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ABSTRACT: 

 

Farmland abandonment is a widespread phenomenon in different parts of the Earth especially in the countries of Central and Eastern 

Europe where large areas of agricultural land were left uncultivated, state-support and markets for agriculture disappeared and land 

reforms resulted in massive land ownership transfers following the collapse of socialism. Remote sensing and geographic 

information system provide powerful tools for identification and analysis of abandoned agricultural land (AAL) at various spatial 

and temporal scales. Here we present an approach to AAL extraction from Sentinel-1 and Sentinel-2 images, provided in the frame 

of the European Copernicus program. This study aims to investigate and map the spatial distribution of AAL on the foothill of Little 

Carpathians and in the Danubian Lowland, Slovakia. The presented case study showed the possibility of the use of Sentinel images 

and the object-based image analysis in the process of AAL identification that may improve the transfer of scientific knowledge to the 

local agri-environmental monitoring and management. 

 

 

1. INTRODUCTION 

The alarming scope of the farmland abandonment in Central 

and Eastern Europe which results in continuous forest and shrub 

growths outside the actively managed forests must be included 

into the global carbon storage and cycle (Regulation EU 

2018/841).  

Abandoned agricultural land (AAL) could be defined as land 

void of any activities associated with agricultural production 

until this land becomes overgrown by other than agricultural 

vegetation (Feranec et al., 2019): 

- AAL1: the initial stage of abandoned agricultural land 

overgrown by herbaceous formations > 90%; their tallness 

oscillates between 0.5-1.5 m, e.g. Calamagrostis, Festuca, 

Galium, Tanacetum, Achillea. 

- AAL2: a more advanced stage of abandoned agricultural land 

fully overgrown by grasses and broad-leaved herbs and shrubs 

with the canopy closure > 20%, tallness of which is up to 3 m, 

e.g. Rosa, Prunus, Crataegus, Cornus. 

Such a distinction between AAL classes is necessary to know 

for two reasons:  

- at what stage of overgrown (abandonment) is agricultural 

land, 

- what biomass potential AAL classes contain. 

Problems emerge with the operative and efficient acquisition of 

information about the AAL occurrence and its dynamism in 

large areas. Satellite remote sensing (RS) data may contribute to 

the elimination of this problem because they are acquired in 

regular intervals (e.g. every 1, 3, 16 or 26 days), what makes it 

possible to track the development of AAL in areas of different 

size up to thousands of hectares. 

Identification of AAL areas by RS data requires the knowledge 

whether these data contain information about their occurrence. 

If it is so, it is necessary to use such interpretation methods for 

their generation that will make it possible. It should be 

emphasized that the important factors which influence the 

identifiability of AAL areas on satellite images are the 

physiognomic heterogeneity and dynamism of overgrowing 

successions in different stages of development. These factors 

also condition the manifestation of AAL classes on the images 

by means of interpretation signs. 

The aim of this paper is to document the possibilities of the use 

of Sentinel images and the object-based image analysis (OBIA) 

with Random Forest (RF) classifier in the process of AAL and 

land cover/land use (LC/LU) identification at the local level.  

OBIA is widely used for AAL classification (Goga et al., 2019). 

The most common are OBIA methods combined with 

multitemporal analysis using vegetation indices – e.g. (Karlík et 

al., 2017; Liu et al., 2017; Yusoff et al., 2017). The study 

performed by (Liu et al., 2017) also pointed out the limited 

usage of vegetation indices usage for AAL classification. 

(Yusoff et al., 2017) performed a simple trial and error approach 

for assigning classes to objects using SAR-based OBIA and 

pointed object-oriented classification rules as useful for AAL 

feature extraction.  

RF is one of the most effective tools in prediction. RF is a 

combination of tree predictors while each predictor depends on 

the values of a random vector sampled independently and with 

the same distribution in the forest (Breiman, 2001). 

Significantly more accurate results during AAL classification 

were obtained using RF while comparing with Support Vector 

Machine (Löw et al., 2015) or combination with Normalized 

Difference Vegetation Index (NDVI) data (Estel et al., 2015).  

An overview of other methods used in the process of AAL 

identification, extensive analysis of available literature was 

performed by (Goga et al., 2019). This review showed, that all 

the analysed papers identified AAL using an indirect approach 

by comparison of LC/LU data from different time horizons, 

NDVI time series and different statistical databases. Direct 

identification of AAL classes using RS data from the exact time 

horizon (single image) and based on prior defined interpretation 

features of AAL was missing. 
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2. STUDY AREA 

The study area covering 617 km2 is situated north-east of 

Bratislava and it is part of the Danubian Lowland, while a 

narrow strip of the territory is in the foothills of the Malé 

Karpaty Mts. (see Figure 1). The plain is on the Quaternary 

gravel sediments with fertile Chernozems and Chernitsas 

exploited prevailingly as arable land. Waterlogged depressions 

are covered by alder fen woods (locality NATURA 2000 – Šúr). 

Hilly lands on the Neogene and loess sediments with fertile 

Chernozems and Orthic Luvisols are exploited as arable land 

and vineyards with of oak woods refuges. 

The area is populated by compact rural settlements and three 

towns. Agriculture is a dominant activity, producing corn, 

wheat and sugar beet. Vineyards in a warm and moderately 

humid climate (with the mean yearly temperature of 9 °C and 

mean yearly atmospheric precipitation of 550-600 mm) prevail 

on the granite and granite-diorite slopes of the Malé Karpaty 

Mts. on Cambisols. The quality and authenticity of wine 

producers from the region are well known abroad. 

 

 

 
 

Figure 1. Location of the study area 

 

Field research was conducted during the culminating vegetation 

period (from May to July) in 2018. 10 training and test sites 

prevailingly covered with AAL were selected. Physiognomic 

characteristics of the successional vegetation (see Figure 2), its 

species composition, vegetation height, overall cover and 

clustering into patterns were recorded. These data were used for 

creating training sample sets for the RF classifier (see 

chapter 4.6) and for the accuracy validation (see chapter 4.7). 

 

 
 

Figure 2. Comparison of a cultivated vineyard (left) with a 

vineyard overgrown with herbaceous formations (right) 

 

3. DATA 

The most important advantages of the Sentinel mission are the 

frequent revisiting time and relatively high spatial resolution of 

the images.  

 

3.1 Sentinel-2 data 

In this study were used 10-meter resolution bands from 

Sentinel-2 (S-2) datasets. Images were assigned to Universal 

Transverse Mercator (UTM) zone 33. There were chosen four 

cloud-free images across one vegetation period. An issue was 

noticed, while selected images were the only cloud-free images 

during the vegetation period of 2018. The dates of selected S-2 

images are given in Table 1. 

 

Date of satellite pass 

18-04-2018 

03-05-2018 

21-08-2018 

30-09-2018 

 

Table 1. Sentinel-2 acquisitions 

 

3.2 Sentinel-1 data 

Sentinel-1 (S-1) SAR Standard L1 products were used in this 

study. 30 Single Look Complex (SLC) images obtained 

between 1st April 2018 and 31st September 2018 were used for 

the creation of the temporal average image. Data were obtained 

from relative orbit number 124 with descending pass direction. 

 

 

4. METHODS 

Figure 3 shows the study technical flowchart. 

(1) Sentinel data were pre-processed to generate inputs for 

multi-resolution segmentation (MRS), Principal Component 

Analysis (PCA) and NDVI calculation. 

(2) Stacked Sentinel data were segmented MRS with automatic 

scaling tool. Quality of the segmentation process was evaluated 

using segmentation goodness metrics. 

(3) Resulting segments, stacked Sentinel data and NDVI data 

were used for object features statistics calculation. 

(4) Forest and water bodies were masked using national 

datasets. 

(5) Ground truth data were provided by field survey, resulting in 

the creation of training and validation samples. 

(6) Random forest algorithm was performed using several 

different inputs – object features statistics, masked region and 

training samples. 

(7) Resulting AAL maps were evaluated by accuracy validation. 

 

4.1 Sentinel data preprocessing 

Sentinel-2 pre-processing was performed by the Sen2Cor 

algorithm (ESA release 2.5.5). The corrections were applied to 

remove or reduce the influence of the atmosphere. 

To produce Sentinel-1 Level-1 data, these steps were 

performed: SLC slice assembly, debursting, precise orbit 

application, radiometric corrections, DEM assisted 

coregistration, stack averaging and terrain correction with 

geocoding. The resulting temporal average image consisted of 

30 images creating topo-corrected stack averaged sigma naught 

raster with VV and VH polarisation assigned to UTM-33. 
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Figure 3. Technical flowchart of the study 

 

4.2 Normalized difference vegetation index 

Vegetation indices are parameters sensitive to photo-

synthetically active radiation. They have been computed from 

spectral reflectance recorded by two or more spectral channels 

of the scanning device (Bannari et al., 1995). In this study, 

NDVI was applied to aim the distinction of vegetation between 

AAL and LC/LU classes. NDVI (1) is used for measurement of 

aboveground live biomass quantity, with the highest values 

corresponding to dense green vegetation (Grădinaru et al., 2019; 

Rouse Jr. et al., 1974): 

 

             NDVI =
𝐵8−𝐵4

𝐵8+𝐵4
    (1) 

 

where  B8 = Sentinel-2 spectral band 8 = NIR (842 nm) 

 B4 = Sentinel-2 spectral band 4 = R (665 nm) 

 

4.3 Principal Component Analysis 

The aim of PCA is to transform the n-dimensional image into a 

new raster. Output image bands must be independent of each 

other while considering the amount of information contained in 

the original image file. Reduced number of input raster bands is 

the result of this method while computational requirements are 

reduced (Silleos et al., 2006).  

(Jensen, 1986) describes the mathematical and statistical 

concepts used to calculate PCA are: standard deviation, 

covariance, eigenvalues, eigenvectors and linear 

transformations. 

 

4.4 Multi-resolution segmentation 

The essence of object-based image analysis methods is to 

classify image records so that the resulting image approximates 

the results of visual interpretation. The resulting image provides 

more comprehensive results of homogeneous pixels that 

resemble human eye evaluation. The methods evaluate not only 

the spectral information but also other characteristics perceived 

by the human eye – shape, size, spatial relationships, texture 

(Jensen, 1986).  

Object-based methods create homogenous segments using 

various algorithms. The most commonly used algorithm is the 

multi-resolution segmentation (MRS) implemented in 

eCognition Developer (v9.5, Trimble Geospatial). MRS is a 

region-based algorithm that starts from the lowest pixel level 

and iteratively aggregates pixels into objects until certain user-

defined homogeneity conditions are met. Several parameters 

need to be modified within the MRS algorithm settings, e.g. 

scale parameter (determines the size and homogeneity of the 

resulting objects) (Baatz and Schäpe, 2000).  

To avoid a complicated expert analysis of this parameter setting 

(Drǎguţ et al., 2010), the automated scaling tool Estimation of 

Scale Parameter 2 (ESP2) was used (Drăguţ et al., 2014). This 

tool analyses the local standard deviation within each scaling 

parameter setting and identifies the three most suitable 

parameters for MRS.  

Segmentation parameters were obtained using EPS2 while 

segmentation quality assessment was conducted. Five 

segmentation goodness metrics (Kavzoglu and Tonbul, 2017) 

were calculated as shown in Table 2. User-defined 

20 homogeneous segments were used as testing polygons for 

calculation. Perfect segmentation results are reached when OS, 

US, RMS, AFI would be zero and Qr would be 1. 

 
Metrics Formula Source 

Over-segmentation 

(OS) 𝑂𝑆 = 1 −
𝐴𝑟(𝑖)⋂𝐴𝑠(𝑗)

𝐴𝑟(𝑖)
 

(Clinton et al., 2010) 

Under-segmentation 

(US) 𝑈𝑆 =  −
𝐴𝑟(𝑖)⋂𝐴𝑠(𝑗)

𝐴𝑠(𝑗)
 

(Clinton et al., 2010) 

Root Mean Square 

(RMS)  𝑅𝑀𝑆 = √
𝑂𝑆2+𝑈𝑆2

2
 

(Clinton et al., 2010) 

Area fit index 

(AFI) 𝐴𝐹𝐼 =  
𝐴𝑟(𝑖) − 𝐴𝑠(𝑗)

𝐴𝑟(𝑖)
 

(Lucieer and Stein, 2002) 

Quality Rate 

(Qr) 𝑄𝑟 =
𝐴𝑟(𝑖)⋂𝐴𝑠(𝑗)

𝐴𝑟(𝑖)⋃𝐴𝑠(𝑗)
 

(Winter, 2000) 

 

Table 2. Description of segmentation quality metrics 

 

where  Ar(i) – total area of reference polygons 

 As(j) – total area of evaluated segments 

 

Forest and water bodies mask was used to the reduction of 

classified LC/LU classes and to avoid potential 

misclassification between abandoned and forested areas. The 

forest mask was created from forest compartments database 

provided by the National Forest Centre and water bodies from 

Basic Database (ZBGIS) provided by the Geodesy, Cartography 

and Cadastre Authority of Slovak Republic. Masked segments 

were the fundamental input data to the classification process 

and object features statistics calculation. 

 

4.5 Object features statistics calculation 

For each segment several object statistics were calculated: 

median values, standard deviation and grey level co-occurrence 

matrix (GLCM) variables.  
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Median and standard deviation values were calculated to 

minimise the impact of statistical outliers and for evaluation 

homogeneity between segments.  

Characteristics of GLCM textural variables were explained in 

the study of (Zhao et al., 2014). In our study, textural attributes 

of OBIA segments were analysed by the calculation of GLCM 

variables – Entropy and Homogeneity. The values were 

calculated for all directions so that the texture features should 

not be influenced by the angle. Entropy reflects the non-

uniformity and complexity of segment texture. Homogeneity 

reflects the homogeneity of the object texture and scaled the 

local maxima of the segment. 

 

4.6 Random Forest classification 

Model building and application of RF classifier was completed 

in eCognition Developer (v9.5, Trimble Geospatial). Default 

parameters using image object level were used: max. categories 

(16), max. tree number (50), forest accuracy (0.1). The model 

was trained by 290 manually selected samples distributed in 

nine classes Figure 4. The total area of the selected samples was 

713.9 hectares. 

 

 
 

Figure 4. Spatial distribution of training samples 

 

4.7 Accuracy validation 

In general, it is essential to determine the proportion of correctly 

classified areas out of their total number in the relevant 

classification class. Classification errors include a systematic 

(incorrectly set training sets) and a random component (spectral 

overlap of training sets). 

The most common method to evaluate the classification results 

were applied – classification error matrix. The results of the 

classification process were compared with actual (reference) 

data from the field research. There were manually selected 142 

objects (Figure 5) used as validation samples with 243.73 

hectares (25% of the total area of all created samples). 

 

 
 

Figure 5. Spatial distribution of validation samples 

5. RESULTS 

For PCA all available optical and derived NDVI data were used. 

The input number of components was 20 (four different dates 

with four 10m spectral bands and one derived NDVI image). 

Results are shown in Table 3. Eight components were chosen 

from PCA image with weightage value 99.01%. These 

components and S-1 temporal average VV/VH images were 

used as an input for object features statistics calculation. 

 

PCA layer EigenValue % Accumulative % 

1 2337245.0 40.85 40.85 

2 1656985.0 28.96 69.80 

3 695266.6 12.15 81.95 

4 381801.4 6.67 88.63 

5 227757.2 3.98 92.61 

6 157096.8 2.75 95.35 

7 110145.4 1.92 97.28 

8 99105.7 1.73 99.01 

9 33505.5 0.59 99.59 

10 6132.0 0.11 99.70 

… … … … 

 

Table 3. Principal Component Analysis: percent and 

accumulative EigenValues 

 

MRS with EPS2 algorithm was performed using S-1 temporal 

average data and four cloud-free S-2 images. Usage of ESP2 

algorithm resulted in three different levels of an object. 

As defined in Table 2, five segmentation goodness metrics were 

calculated for each level. Considering the results, level 1 

parameters (Table 4) were chosen (shape 0.2, compactness 0.5, 

scale parameter 55). These segments were used as image objects 

in the classification process. 

 

  level 1 level 2 level 3 

OS 0.053 0.070 0.070 

US 0.030 0.024 0.024 

RMS 0.043 0.052 0.052 

AFI 0.023 0.047 0.047 

Qr 0.920 0.909 0.909 

shape 0.2 

compactness 0.5 

step size 1 5 20 

scale parameter 55 95 95 

 

Table 4. Evaluation of segmentation results using goodness 

metrics 

 

Abandoned agricultural land and LC/LU classes map provided 

by RF classification is shown in Figure 6 with the overall 

accuracy of 73% (Table 5). The statistical distribution of AAL 

and LC/LU classes (Figure 7) had shown that class AAL1 was 

identified in 1,557 ha (2.5%) and AAL2 in 2,726 ha (4.4%). The 

greatest problem of AAL identification was the overestimation 

between AAL1 / fodder crops (28%), AAL1 / permanent crops 

(8%) and AAL2 / shrubs (16%). This overestimation could be 

easily explained according to the spectral and textural similarity 

of overgrowing vegetation and annual crops. According to 

statistical evaluation, AAL classes were identified within 4,283 

ha as 6.9% of the total area of interest.  
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Class homogeneity validation performed on the resulting AAL 

map has proven acceptable homogeneity within classes while 

the obtained standard deviation NDVI values were low (Figure 

8). 

 

 
 

Figure 6. Abandoned agricultural land and LC/LU classes map 

 

 
AAL1 AAL2 Ac Fc Ha Pc Sh We As Σ 

UA 

[%] 

AAL1 25.4 2.0 3.5 13.6 - 3.7 - - - 48.3 53 

AAL2 1.1 48.1 - - 0.7 1.2 10.2 1.2 - 62.5 77 

Ac - - 59.6 18.6 - 7.9 - - - 86.1 69 

Fc 0.8 - - 47.8 - - - - - 48.6 98 

Ha - 6.3 - - 17.4 - - - - 23.7 73 

Pc - 4.4 5.2 13.9 0.9 38.4 - - - 62.7 61 

Sh - - - - - 2.8 - - - 2.8 0 

We - 3.5 - - - - 0.8 5.6 - 9.9 56 

As - - - - 2.0 - - - 36.1 38.1 95 

Σ 27.3 64.4 68.3 94.0 21.0 54.0 11.0 6.7 36.1 383 
 

PA 

[%] 
93 75 87 51 83 71 0 83 100 

 
73 

 

Table 5. Confusion matrix of RF classification 

 

where  AAL1 – Abandoned agricultural land overgrown by 

low vegetation (herbaceous formations) 

 AAL2 – Abandoned agricultural land overgrown by 

medium-sized vegetation (shrub formations) 

 Ac – Annual crops 

 Fc – Fodder crops 

 Ha – Heterogeneous areas 

 Pc – Permanent crops 

 Sh – Shrubs 

 We – Wetlands 

 As – Artificial surfaces 

 UA – User’s Accuracy (Commission Errors) 

 PA – Producer’s Accuracy (Omission Errors) 

 

 
 

Figure 7. Spatial distribution of classified classes 

 

 
 

Figure 8. Class homogeneity validation using standard deviation 

NDVI values 

 

 

6. CONCLUSIONS 

Understanding the spatial patterns of AAL is important for the 

assessment of the landscape potential to contribute not only to 

food production but also to other ecosystem services like 

biomass production or carbon sequestration. 

According to the aim of this paper, the possibility of the usage 

of Sentinel images and the OBIA with RF classifier was 

documented in the process of AAL and LC/LU identification at 

the local level in the agricultural landscape. The study area is 

the part of one of the most important centres of viticulture in 

Slovakia. The eastern part of the study area is used for intensive 

agricultural production, prevailingly on arable land. However, 

some of them were abandoned and overgrown with successional 

vegetation. Because of the dynamics of abandoning, RS data 

could be considered as one of the most important sources of 

information about this process.  

In the sense of our results, AAL1 and AAL2 classes cover 2.5% 

and 4.4% respectively from the whole experimental area. AAL 

classes are usually fragmented and occupy small areas of 

overgrowing vegetation. The agricultural abandonment is a 

gradual process, which is manifested by specific local features 

typical, e.g. for Slovak conditions. It is complicated to 

generalize and interpolate the parameters of such conditions for 
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other study areas without field survey. In the context of our 

contribution, we did not attempt to generalize the parameters 

used to identify AAL in another study area. 

Obtained results confirm that it is possible to identify different 

classes of AAL using Sentinel data. We found challenging to 

train the RF algorithm for sufficient classification of AAL. This 

led to misclassification between AAL1 and fodder crops (Fc) or 

AAL2 and shrubs (Sh) – see Table 5. Further improvements 

could be done using higher frequency of obtained satellite data 

from the vegetation period and datasets with higher spatial 

resolution. We also assume that significant improvements could 

be reached by using high-resolution orthophotos with 

a combination of laser scanning data.  

To conclude we found Sentinel data useful for large scale 

monitoring of AAL which could be seen in the papers presented 

by e.g. (Alcantara et al., 2013; Estel et al., 2016; Kuemmerle et 

al., 2006; Prishchepov et al., 2012). The hybrid classification 

approach for large scale monitoring performed by (Kuemmerle 

et al., 2006) resulted in a reliable LC/LU map with an overall 

accuracy of 84%. Even this study proved that shrub areas are 

difficult to classify because of their overlap with grassland. 

Also, a high degree of spectral heterogeneity was pointed out. In 

the study of (Alcantara et al., 2013) focused on analysing spatial 

patterns of AAL the resulting PA (17.27%) and UA (50.75%) 

had shown significant issues within AAL identification process 

– classification of AAL and pastures alike. The fallow land 

frequency could be also considered as the problematic part of 

AAL classification (Estel et al., 2015). It means those resulting 

areas identified as AAL could be in real-time just left as fallow 

land and later recultivated.  

The change in reflectance that is occurring when arable land is 

abandoned is significant (Prishchepov et al., 2012). This 

knowledge makes identification of AAL1 class easier (PA: 

93%) with the comparison with the more gradual change 

between fodder crops, shrubs and AAL2 (PA: 75%). Because 

hay cutting occurred only once or twice a year in our study area, 

it is crucial to capture those areas directly after they are cut 

(Prishchepov et al., 2012). 
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