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ABSTRACT: 

 

Change detection applications from satellite imagery can be a very useful tool in monitoring human activities and understanding their 

interaction with the physical environment. In the past few years most of the recent research approaches to automatic change detection 

have been based on the application of Deep Learning techniques and especially on variations of Convolutional Neural Network 

architectures due to their great representational capacity and their state-of-the-art performance in visual tasks such as image 

classification and semantic segmentation. In this work we train and evaluate two CNN architectures, UNet and UNet++, on a change 

detection task using Very High-Resolution satellite images collected at two different time epochs. We also examine and analyse the 

effect of two different loss functions, a combination of the Binary Cross Entropy Loss with the Dice Loss, and the Lovász Hinge loss, 

both of which were specifically designed for semantic segmentation applications. Finally, we experiment with the use of data 

augmentation as well as deep supervision techniques to evaluate and quantify their contribution in the final classification performance 

of the different network architectures. 

 

1. INTRODUCTION 

The application of a reliable Change Detection (CD) framework 

can be an invaluable tool in understanding the relationships and 

interactions between human activities and the physical 

environment, as well as for map updating and urban monitoring. 

In this paper we will examine and compare the use of two 

different Deep Neural Network (DNN) architectures for change 

detection applications on satellite images collected at two 

different time periods. The latest and most successful approaches 

on automatic change detection from satellite images relate mainly 

to using Deep Convolutional Neural Networks (DCNN) with an 

encoder-decoder architecture that directly produce a ‘Change’- 

‘No Change’ label for each pixel of the original image. Such an 

architecture was first introduced by Fully Convolutional 

Networks (FCNs) (Long et al., 2015) and since then many 

successful variants have been proposed including SegNet 

(Badrinarayanan et al., 2017), UNet (Ronneberger et al., 2015) 

and UNet++ (Zhou et al., 2018). 

 

In this work we aim to evaluate the use of both UNet and UNet++ 

architectures for change detection on satellite images and to 

compare the results produced by training an original UNet 

architecture on a Change Detection dataset with the results 

achieved by the UNet++ architecture. A notable advantage of this 

encoder-decoder approach is that it is an end-to-end approach, 

meaning that the network outputs the final change map and there 

is no direct need for any extra manipulation. Thus, the approach 

is both straightforward as well as very fast in predicting the final 

maps (especially when run on a GPU). We also evaluate the 

effectiveness of training using different loss functions as well as 

the benefits of data augmentation. 

 

UNet (Ronneberger et al., 2015) is an encoder-decoder 

architecture that consists of two symmetrical paths: a sequence 

of contractive operations in order to capture context followed by 

a symmetrical sequence of expansive operations that allow to 

produce an output with a pixel-based localization. UNet builds 

on the Fully Convolutional Network (FCN) architecture in an 

attempt to create a new architecture that will require fewer 

training examples and will have higher segmentation accuracy. 

As with the FCN architecture the use of skip connections between 

layers that refer to the same level of abstraction is the key of the 

network’s effectiveness. One main difference from the traditional 

FCN architecture is that UNet has incorporated a significantly 

larger number of channels to the layers of the up-sampling part 

of the network. This way, the network carries more information 

from the low resolution to the higher resolution layers.  

 

UNet++ (Zhou et al., 2018), also known as Nested UNet, is based 

on the UNet architecture. The main idea behind its design is the 

need to bridge the semantic gap between corresponding 

convolutional blocks of the encoder and decoder pathways by 

incorporating intermediate nested convolutional blocks and 

redesigning the network’s structure, by increasing the number of 

the skip connections between convolutional blocks. The 

architecture was based on the hypothesis that the optimization 

problem would become easier if the intermediate feature maps 

between the encoder and the decoder were semantically similar. 

Experimental results on tasks related to medical image 

segmentation support the aforementioned hypothesis as they 

have shown that UNet++ outperforms the traditional UNet 

architecture (Zhou et al., 2018). 
 

In both cases, in order to adjust the networks to the CD 

application we stack all 6 channels of the two instances (RGB1 

and RGB2) and use the concatenated array as the input to the first 

convolutional block of each network. Each patch consists of a 

pair of RGB instances captured at different time periods and a 

mask of the ground truth changes between the two instances. 

 

In the original UNet paper, Ronneberger et al. (2015) highlighted 

the importance of using data augmentation in order to increase 

the generalization accuracy of the CNN by artificially increasing 

the number of training samples. Following on their reasoning we 

also explore and quantify the effect of data augmentation in our 

own application field in order to verify that data augmentation 

does increase the generalization capacity of the trained network. 
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2. RELATED WORK- STATE OF THE ART 

In the past few years many researchers have experimented with 

the use of Convolutional Neural Network architectures for 

Change Detection applications as CNNs have become the de 

facto approach for image classification tasks ever since the 

development of AlexNet (Krizhevsky et al., 2012) and the win of 

the first place in the 2012 ImageNet Large Scale Visual 

Recognition Challenge. We could distinguish the most recent 

approaches into patch-based approaches that given an image 

patch they classify it as changed or unchanged using different 

variations of CNN architectures and into semantic segmentation 

approaches that perform semantic segmentation over the entire 

image. The patch-based approaches address the lack of training 

data, as a single training image can provide many training 

patches. On the other hand, patch-based approaches are run in a 

sliding window manner and they are very slow on inference time 

and inefficient as the same regions are visited multiple times 

(there is a great overlap between patches that correspond to 

adjacent central pixels). 

 

Daudt et al. (2018a) make use of the CNN architectures described 

by (Zagoruyko & Komodakis, 2015) to detect changes on 

Sentinel-2 multitemporal instances. Zagoruyko and Komodakis  
(2015) tested the use of Siamese, pseudo-Siamese and 2-channel 

networks for estimating the similarity between two different 

images. The pseudo-Siamese networks are networks that consist 

of two identical networks like the regular Siamese networks, but 

those two subnetworks don’t share the same parameters and each 

of them has its own trainable parameters. The 2-channel networks 

are typical CNN architectures that instead of having a single 

image as input, they receive a multi-channel image where each 

channel is a different instance (in the simpler case each image 

consists of only one channel, but the method can be easily 

generalized to multi-channel images). 

 

Zhang and Lu (2019) propose a patch-based approach for change 

detection of multispectral image pairs. The patches are fed to a 

Siamese network consisting of two identical CNNs that share the 

same weights. The outputs of the CNNs are unravelled onto a 

feature vector and the difference between the two feature vectors 

is used to fuse the results. The fused results are then passed 

through a Neural Network consisting of two hidden layers that 

outputs the class (“changed” or “not changed”) of the central 

pixel. 

 

Wiratama et al. (2018) proposed a dual dense CNN architecture 

for change detection in SAR images. The network consists of two 

independent convolutional subnetworks and each of them takes 

as input a 40 by 40 pixel patch from the image pair. The final 

product of the network is the Euclidean distance between the 

probability values retrieved from each of the two subnetworks. 

When the value of the Euclidean distance approaches 1 the 

central pixel of the patch is classified as change and when it is 

close to 0 as no change. 

 

Dault et al. (2018b) have trained different variations of Fully 

Convolutional Networks (FCNs) to predict change maps given 

two instances of satellite images through semantic segmentation. 

Besides from a shortened version of the UNet Architecture they 

have also used a combination of the Siamese and UNet 

architectures, where on the encoder part of the UNet there are two 

identical contracting paths. The outputs of the contracting paths 

are fused and fed to a single expanding path, while there are two 

different approaches to the use of the skip connections. On the 

first one each expanding block is provided with two skip 

connections, one from each identical branch of the corresponding 

level and on the second one the results of the two parallel 

contracting blocks are first subtracted and the absolute difference 

is then passed on the corresponding up-sampling block  through 

a skip connection. 

 

Daudt et al. (2019) present a very high-resolution semantic 

change detection dataset comprising 291 RGB image pairs 

accompanied by the corresponding pixel-wise change 

information and land cover information. They also use multiple 

UNet architectures to simultaneously predict the landcover of 

both images of a pair as well as to directly perform change 

detection given the two original images. 

 

Zhang et al. (2019) use an encoder-decoder architecture based on 

the Feature Pyramid Network (FPN) and on UNet to perform 

change detection by performing semantic segmentation on the 

second instance of the region. The first instance together with an 

already available GIS map are used for training the network and 

consequently they use the trained network to retrieve the 

prediction map for the second instance. Finally, they compare the 

predictions of the second instance to the GIS map to retrieve the 

land cover changes. 

 

Lebedev et al. (2018) address the Change Detection problem by 

utilizing a Conditional Generative Adversarial Network (C-

GAN) approach. Conditional GANs learn a mapping from an 

image and a random noise vector to some vector y. The main idea 

of a GAN is that we have two subnetworks, the generator G and 

the discriminator D, which by competing with each other learn 

the required representation. The discriminator takes as input the 

two images captured at different time instances, the ground truth 

changes map and the predicted changes map generated by the 

generator and classifies it as original or artificial. The generator 

takes as input solely the concatenated image and produces an 

artificial image in an attempt to trick the discriminator at 

classifying the artificially produced image as original. In theory 

the training process will be complete when the discriminator will 

classify the input as original or artificial with 50% chance. 

 

Peng et al. (2019) provide a thorough literature review for CD 

and train a UNet++ network on the dataset created by (Lebedev 

et al., 2018), which they later compare to other Deep Learning 

approaches for CD. The training is enhanced by using a deep 

supervision training scheme and as a loss function the 

combination of the Binary Cross Entropy loss with Dice 

coefficient. Both of those suggestions were also introduced in the 

original UNet++ paper (Zhou et al., 2018). The comparison to 

other DNN methods for change detection concludes that the 

UNet++ architecture outperforms other state-of-the-art methods. 

 

3. METHODOLOGY 

We build on the work of Peng et al. (2019) with the goal to 

evaluate the effect of different architectural choices (UNet and 

UNet++ encoder-decoder architectures) in combination with 

different loss functions on the performance of the trained 

networks for change detection applications. In addition, we 

investigate how the use of deep supervision and data 

augmentation affects the performance of the various networks. 

The methodology consists of 4 sub-sections: in section 3.1 we 

present the two network architectures; in section 3.2 we discuss 

the different loss functions used to train the networks ; in section 

3.3 we introduce the concept of deep supervision; and in section 

3.4 we briefly discuss data augmentation. 
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3.1 Network Architectures 

3.1.1 UNet 

UNet (Ronneberger et al., 2015) was built based on the idea of 

the Fully Convolutional Network (FCN) architecture as 

introduced by Long et al. (2015) with a goal to create a new type 

of architecture that can be trained using fewer training samples 

and which can produce higher segmentation accuracy. The main 

innovation of UNet that differentiates the architecture from FCNs 

is the introduction of more convolutional filters in the up-

sampling path creating in this way an up-sampling (or expanding) 

subnetwork which is in general terms symmetric to the down-

sampling (or contracting) part of the network. Thus, the final 

network has a U shape form, a fact highlighted by the given name 

of the architecture. Like the traditional FCN architecture, a very 

important part of the network is the “skip connections” that pass 

information from the down-sampling blocks to the corresponding 

up-sampling convolutional blocks. This flow of information is 

done by concatenating the high-resolution features of the down-

sampling blocks to the first layer of the corresponding up-

sampling block. The total number of features are then passed to 

the convolutional layers and in this way the previously learned 

contextual information flows into the convolutional layers 

without losing the localization accuracy caused by the down-

sampling of the max pooling steps. This flow of information 

combined with the larger number of filters in the up-sampling 

path are the main advantages of the UNet architecture that makes 

it so successful in the localization accuracy of the segmentation 

task. 

 

More specifically each down-sampling block consists of 2 

successive convolutional layers with a 3 x 3 filter size and a 

padding of 1 pixel. The first element of each block is the down-

sampled result of the previously applied max pooling layer, while 

in the first block the input consists of the concatenated RGB 

channels of both image instances. All max pooling layers use a 

2x2 kernel shape and a stride of 2. Batch Normalization is applied 

to each convolutional layer, which was not included in the 

original paper, but helps the network to learn faster (Ioffe and 

Szegedy, 2015). The number of feature channels of each 

convolutional layer of every down-sampled block is doubled with 

respect to the number of channels in the convolutional layers of 

the previous level. 

 

With regards to the expanding part of the network the blocks are 

almost identical to the down-sampling blocks, with the main 

differences being the input’s origin and the extra feature channels 

coming from the skip connections. The input to each block is the 

output of the directly previous coarser block in the sequence. The 

up-sampling operation is performed by using a bi-linear 

interpolation. The convolutional layers of each expanding block 

have the same number of feature channels as the convolutional 

layers of the corresponding contracting block. When applying the 

skip connection, the features from the contracting block do not 

need to be cropped as in the original paper since we have padded 

the convolutional layers and kept the feature width and height 

constant within each block. An overview of the architecture is 

presented in Figure 1. 

 

3.1.2 Nested UNet (UNet++) 

As mentioned earlier, Nested UNet or also commonly known as 

UNet++, is an extension of the UNet architecture that was 

introduced by Zhou et al. (2018) in an attempt to improve the 

segmentation accuracy of the UNet architecture. The authors 

maintain the encoder decoder architecture of UNet and argue that 

a gradual enrichment of the feature maps of higher resolution 

before aggregating them with the decoder results would help the  

 
Figure 1. UNet archritecture. The notation ℎ𝑛refers to the height 

of the convolutional layers at block level 𝑛 and 𝑑𝑛
𝑖  refers to the 

number of channels of the 𝑖𝑡ℎconvolutional layer in level 𝑛.The 

width of each convolutional layer has an identical behavior as 

the height and for this reason it has been omitted. We can see 

that the channel depth of a convolutional layer at layer n is 

twice as large as the corresponding depth of the corresponding 

convolutional layer of block level n-1. 

 

network capture more high-resolution details thanks to the higher 

semantic similarity between the concatenated features. The main 

hypothesis for the introduction of the UNet++ architecture is that 

by adding more intermediate (nested) convolutional blocks and 

densifying the skip connections between blocks would cause the 

concatenated results of each up-sampling block to be more 

semantically similar than the results obtained by the original 

UNet architecture, which would ultimately result in an easier 

optimization problem and thus more accurate results. 

 

Using the same definitions regarding the contracting and 

expanding blocks as described in the plain UNet architecture and 

in Figure 1, the general overview of the UNet++ architecture is 

presented in Figure 2. The nested convolutional blocks 𝑋𝑛,𝑚 that 

have been introduced to bridge the semantic gap between the 

contracting and the expanding blocks of the same level 𝑛 in the 

pyramid are connected through skip connections with every 

convolutional block of the same level 𝑛 with 𝑚′ > 𝑚. More 

specifically 𝑋𝑛,𝑚 can be defined as the output of Equ. 1 where 

𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝑥) is the output of a convolutional block given an 

input 𝑥, 〈𝑋𝑖,𝑗〉𝑘=1
𝑓

 is the concatenation operation for elements 

𝑋𝑖,1, … , 𝑋𝑖,𝑓and 〈𝑥, 𝑦〉 stands for the concatenation operation of 

elements 𝑥 and 𝑦. 

 

𝑋𝑛,𝑚 = {
𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(〈𝑋𝑛−1,𝑚〉), 𝑓𝑜𝑟 𝑚 = 1 

𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(〈〈𝑋𝑛,𝑘〉𝑘=1
𝑚−1, 𝑋𝑛+1,𝑚−1〉), 𝑓𝑜𝑟 𝑚 > 1

 (1) 

 

3.2 Loss Functions 

We have used and compared two different loss functions: the first 

one is a combination of Binary Cross-Entropy loss with the Dice 

coefficient function (BCE-Dice loss) (Equ. 2), and the second 

one is the Lovász Hinge loss (Berman et al., 2018), which is a 

tractable surrogate for the optimization of the intersection over 

union measure. The combination of the BCE-Dice loss was used 

in the original UNet++ paper (Zhou et al., 2018) as well as by 

(Peng et al., 2019) and produced state-of-the-art results. 
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𝐿(𝑌, �̂�) =  −
1

𝑁
∑ (𝜆 ∙ 𝑌𝑏 ∙ 𝑙𝑜𝑔(𝑌�̂�) +  

2 ∙𝑌𝑏∙𝑌�̂�

𝑌𝑏+ 𝑌�̂�
)𝑁

𝑏=1  (2) 

 

The parameter 𝜆 in Equ. 2 is set to 0.5 as this is the value being 

used by Zhou et al. (2018) in the original UNet++ paper and it 

was also experimentally shown to produce the best results on a 

change detection application (Peng et al., 2019). 𝑌𝑏 and 𝑌�̂� are the 

flattened ground truth and predicted probability maps 

respectively of image 𝑏 and 𝑁 is the batch size (number of images 

per batch). 

 

Regarding Lovász Hinge loss, Berman et al. (2018) are 

introducing a tractable surrogate of the Jaccard index, which is 

defined as the Intersection over Union 𝐽𝐶(𝑦, �̂�) (Equ. 3) with the 

convention that 
0

0
= 1. The parameter 𝑐 is the class value for each 

pixel and given a set 𝐴 the operator |𝐴| returns the total number 

of elements in the set. 

 

 𝐽𝐶(𝑦, �̂�) =  
|{𝑦=𝑐}∩{�̂�=𝑐}|

|{𝑦=𝑐}∪{�̂�=𝑐}|
 (3) 

 

In our case we are dealing with a binary problem and so the 

parameter 𝑐 of the Jaccard index will be equal to 1 (Equ. 4) (we 

are only considering the foreground object, meaning pixels that 

are mapped as changed). 

 

 𝐽1(𝑦, �̂�) =  
|{𝑦=1}∩{�̂�=1}|

|{𝑦=1}∪{�̂�=1}|
 (4) 

 

The corresponding loss is given by (Equ. 5), which is not 

differentiable as the parameters 𝑦 and �̂� can only take binary 

values ∈ {−1, 1}. Berman et al., (2018) use the Lovász extension 

of a set function and develop an algorithm that computes an 

optimization surrogate of (Equ. 5). 

 

 𝛥𝐽1
(𝑦, �̂�) = 1 − 𝐽1(𝑦, �̂�) (5) 

 
1 The term companion loss is used by (Lee et al., 2015) 

 

A SoftMax version of the extension has been used by Rakhlin et 

al. (2018) in combination with the UNet architecture for a land 

cover classification task and produced promising results. 

 

3.3 Training - Deep Supervision 

UNet++ can also be trained using Deep Supervision (Lee et al., 

2015), where the overall loss is computed by aggregating the loss 

of the output layer (the output of the convolutional block 

𝑋1,5after applying a 1x1 convolutional layer) with the 

“companion”1 losses of all the intermediate layers of the first 

level of the pyramid 𝑋1,𝑘 for 𝑘 = 1, . . ,4. The companion losses 

are computed by applying the loss function to each output 𝑋1,𝑘. 

The overall loss is then computed as the average of all five losses. 

In Zhou et al. (2018) the use of deep supervision gave both better 

and slightly worst results depending on the dataset being used (all 

datasets related to medical segmentation tasks) compared to 

using only the output layer loss of the network. 

 

3.4 Data Augmentation 

Data augmentation techniques have been shown to improve the 

performance of similar networks (Ronneberger et al., 2015; Zhou 

et al., 2018; Peng et al., 2019) especially when training using 

relatively small datasets and to reduce overfitting to the training 

data. Thus, we evaluate and quantify the effect of data 

augmentation on the training of different architectures with 

different loss functions and in combination to deep supervision. 

We have augmented the original dataset by occasionally (with a 

50% probability) performing a horizontal flip to the input training 

images, a technique that even though very simple proved to be 

quite effective as will be shown in the results section.  

 

 
Figure 2: Nested UNet Architecture. 
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4. EXPERIMENTS 

4.1 Test Dataset 

The training, validation and test dataset we used was created and 

introduced by Lebedev et al. (2018). The dataset consists of 

10000 training, 3000 validation and 3000 test satellite image 

pairs and their corresponding change masks. The satellite images 

were retrieved from Google Earth (GE) and refer to 3 channel 

RGB images of size 256x256 pixels, whose ground resolution 

varies from 30cm to up to 100cm per pixel according to the 

authors. The two instances of each image pair were generally 

captured during different seasons and the number of changes has 

been occasionally augmented by the manual addition of objects. 

The masks consider only changes that correspond to the 

appearance or disappearance of objects between the two 

instances of the pair and do not consider any seasonal variations. 

 

4.2 Training Implementation  

For the training we have trained all networks for 260 epochs 

applying in all cases the Adam optimization algorithm using the 

default parameters for the coefficients of the running average (0.9 

and 0.999) and with no weight decay. The batch size consisted of 

eight images and the learning rates used were set to 0.0003 when 

training using the BCE-Dice Loss function and 0.0005 which was 

gradually reduced to 0.0001 when training using the Lovász-

Hinge loss function. The training was performed using the 

pytorch framework on an NVIDIA GeForce GTX 1080Ti GPU. 

We have built on the UNet++ pytorch implementation available 

at: https://github.com/4uiiurz1/pytorch-nested-unet .  

 

4.3 Evaluation Metrics 

The evaluation metrics that have been used are Precision, Recall, 

F1 Score and Accuracy (Equs. 6 to 9), where TP (True Positive) 

is the number of pixels that were correctly classified as changes, 

TN (True Negative) is the number of pixels that were correctly 

classified as unchanged, FP (False Positive) is the number of 

pixels that were classified as changed while they were not 

actually changed and FN (False Negative) is the number of pixels 

that were mistakenly classified as unchanged. Change Detection 

algorithms have to deal with highly unbalanced data with respect 

to the proportion of changed regions compared to the area that 

has not been changed. In many cases the changed area can cover 

less than 5% of a change map, which means that a Network that 

never detects any change and classifies the whole image as 

unchanged would score an accuracy higher than 95%. Thus, the 

measure of accuracy can be widely misleading in a Change 

Detection task since it does not distinguish between changed and 

unchanged regions and the measures of Precision, Recall and F1 

score represent much more realistic evaluation metrics. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (7) 

 

 𝐹1 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (8) 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (9) 

 

4.4 Results 

The evaluation metrics over the test set for UNet and UNet++ 

architectures trained using either the BCE - Dice Loss or the 

Lovász Hinge Loss functions are summarized in Table 1. The 

table also presents the perceived changes of the performance on 

the test set caused by the incorporation of data augmentation and 

deep supervision (when applicable) during training. The 

comparison of the results suggests that the UNet++ architecture 

when trained using the BCE-Dice Loss function with data 

augmentation produces the best results over the test set. Figures 

3 to 8 illustrate the effects of the different design and training 

choices on the performance of each trained network on the test 

set. 

 

Figure 3 shows the effect of data augmentation and deep 

supervision on the prediction of the UNet++ architecture trained 

using the Lovász Hinge loss function. The use of data 

augmentation has a positive effect on all the metrics, while the 

use of solely deep supervision has a negative effect on Precision 

(of about 1%) and on F1 score. However, the best results were 

obtained when using both deep supervision and data 

augmentation. Similarly, Figure 4 presents the effect of data 

augmentation and deep supervision on the prediction of the 

UNet++ architecture trained using the combination of the Binary 

Cross Entropy loss with the Dice loss (BCE-Dice loss) function. 

The results suggest that the use of deep supervision and of data 

augmentation produce higher metric values than the base 

Design and Training Choices 

Architecture UNet++ UNet++ UNet++ UNet++ UNet++ UNet++ UNet++ UNet++ UNet UNet UNet UNet 

Loss Function Lovász Lovász Lovász Lovász BCE Dice BCE Dice BCE Dice BCE Dice Lovász BCE Dice Lovász BCE Dice 

Deep 

Supervision 
✓  ✓  ✓  ✓      

Data 

Augmentation 
 ✓ ✓   ✓ ✓  ✓ ✓   

Evaluation Metrics 

Precision 0.8504 0.8683 0.8770 0.8602 0.9565 0.9668 0.9575 0.9599 0.8455 0.9572 0.8667 0.9512 

Recall 0.8807 0.9031 0.9076 0.8804 0.8831 0.9034 0.8977 0.8781 0.8967 0.8989 0.8604 0.8656 

F1 0.865299 0.885342 0.892046 0.870208 0.918334 0.934011 0.926671 0.917212 0.870368 0.927132 0.863575 0.906409 

Accuracy 0.9638 0.9680 0.9710 0.9661 0.9842 0.9870 0.9856 0.9841 0.9638 0.9858 0.9700 0.9822 

Table 1: Results Summary. Evaluation metrics for various choices regarding the architecture of the network, the loss function 

being used for training and the use of deep supervision and data augmentation during training. 
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scenario, where none of the two techniques was used, with the 

use of data augmentation having a greater positive effect. The 

best results for all metrics are retrieved when applying only data 

augmentation (and no deep supervision) when training the 

network. 

 

 
Figure 3: Effect of Data Augmentation (Data Aug) and Deep 

Supervision (Deep Sup) on UNet++ architecture when training 

using the Lovász Hinge Loss. 

 

 
Figure 4: Effect of Data Augmentation (Data Aug) and Deep 

Supervision (Deep Sup) on UNet++ architecture when training 

using the BCE Dice Loss. 

 

 
Figure 5: Comparison of the effects of using different loss 

functions on the UNet++ test results. 

 

Figure 5 illustrates a direct comparison of the retrieved metrics 

when using different loss functions on the same UNet++ 

architecture. The combination of BCE-Dice coefficient achieves 

better precision (by more than 8%) and slightly worst recall than 

the use of the Lovász Hinge loss. This means that the network 

trained with the BCE Dice loss produces less pixels classified 

falsely as changed, but at the same time it detects slightly fewer 

changes than the network trained with the Lovász Hinge loss. The 

F1 score, as the geometric mean of the precision and recall rates, 

is 7% higher for the BCE Dice loss. Likewise, the comparison of 

the effects of the different loss functions on the UNet architecture 

is presented in Figure 6, where the effects are similar to the ones 

derived from Figure 5 and the precision gap is even larger (higher 

than 11%). 

 
Figure 6: Comparison of the effects of using different loss 

functions on the UNet test results 

 

 

 
Figure 7: Comparison of the effects of different architectures 

and different loss functions. 

 

 

 
Figure 8: Comparison of the best results achieved with each 

architecture and each loss function. 

 

The effects of using different architectures and different loss 

functions without using data augmentation nor deep supervision 

are presented in Figure 7. The choice of the loss function seems 

to affect the performance of the network more than the choice of 

UNet or UNet++ architecture with the BCE Dice loss yielding 

higher metric values. Also, the use of the UNet++ architecture 

produces slightly better results than UNet given the same loss 

function, with the differences being less than 1% for all metrics. 
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Similarly, the comparison of the best results achieved for each 

architecture and each loss function are shown in Figure 8. Once 

again the choice of the loss function seems to affect the results 

more than the choice of architecture with the best results being 

produced by the UNet++ trained with BCE Dice Loss and data 

augmentation followed closely (less than 1% difference on every 

metric) by the UNet network trained with BCE Dice loss and data 

augmentation. 

 

An example of change detection prediction using UNet++ is 

shown in Figure 10. A set of exemplary results retrieved from 

different combinations of architectures, loss functions and the use 

of data augmentation and deep supervision are presented in 

Figure 9. By visually examining the results, TP (change) and TN 

(no change), we can argue that all networks perform reasonably 

well on the CD task and can learn to ignore seasonal effects like 

snow and seasonal vegetation changes. 

 

 
Figure 10: Change Detection Prediction Example Using UNet++. 

 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we have experimented with two encoder-decoder 

CNN architectures for change detection applications using high 

resolution satellite images. We have also compared two different 

loss functions for the training of the CNNs and evaluated the 

contribution of data augmentation and deep supervision 

techniques on the performance of the networks. All networks 

produced state-of-the-art results with the network using the 

UNet++ architecture and being trained with the BCE Dice Loss 

and data augmentation performing the best on the test data. 

Future work will involve the testing of similar architectures on 

different datasets as well as the evaluation of the robustness of 

the semantic segmentation results in the presence of higher 

misregistration errors. 
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