images mentioned in the previous section. As an
NDVI band was stacked along the spectral dimension of the
corresponding images, the resulting input images for the defor-
estation detection methods comprise eight bands, which were
normalized to zero mean and unit variance.

We divided the input images into tiles of the same size and ob-
tained a total of 15 tiles. Tiles 1, 7, 9 and 13 were used for train-
ing, tiles 5 and 12 for validation and tiles 2, 3, 4, 6, 8, 10, 11,
14 and 15 for test. Figure 4 shows the image tile locations and
the corresponding reference deforestation areas (in blue color).

Figure 4. Tile references and deforestation polygons.

In order to evaluate the sensitivity of the methods to the amount
of training data, we ran experiments considering four different
scenarios: using training samples from a single tile (13); from
two tiles (1 and 13); from three tiles (1, 7 and 13); and from
four tiles (1, 7, 9 and 13). Table 2 shows the proportions of

Table 2. Deforestation area in the training scenarios.

Training tiles Area (pixels) Proportion (%)
1 tile 2137 1.1
2 tiles 12112 3.3
3 tiles 16376 2.9
4 tiles 24438 3.3

the deforestation area in relation to the total area of the tiles
considered in the different training scenarios.

The patch sizes for the EF and S-CNN methods were set to
15×15. During the training procedure of both methods, data
augmentation was performed only on patches associated to the
deforestation class, i.e., for which the central pixel belongs to
the deforestation class. Each training patch was rotated by 90o,
and flipped in the horizontal and vertical axis.

Additionally, under-sampling was employed for the no-defores-
tation class to balance the number of training patches for both
classes. In this way, 8,118 training pairs of patches were ob-
tained for each class. The validation set was composed by a
total of 40,642 pairs of patches, 963 of the deforestation class,
and 39,679 of no-deforestation class, which corresponds to the
class distribution in the test set, which comprises 1,716,000
pairs, of which 40,392 were deforestation pairs and 1,675,608
no-deforestation pairs.

For training the EF and S-CNN methods the batch size was set
to 32. We used early stopping to break after 10 epochs without
improvement and a dropout rate of 0.2 was set for the last fully
connected layer. We employed the Adam optimizer, with the
learning rate of 0.001 and weight decay of 0.9.

For the DLCD method we used patches of 64×64, with an over-
lap of 48×48 pixels. The selected training patches were subjec-
ted to data augmentation, they were rotated by 90o, 180o, 270o;
and the original and rotated versions of the patches were flipped
vertically. Patches with no deforestation pixels were not used
in the training procedure.

The batch size was set to 16, and the number of epochs was
set to 100. We also used early stopping, to halt the procedure
after 10 epochs without improvement. Adam optimizer with a
learning rate of 0.001 was used in training.

As mentioned before, in order to deal with the high class im-
balance between the majority class (no-deforestation) and the
minority class (deforestation), in the case of the EF and S-
CNN methods, we balanced the training set so that it contains
the same number of deforestation and no-deforestation patches.
This was possible because those techniques perform patch-wise
classification, so that a patch can be labeled as belonging to a
particular class (that of its center pixel).

In the case of the proposed DLCD method, which assigns a
label to each pixel within a patch, it is not so simple to bal-
ance the training set. We could have decided to select for train-
ing patches with a higher proportion of deforestation pixels,
say 10%, but this would result in a much smaller training set.
Therefore, in an attempt to further deal with class imbalance we
employed the weighted focal loss function (Lin et al., 2017) in
the training of the DLCD model.

The weighted focal loss function was proposed for object re-
cognition problems with extreme foreground-background class
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imbalance. It is described in Equation 1, where y ∈ {±1} spe-
cifies the ground-truth class; p ∈ [0, 1] is the model’s estimated
probability for class y = 1 (the deforestation class); and α rep-
resents the weight associated to the deforestation class.

WFL(pt) = −αt(1− pt)γ log(pt) (1)

where pt =

{
p if y = 1

1− p otherwise

and αt =

{
α if y = 1

1− α otherwise

In order to investigate the influence of the parameters α and γ of
the weighted focal loss function in the classification accuracy of
the DLCD method, we performed a grid search. Accordingly,
in the experiments we considered the following values of α:
0.9, 0.8, 0.7, 0.6 and 0.5. Additionally, for each different α
value, we varied the γ values from 0 to 5 (integer values), which
amounts to a total of 30 combinations of α and γ values.

6. RESULTS

Figures 5 and 6 summarize the results of our experiments in
terms of F1-score for the deforestation class and Overall Ac-
curacy achieved by the Early Fusion (EF) and Siamese Net-
works (S-CNN) methods used in (Ortega et al., 2019) and by
the DeepLabv3+ change detection (DLCD) model implemen-
ted in this work. The figures show the performance obtained by
each method for different number of tiles used for training. For
the sake of clarity, we show the results of only four combina-
tions of the weights/γ values of the weighted focal loss func-
tion, namely: DLCD-1, for weights 0.1/0.9 and γ equal to 0;
DLCD-2, for weights 0.5/0.5 and γ equal to 0; DLCD-3, for
weights 0.5/0.5 and γ equal to 1; DLCD-4, for weights 0.5/0.5
and γ equal to 2. Those combinations were the ones that pro-
duced the best results, considering all the 30 possible variations.

The results show that the DeepLabv3+ based models (DLCD)
significantly outperformed all the other methods in terms of
overall accuracy and F1-score, in all the training scenarios (i.e.,
number of training tiles).

In the best result for the F1-score using 4 tiles for training,
71.8%, was obtained with the DLCD model, using a weight
of 0.1 for the no-deforestation class and a weight of 0.9 for the
deforestation class, and a γ equal to 0 (DLCD-1). In this scen-
ario, the DLCD-1 variant outperformed both Early Fusion and
Siamese Networks by 8.6% and 8.9%, respectively.

When using one, two and three tiles for training, the DLCD-1
variant outperformed both Early Fusion and Siamese Networks
methods by, respectively, 20.5% and 16.3% for one training tile;
14.4% and 13.1% for two training tiles; and 9.3% and 8.6% for
three training tiles.

In terms of Overall Accuracy, the best result, when using 4 tiles
for training, was obtained using weight of 0.5 for both deforest-
ation and no-deforestation classes, with γ equal to 1 (DLCD-3),
with a score of 98.8%. In this scenario, the DLCD-3 variant
outperformed the Early Fusion and Siamese Networks methods
by 0.97% and 0.77%, respectively. The same weight configur-
ation but with a γ of 2 (DLCD-4) obtained a similar score of

98.8%. When using one, two and three tiles for training, the
DLCD-4 variant outperformed both Early Fusion and Siamese
Networks methods by, respectively, 3.66% and 2.83% for one
training tile, 1.81% and 1.64% for two training tiles and 1.46%
and 1.05% for three training tiles.

Figure 5. F1-score×number of tiles for training.

Figure 6. Overall accuracy×number of tiles for training.

Figures 8 and 10 show visual examples of the outcomes of the
Early Fusion, Siamese Networks and DeepLabv3+ based meth-
ods (DLCD-1 variant), over the test tiles 6 and 14.

As can be seen in figures the method implemented in this work
produced a notably lower number of false deforestation areas,
which is particularly important for operational reasons, consid-
ering the effort and costs involved in the reconnaissance of the
actual deforestation by the local authorities, involved in penal-
izing the perpetrators or in mitigating the effects of illegal de-
forestation.

7. CONCLUSION

In this work we evaluated three deep learning-based methods
employed for the task of deforestation detection in the Amazon
rainforest. We compared the performances of two previously
presented methods: Early Fusion (EF), Siamese Convolutional
Neural Network (S-CNN), with the one of a method based on
the DeepLabv3+ model, implemented in this work.

We evaluated the methods over Landsat OLI-8 images, acquired
in 2016 and 2017 over the same region of the Brazilian Legal
Amazon, and used deforestation polygons produced by the PRO-
DES deforestation monitoring project, of the Brazilian National
Space Research Institute (INPE), as references.
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We also evaluated the methods with varying sizes of training
sample sets, and, in the case of the proposed DeepLabv3+ meth-
od, we tested various combinations of parameters of the fo-
cal loss function, used in the training procedure. The results
showed that all variants of the proposed method significantly
outperformed the EF and S-CNN methods in terms of F1-score,
and also yielded better Overall Accuracy results.

The gains in performance were even more significant when lim-
ited amounts of samples were used in training the deep learning
models, which indicates that the proposed method has a better
generalization capacity than the evaluated counterparts. While
no important gains were noted by varying the parameters of
the selected loss function, this seems to indicate that proposed
method deals satisfactory with high class imbalance.

A natural path for further investigation is to evaluate the pro-
posed method using data from other sensors, especially from
SAR systems, since cloud coverage is a critical problem for
forest monitoring in tropical regions.

Additionally, in this work we evaluated the proposed method
considering a specific site in the Brazilian Legal Amazon. Fur-
ther studies should be carried out to investigate the transferab-
ility potential of the method, e.g., evaluating its performance
when training with samples from a particular site, and testing
on images covering different sites in the Amazon.
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Figure 7. Test tile number 6.
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Figure 8. Change maps predicted by EF, S-CNN and DLCD-1 on test tile number 6.
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Figure 9. Test tile number 14.
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Figure 10. Change maps predicted by EF, S-CNN and DLCD-1 on test tile number 14.
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