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ABSTRACT: 
 
Freely available satellite image time-series are currently the most exploited data towards land cover mapping. In this work we assess 
the contribution of spectral and temporal features for the detailed, i.e., with more than thirty classes, land cover and crop type 
mapping based on annual Sentinel-2 data. As a baseline we employed a datacube consisting of spectral features, i.e., spectral bands 
and indices from one tile of Sentinel-2A data for the year 2016. Then we formed two different datacubes of reduced dimensions, 
containing either spectrotemporal or temporal features and performed the same experiments in order to assess their contribution. For 
the second dataset only spectral features that fulfilled certain temporal conditions were retained, reducing by 40% the initial datacube 
dimensionality. The third dataset was formed only of temporal features resulting to a reduction of 50%. A random forest classifier 
was employed for the classification procedure and standard accuracy metrics for the validation. All experiments resulted into high 
overall accuracy rates of over 90% while rates for average F-score metric exceeded 78% in all cases. The quantitative and qualitative 
validation indicated that the baseline dataset modestly outperformed the other two of spectrotemporal and temporal features. Insights 
regarding the influence of spectral differentiation among classes and the impact of their sample size, on the per-class performance are 
further discussed. The importance of spatial independency for training and testing sets was also demonstrated highlighting the need 
of following best practises during validation in order to deliver a realistic estimation of the produced map accuracy. 
 
 

1. INTRODUCTION 

Accurate and regularly-updated mapping along with change 
analysis arises as essential for several scientific communities, 
but also for public and regional authorities in terms of 
supporting decision making, planning, sustainable development 
and natural resources management. At the same time open data 
policies both in the USA and EU, are delivering an 
unprecedented volume of satellite data with increasing levels of 
resolution. Currently, the availability of Landsat-8 and Sentinel-
2 data significantly expands the capabilities of timely, accurate 
and detailed land cover mapping from time series of cost-free 
satellite data. The use of multi-temporal data for land cover 
mapping tasks at annual basis has become currently the standard 
method, since in this way the valuable information of the 
phenological variations of different land-cover types can be 
exploited (Cihlar, 2000; Inglada et al., 2017; Jia et al., 2014; 
Karakizi et al., 2018b; Xie et al., 2019)  
 
Mapping crop areas and classifying different crop types, arises 
as an even more complex problem requiring the use of data with 
higher spatial, spectral and temporal resolution. In recent 
studies the demanding task of crop-type mapping has been 
addressed with the use of satellite imagery combined with 
machine learning frameworks (Defourny et al., 2019; Inglada et 
al., 2015; Karakizi et al., 2018a; Lira Melo de Oliveira Santos et 
al., 2019). The use of machine learning techniques like Support 
Vector Machines (SVM) and Random Forests (RF) have gained 
rapid recognition for land cover and crop type classification 
studies (Defourny et al., 2019; Inglada et al., 2017, 2015; 
Karakizi et al., 2018b, 2018a; Xie et al., 2019; Zhai et al., 
2018). A different approach, deep learning and Neural 
Networks (NN), is currently one of the fastest-growing trends in 
remote sensing. Compared to more shallow architectures (like 
SVM and RF) for the task of land cover mapping, the NN based 

analysis has given results of similar accuracy. However, it is 
accompanied by a significantly increased computational cost 
related with the complexity of the training procedure combined 
with the high dimensionality of image time series (Karakizi et 
al., 2018b; Khatami et al., 2016; Stoian et al., 2019). 
 
Apart from the optimal selection of a classifier that balances 
highly accurate results and lower computational needs, the 
choice of classification features also plays an important role in 
the efficiency of the classification framework. Spectral features, 
namely multispectral satellite bands and derived spectral 
indices, have been established as the main set of input features 
for land cover and crop type classification in the recent 
literature (Defourny et al., 2019; Inglada et al., 2017, 2015; 
Karakizi et al., 2018b, 2018a). High dimensionality issues and 
redundancy problems of unchanged regions related with 
multispectral time series are often tackled by deriving temporal 
metrics from the multi-temporal data (Zhai et al., 2018). Multi-
temporal metrics are statistical derivations of the time series per 
pixel, e.g., maximum, minimum, median and other percentile 
values of the spectral bands.  
 
Temporal features are frequently used and recommended for 
crop-areas mapping (Defourny et al., 2019; Song et al., 2017; 
Valero et al., 2016; Waldner et al., 2017) since those type of 
metrics capture vegetation phenology but are generally 
insensitive to the timing of phenological differences across large 
areas (Egorov et al., 2018). Temporal metrics can also be 
employed to produce spectrotemporal features. This is achieved 
by defining key dates of remote sensing stages for the dynamic 
classes (vegetation, crops etc.) and then deriving the reflectance 
values of the spectral bands on those specific dates. As a result, 
the dataset to be classified is independent of the calendar 
sequence, i.e., the sequence of acquisition dates, for the intra-
annual changes and thus grants better handling of the dynamic 
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cropland diversity and the agro-climatic gradient across the 
landscape (Matton et al., 2015). 
 
Towards this direction, in this paper we assess the contribution 
of spectral and temporal features for the challenging task of 
detailed land cover and crop type mapping based on multi-
temporal Sentinel-2 data from the year 2016. Aiming to reduce 
the computational costs of a hardware-hungry baseline dataset 
consisting of spectral features, we formed two additional 
datasets with reduced dimensions. The reduced datasets were 
formed employing spectrοtemporal and temporal features 
derived from the initial baseline dataset. The same experimental 
set-up based on a RF classifier was applied to all three datasets, 
to ensure an objective comparison. A comprehensive 
quantitative and qualitative evaluation was performed for all 
experiments, while additional aspects like the spatial 
independency between training and testing sets were also 
discussed in order to deliver a reliable estimation of the 
produced map accuracy.  
 

2. MATERIALS AND METHODS 

2.1 Study Area  

The study area is located in central continental Greece and 
corresponds to the Sentinel-2 tile 34SEJ (Figure 1). It covers an 
extent of about 10,000 km2 and includes parts of four 
administrative regions of the country. We selected this region as 
the study area since it presents highly heterogeneous landscapes 
and varying terrain relief including plains but also several 
mountain masses. The Pindus mountain range crosses the study 
area from north-west to south-east, presenting covers of natural 
vegetation such as broadleaved and coniferous forests, natural 
grasslands, sclerophyllous vegetation and barelands. On the east 
of Pindus lies a big part of the Thessalian Plain, one of the most 
important agricultural regions of Greece. Agricultural land 
consists mainly of cotton, maize, cereals, clover and other grass 
fodders. Urban areas like the cities of Trikala and Karditsa and 
smaller towns and villages are scattered across the plain. The 
study area also includes several water bodies, e.g, man-made 
lakes Plastira, Pournariou, Kremaston, while on the south-west 
border of the study area, lies the salty-water lagoon of 
Messolonghi. 
  

 

Figure 1. The study area (in red box) corresponding to the 
Sentinel-2 tile 34SEJ (in a natural color composite of March 

2016) and its location on the Greek territory 

2.2 Sentinel-2 Data Selection and Preprocessing 

Sentinel-2A L1C data of less than 10% cloud coverage (10 
dates) for year 2016 was downloaded from the ESA Sci-Hub for 
the tile 34SEJ. An atmospheric correction procedure followed 
using the Sen2Cor processor, in order to produce surface 
reflectance products of level 2C. Afterwards, BRDF correction 
was carried out, where pixel reflectance values were adjusted as 
if the satellite’s location was at the nadir concurrently with 
image acquisition. Then, cloud and shadow screening was 
conducted with the F-mask algorithm and interpolated values 
using the previous and following cloud/shadow-free dates, were 
produced for cloudy and invalid pixels. Furthermore, 
geolocation shift errors (1-2 pixels) that may occur between 
different dates/images of the same tile were also resolved. As a 
final step, the medium (20m) and low (60m) resolution bands of 
Sentinel-2 were sharpened from the nearest high (10m) spatial 
resolution band. 
 
2.3 Class Nomenclature and Reference Data 

Concerning the class nomenclature, the aim was to highly 
analyse land cover of the study area including detailed 
information for crop types. To this end, we used the 
nomenclature of CORINE Land Cover (CLC) third level with 
several modifications for general land cover classes, while 
geospatial data from Rapid Field Visits (RFVs) of the Greek 
Paying Agency (OPEKEPE) defined the thematic analysis of 
arable land classes. An intensive annotation procedure was 
carried out to produce reference data. Two image interpretation 
experts manually annotated polygons for 31 different land cover 
and crop type classes using a variety of datasets including 
Sentinel-2 images for the year 2016, Google Earth and Bing 
Satellite very high resolution imaging data, CLC2012 product 
and crop’s geospatial data from Greek Paying Agency. Since 
representative training samples are one of the most critical 
components in supervised classification, the experts studied the 
area thoroughly and noted as many variations of each class as 
possible (Karakizi et al., 2018b). At the same time, the good 
practice of keeping sample size per class relative to each class’s 
respective occurrence in the study area was also considered 
when creating the reference data. However, this practice was 
impossible to be achieved for arable land classes, since 
reference data for those -hard to photo interpret- crop classes 
were limited by the availability of RFV’s geospatial data. 
 
2.4 Classification Algorithm and Features 

A Random Forest (RF) classifier was used for the 
implementation of the proposed methodology. RF classifier as 
further analysed in the Introduction section, is considered a 
robust machine learning classification method that has been 
successfully applied in recent similar studies (Defourny et al., 
2019; Inglada et al., 2017, 2015; Xie et al., 2019). The choice 
of parameters for the RF classifier has been proven not very 
sensitive for land cover tasks (Pelletier et al., 2016). For this 
study we implemented an RF classifier with Python 3.7.0 using 
scikit-learn and 100 trees. All experiments were executed on a 
server running Ubuntu 18.04, with an Intel(R) Core(TM) i7-
5820K CPU at 3.30GHz and 48 GBs of RAM. 
 
Based on our previous research efforts (Karakizi et al., 2018b, 
2018a) and on the related bibliography (Defourny et al., 2019; 
Inglada et al., 2017, 2015) we chose six Sentinel-2 spectral 
bands, i.e., Blue (Band 2), Green (Band 3), Red (Band 4), Red-
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Edge (Band 6), NIR (Band 8), SWIR (Band 11) along with 
three spectral indices, namely NDVI, NDWI and NDBI to serve 
as the classification features. The baseline dataset, Dataset A, 
was formed by stacking the 10-dates’ spectral features into a 
single cube of 90 layers in total. 
 
Dataset B was formed by deriving the spectral features from 
dates/images of Dataset A that fulfilled specific temporal metric 
conditions. Distinct remote sensing stages, especially for crop-
areas, have been reported to be defined by key dates linked with 
spectral features’ statistical derivations, like maximum (max) 
and minimum (min) value of NDVI and Red band (Lambert et 
al., 2016; Matton et al., 2015). We experimented with multiple 
combinations of temporal metrics as conditions, like min, max 
and median of the available spectral bands and the final, most 
efficient set, comprised of: maxRed, minRed, medianRed, 
maxNDVI, minNDVI, medianNDVI. Dataset B was formed by 
extracting the values of the nine spectral features from Dataset 
A, from the respective date that fulfilled the condition posed by 
each temporal metric, per pixel. As a result, Dataset B consisted 
of 54 layers in total. 
 
Dataset C was formed by calculating temporal metrics on the 
Dataset A time-series and using directly those metrics as input 
features for the classification. We experimented with multiple 
combinations of temporal metrics as features and the final, most 
efficient set, comprised of min, max, median, mean, standard 
deviation of all nine spectral bands and indices. By this way 
Dataset C consisted of 45 layers in total. 
 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section a thorough quantitative and qualitative analysis is 
presented based on the results obtained after applying the same 
classification framework on Datasets A, B and C. 
 
3.1 Accuracy Metrics  

All models were trained and validated using exactly the same 
training and testing areas, in order to allow valid comparison 
between datasets. The independency of the validation procedure 
was secured by splitting the reference data at the polygon level, 
using 65% for training and 35% for testing. An additional 
validation procedure for Dataset A, was conducted by splitting 
the reference data randomly at pixel level, holding the same 
ratio for training and testing, towards quantitatively assessing 
the impact of the spatial correlation on accuracy metrics’ 
overestimation.  
 
The validation of the land cover classification experiments was 
quantitatively implemented forming confusion matrices at the 
pixel level. The standard accuracy metrics of Overall Accuracy 
(OA), User’s and Producer’s Accuracy (UA & PA) were 
calculated. Per class F-measure (F1) scores were also calculated 
as the combined metric of the harmonic mean between UA and 
PA. Qualitative evaluation was also performed by throughout 
intensive observation of the produced land-cover and crop-type 
maps. 
 
3.2 Quantitative Comparative Analysis 

In Table 1, the resulting F1 rates are presented per class and 
dataset, while their average rates and the OA of each experiment 
are presented in the last two rows. 

In particular, lower rates (less than 40%) are marked with 
double underline and highest rate per class (per row) between 
the different datasets with bold. Scores on the last two rows of 
Table 1 indicate that the proposed approach achieved results of 
very high OA (<90%) for all datasets. The average F1 rates 
from all classes ranged between 78%-83% for the different 
experiments.  

 

Table 1. OA and per class F1 rates for the RF experiments on 
Datasets A, B and C. Highest rate per row is marked with bold 

and low rates (<40%) with double underline 

Dataset 
A

Dataset 
B

Dataset 
C

DUF Dense urban fabric 71,05 68,42 68,89

SUF Sparse urban fabric 70,07 67,68 68,31

ICU Industrial commercial units 66,54 60,01 65,79

RAN Road/Asphalt networks 64,44 59,61 65,62

MES Mineral extraction sites 67,39 63,95 64,80

PHV Photovoltaic units 86,62 83,32 84,69

GRH Greenhouses 97,85 96,19 97,70

BLF Broad-leaved forest 97,48 96,38 97,38

CNF Coniferous forest 100,00 100,00 99,50

NGR Natural grasslands 91,90 87,50 88,24

DSV Dense scleroph. vegetation 96,00 95,30 95,50

SSV Sparse scleroph. vegetation 87,64 86,47 86,43

VNY Vineyards 83,86 85,29 79,98

OLG Olive groves 78,58 70,78 77,34

FRT Fruit trees 80,54 61,62 72,18

WHT Wheat 92,74 90,45 92,23

BRL Barley 55,50 32,42 39,02

OAT Oat 31,28 24,08 18,49

MAI Maize 94,53 89,67 91,83

CTN Cotton 94,50 89,47 94,05

TBC Tobacco 96,00 91,78 96,43

CLV Clover 91,06 83,49 87,72

GRF Other grass fodders 62,86 67,02 68,43

FLW Fallow 62,66 52,23 54,84

SVA Sparsely vegetated areas 88,27 86,60 85,37

BDS Beaches, dunes, sands 78,56 77,28 77,08

RCK Bare rocks 91,37 89,24 89,90

MRS Marshes 94,21 90,78 92,12

WCR Water courses 90,46 90,29 90,42

WBD Water bodies 100,00 97,44 100,00

CWT Coastal water 100,00 95,94 98,89

Average F1 (%) 82,71 78,41 80,30

OA (%) 93,55 90,70 91,54

Code Class

F1 SCORE (%)
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Classification on Dataset A, of 90 spectral features, holds the 
highest rates (with bold) for average F1 and OA, and for most 
individual classes’ F1 scores, compared to the performances of 
the other two experiments. Dataset C of 45 temporal features 
performed, in almost every case, better that Dataset B, of 54 
spectrotemporal features. Comparing Dataset A and C, the latter 
comes with half the dimensionality of the first. However, 
accuracy rates did not differ much, i.e., less than 3% for average 
F1 and OA. For the experiments in all three datasets, F1 score 
for the majority of classes exceeded 70%. For all three datasets, 
very high F1 rates of over 90% were achieved for classes 
Greenhouses, Broad-leaved forest, Coniferous forest, Dense 
sclerophyllous vegetation, Wheat and wetland (MRS) and water 
classes (WCR, WBD, CWT). Sub-classes of the cereal crop 
family, name Barley and Oat were the only cases of very low 
rates of under 40%.  
 
In general, individual classes’ performance followed the same 
pattern, concerning accuracy rates derived from the three 
different datasets. To better illustrate the latter and at the same 
time assess the classes’ sample size contribution, on the per 
class accuracy produced by the classification model, Figure 2 is 
provided and analysed. On the three coloured bars, the PA rates 
are presented per dataset for every studied class. Producer's 
Accuracy (PA) is an indicator of the map accuracy from the 
point of view of the map/model maker (the producer). It 
expresses the proportion of ground truth pixels that were 
correctly classified by the classification model. The black line 
with markers in Figure 2 indicates the proportion of sampling 
size per class, derived as the ratio between sample size of each 
class and total sample size for all classes. Sample size is 
examined since RF, like other supervised machine learning 
algorithms, tend to promote prediction accuracy of prevailing 
classes in terms of representativeness which in most cases leads 
to lower accuracies in less represented classes.  
 
Upon more careful examination of Figure 2 it becomes apparent 
that the majority of classes, at least 20 out of 31, reached PA 
scores of over 70% for all 3 datasets. Concerning sample size,   
  

the top-five better represented classes, i.e., Coniferous forest, 
Broad-leaved forest, Cotton, Clover and Maize, achieved in 
most cases very high PA rates of more than 85%. However PA 
rates of over 85% were also achieved for very low sample size 
classes (<1%) like Greenhouses, Marshes and Water courses, 
suggesting that distinct spectral characteristics of specific 
classes eliminate the sample size bias. This is indeed 
highlighted by very high performance (>90%) in both F1 (Table 
1) and PA rates for all cover classes related with the presence of 
water (WCR, WBD, CWT). On the other hand for classes with 
less distinctive spectral behavior and thus having more 
competitive classes of similar behavior, like Industrial 
commercial units and Road and asphalt networks, low sampling 
size seems to have affected performance against the other man-
made classes.  
 
Another important remark from Figure 2 is that the greatest 
differences in PA scores between datasets A, B and C occurred 
for crop classes (VNY-FLW). This is also the case for the 
greatest differences in F1 scores (Table 1). For crop classes 
other than Vineyards, Tobacco and Other grass fodders, 
classification on Dataset A ensured highest per class accuracy 
rates. Sample size seems to have played an important role for 
those classes and especially the arable ones, that their reference 
data creation, as explained in section 2.3., was limited by the 
availability of geospatial data provided by the Greek Paying 
Agency. In this case, classes Fruit trees, Barley, Oat and 
Fallow suffered both from low representativeness (<1%) and 
lower per class accuracy rates. Between those, Barley and Oat 
presented the lowest per class accuracy rates (in most cases 
<40%) and this fact can be also attributed to the presence of 
another crop-class of the same family, namely Wheat that had a 
significantly bigger sample size than the other two cereal 
classes. Apart from low sample size, for classes Fruit trees and 
Fallow lower accuracy rates could be also attributed to the fact 
that they include different covers or crop sub-types within the 
same class/category. 

 
 

 

 

Figure 2. The resulting per-class PA rates (coloured vertical bars) for the RF experiments on Datasets A, B and C. The proportion 
of each class in the reference dataset, i.e., each class’s sample size, is also presented with the black line with markers 
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3.3 Omission Errors per Class 

In order to have a view of classification mixings between 
classes, we hereby present and discuss Table 2. Table 2 was 
calculated by dividing the produced confusion matrix for the 
most successful experiment, that of Dataset A, with the sum of 
reference testing pixels (ground truth) for each row. As a result, 
the table should be read per row (reference labels), so as the 
diagonal of the matrix expresses the PA percentage of each 
row/class, and all other cells the omission percentage for that 
class from classification errors towards all other column-classes 
(produced labels). Black line borders have been designed in 
order to visually group classes of the same general land cover 
family. 
 
Artificial classes that consist of man-made surfaces achieved, in 
overall, medium to very high PA rates (49–98%) and in most 
cases they were confused between each other. Photovoltaic 
units and Greenhouses, characterised by materials of distinct 
spectral behaviour, held high rates for PA (>80%) and very low 
omission errors accordingly. The two classes of urban fabric 
(DUF, SUF) presented mixings of about 15% between each 
other, as expected. Omission errors towards those two classes, 
adding up to approx. 30%, presented the class Road /Asphalt 
networks with a PA of 49%. The artificial terrain class Mineral 
extraction sites, which is the only non-sealed man-made cover 
category in our nomenclature, achieved a PA rate of 58%, while 
presenting a high omission error rate (34%) to class Beaches, 
dunes, sands, of similar cover materials. Industrial commercial 
units class had omission errors towards both artificial (DUF, 
SUF) and bareland (BDS, RCK) classes of high brightness, 
presenting a PA rate of 60%. 
 
Concerning areas of natural vegetation, i.e., forests (BLF, 
CNF), natural grasslands (NGR) and shrubland (DSV, SSV), 
PA reached rates over 92%. Thus, those classes presented very 
few omission errors to other classes. 
 
 
 

For the 12 classes of the agriculture family PA rates presented a 
large range (31%-97%). Permanent crops (VNY, OLG, FRT) 
were classified with PA rates of about 70%-75% presenting 
omission errors mainly to other crop classes but also natural 
vegetation classes and especially towards Sparse sclerophyllous 
vegetation. Arable land classes Wheat, Maize, Cotton, Tobacco 
and Clover all held very high PA rates (>89%) and presented 
insignificant omission errors mainly to other crop classes. 
Barley and Oat classes of the cereal family, presented lower PA 
rates, since 36% and 25% respectively, of their reference data 
pixels used for testing, were classified as Wheat. As also 
discussed in the previous section, cereal class Wheat had a 
significantly bigger sample size than the other two cereals. 
Additionally Other grass fodders class also lost 49% of its 
ground truth pixels to Wheat. Fallow class, not corresponding 
to a single crop category, presented lower PA rates and 
omission errors mainly to Wheat (14%), Cotton (6%), Natural 
grasslands (9%) and Sparse urban fabric (11%). The latter 
misclassification case can be attributed to similar spectral 
behaviour at this scale (10m) since Fallow and Sparse urban 
fabric classes include both vegetated and non-vegetated covers 
in an irregular way. 
 
Regarding bareland classes (SVA, RCK, BDS) very few 
omission cases were recorded and so PA rates exceeded 85%. 
Unsurprisingly Beaches, dunes, sands class presented omission 
errors of 4% to Water courses class, since its reference data also 
included sand along river banks. Bare rocks class had a 7% of 
its reference testing pixels classified as Mineral extraction sites 
class, strengthening the spectral relationship, mentioned in 
previous paragraphs, between those different-family but similar-
material classes. 
 
Wetland (MRS) and water classes’ (WCR, WBD, CWT) 
reference testing pixels were classified with very high accuracy 
rates of over 91%, highlighting the spectral distinctness of 
water-related covers especially when exploiting the infrared 
spectrum.  
 
 

DUF SUF ICU RAN MES PHV GRH BLF CNF NGR DSV SSV VNY OLG FRT WHT BRL OAT MAI CTN TBC CLV GRF FLW SVA BDS RCK MRS WCR WBD CWT

DUF 76 16 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
SUF 12 82 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
ICU 5 4 60 0 17 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 3 0 0 0 0
RAN 16 15 0 49 0 6 0 1 0 0 1 3 0 1 0 0 0 0 2 1 0 1 0 0 2 0 1 1 0 0 0
MES 1 0 3 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 34 3 0 0 0 0
PHV 1 2 0 0 0 80 0 0 0 3 0 5 0 2 0 3 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
GRH 0 1 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
BLF 0 0 0 0 0 0 0 99 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CNF 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NGR 0 0 0 0 0 0 0 2 0 95 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
DSV 0 0 0 0 0 0 0 3 0 0 96 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SSV 0 2 0 0 0 0 0 0 0 0 3 92 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
VNY 0 5 0 0 0 0 0 0 0 0 0 6 76 2 0 0 0 0 1 9 0 0 0 0 0 0 0 0 0 0 0
OLG 0 0 0 0 0 0 0 0 0 5 0 15 0 76 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
FRT 0 2 0 0 0 0 0 1 0 0 3 5 1 13 70 0 0 0 1 1 0 3 0 0 0 0 0 0 0 0 0
WHT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
BRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 53 9 0 2 0 0 0 0 0 0 0 0 0 0 0
OAT 0 4 0 0 0 0 0 0 0 14 0 8 0 0 0 25 1 31 11 0 0 2 0 2 1 0 0 0 0 0 0
MAI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 2 0 4 0 0 0 0 0 0 0 0 0
CTN 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 95 0 1 0 0 0 0 0 0 0 0 0
TBC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 2 92 1 0 0 0 0 0 0 0 0 0
CLV 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 6 0 89 0 0 0 0 0 0 0 0 0
GRF 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 49 0 0 0 0 0 0 48 2 0 0 0 0 0 0 0
FLW 0 11 0 0 0 0 0 0 0 9 0 5 0 0 0 14 0 0 0 6 0 0 0 51 2 0 0 0 0 0 0
SVA 0 2 0 0 0 0 0 0 0 5 0 5 0 1 0 0 0 0 0 1 0 0 0 0 86 0 1 0 0 0 0
BDS 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 2 0 4 0 0
RCK 1 0 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 90 0 0 0 0
MRS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 91 9 0 0
WCR 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0
WBD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0
CWT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Confusion Matrix: Dataset A - PA and Omission Errors (%)

 

Table 2. Confusion matrix for the RF experiment on Dataset A. Diagonal values (bold and boxed) represent the PA (recall) values for 
each class, while off-diagonal ones the omission errors. Omission errors greater than 3% are marked with red text and red filling 
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3.4 Overestimating Accuracy with Spatial Dependency on 
Training and Testing Sets 

Machine learning and remote sensing best practices for 
validating classification outputs suggest splitting testing and 
training datasets in a manner that ensures the spatial 
independency of the two sets. This is also the case for land 
cover and crop type mapping applications (Defourny et al., 
2019; Inglada et al., 2017; Stoian et al., 2019). This splitting 
strategy was followed also in this paper for the core experiments 
presented and analysed in the previous sub-sections. 
 
However, in order to quantitatively assess the over-estimation 
effect on accuracy metrics, when training and testing data are 
not spatially independent, an additional experiment was carried 
out on Dataset A by splitting the reference data at pixel level 
instead of polygon level. Table 3 presents OA, average PA, UA 
and F1 for the auxiliary pixel split experiment on Dataset A in 
comparison with the original experiment on Dataset A, using 
polygon splitting for training and testing. 

 

Accuracy 
metric 

Dataset A 
(split at 

polygon level) 

Dataset A 
(split at  

pixel level) 

Impact 
of spatial 

dependency 

OA 93,55% 98,70% ↑   5,15% 

PA 81,00% 95,29% ↑ 14,29% 

UA 86,24% 97,48% ↑ 11,24% 

F1 82,71% 96,37% ↑ 13,66% 

Table 3. Accuracy metrics derived with different splitting 
strategies and their impact in estimated map accuracy 

 

Table 3 indicates that all metrics exceeded the remarkably high 
rate of 95% when splitting at pixel level presenting significant 
raises compared to the main polygon-split experiment. In 
particular, OA for the complementary experiment exceeded 
98% presenting an increase of more than 5%, while average per 
class metrics of PA, UA and F1 presented rises of over 10%. 
Rises were quite expected since splitting at pixel level involves 
considering pixels of the same polygon for both training and 
testing, which would probably be very similar spectrally.  
 
After all, producing land cover maps covering large extents, 
such as those of one satellite scene, with not-automatically 
produced reference data from other LC products, is usually 
characterized by a small proportion of reference data compared 
to the whole area to be classified. In such a way the impact of 
spatial correlation when validating, is not to be ignored in order 
to provide the users an accuracy estimation that is closer to 
reality for the whole map. 
 
3.5 Map Validation and Discussing Challenging-to-map 
Areas 

The final step of the proposed methodology is map production. 
Three maps were produced, one for each dataset, applying the 
same RF framework. For predicting the map products the whole 
reference dataset was utilized when training the RF classifier, 
aiming at maximum exploitation of all available information. 
The general visual inspection on the produced maps did not 
reveal coarse differences between the different products. The 
most successful experiment i.e., the one based on Dataset A, is 

presented in Figure 3 (left hand side). Additionally, zoomed-in 
areas from all three maps are presented for visual comparison in 
Figure 3 (right hand side). This allows the direct comparison of 
the performance especially in challenging-to-map areas.   
 
On the eastern part of the map (Figure 3, left) one can observe 
that the urban and suburban areas, i.e., cities of Trikala and 
Karditsa as well as many villages scattered across the 
Thessalian plain have been correctly detected and mapped 
(indicative classes: DUF, SUF, ICU) by the proposed 
classification framework. Forest classes (BLF, CNF) were 
correctly reported on upland and mountainous areas, while 
Mediterranean-type evergreen sclerophyllous vegetation classes 
(DSV, SSV) were mapped on lower terrains.  
 
Regarding the qualitative evaluation over agricultural areas, the 
Thessalian plain was expectedly classified as various crop 
classes. A vast dominance of classes Cotton, Wheat and Maize 
cultivations is evident on the map which agrees with the 
agricultural information provided in subsection 2.1. 
Additionally, large inland water areas such as the man-made 
lakes of the study area, the salty-water lagoon of Messolonghi 
and its surrounding wetlands have been successfully detected as 
the respective classes (WBD, CWT, MRS).  
 
Higher altitude regions of mountain massifs, mainly represented 
by the spur of Pindus, seem in most cases correctly illustrated 
with the presence of Natural grasslands and bareland classes 
(SVA, RCK). However a closer look on bareland areas (whitish 
colors) even at this scale, reveals certain omission errors 
towards man-made classes (redish/pink colors) that are further 
illustrated on the zoomed-in parts in the right side of Figure 3. 
In particular the example of mount Lakmos (alt. 2100m) of the 
Pindus range is presented here. This area consists of bareland 
covers and usually snow cover across the year. Therefore it is 
depicted in the imagery data with high brightness values across 
the spectrum, which is also the case for many other alpine 
regions.  
 
By examining the zoomed-in parts from the maps of Dataset A, 
B and C, classification errors are apparent for all. The zoomed-
in map of Dataset A present the fewest commission errors to -
other than bareland classes- among the three maps. However, 
there are still considerable regions covered with urban and 
suburban classes (DUF, SUF) but also class Cotton of the crop 
family. The artificial classes’ mixings with bareland can be 
attributed to high brightness values for both types. As far as 
class Cotton is concerned, its cultivation practices require high 
humidity levels on the soil, so it is possible that alpine 
vegetated regions covered by moss and lichen were confused 
with this class. More classification errors can be observed for 
Dataset B and C. Larger bareland areas are erroneously 
classified to even more in number artificial classes, namely 
Dense urban fabric, Sparse urban fabric, Mineral extraction 
sites and Greenhouses. These remarks are in accordance with 
per class accuracies, since classification in Dataset A resulted in 
Sparsely vegetated areas PA rates of 86%, 85%, 80% and that 
of Bare rocks of 90%, 88%, 87% for datasets A, B and C 
respectively. 
 
In overall, visual inspection on the produced three maps agrees 
with the high classification OA rates (>90%) achieved by all 
datasets. Additionally, analysis on the challenging-to-map 
example, indicated also qualitatively Dataset A as the most 
successfully classified dataset. 
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Classification map on Dataset A Zoom-in areas 

 

 

 

 

 

Figure 3. Classification map of the study area from experiment on Dataset A (left) and zoom-in region of mount Lakmos from the 
maps of all three datasets along with Bing Satellite imagery of the same region (right) 

 
 

4. CONCLUSIONS 

In this paper we assessed the contribution of spectral and 
temporal features for detailed land cover and crop type mapping 
using annual Sentinel-2 data for the year 2016. Three datasets 
were created and benchmarked using the same RF classification 
framework. The first baseline dataset (Dataset A) consisted of 
90 spectral features, while the other two were formed with 
spectrotemporal (Dataset B) and temporal features (Dataset C), 
reducing the initial datacube dimensionality by 40% and 50% 
respectively. Quantitative evaluation demonstrated the 
efficiency of the proposed methodology by achieving results of 
high overall accuracy of over 90% in all experiments. 
Comparative quantitative and qualitative validation highlighted 
that in most cases Dataset A yielded modestly better results than 
the other two datasets that employed temporal metrics.  
 
The choice of using temporal metrics for this work has been 
encouraged by recent similar studies and especially crop 
mapping ones, with the aim of allowing independency from the 
crop calendar and dealing with the cropland diversity across 
landscapes (Defourny et al., 2019; Egorov et al., 2018; Waldner

 
et al.,2017). In this work, the study area consisted of one 
Sentinel-2 tile and thus cropland diversity and agro-climatic 
gradient did not ranged significantly. To this extent, the 
classification experiment based only on temporal metrics 
(Dataset C) presented lower rates by a 2-2,5% for OA and 
average F1, compared to the initial experiment on full-set 
spectral features of Dataset A. Nevertheless relative low 
differences in accuracy for experiments performed, encourage 
the use of temporal metrics for similar mapping tasks and 
especially for large geographical areas, contributing to reduced 
data dimensionality and thus less demands on hardware 
resources. 
 
Further analysis on per class classification errors indicated that 
sample size along with the distinct spectral characteristics of 
each class had a significant impact in accuracy rates. Especially 
for arable crop classes, that present high spectral similarities 
among each other, reference data availability emerges as a 
crucial prerequisite for accurate classification. Towards this 
end, the free/open access to geospatial reference datasets like 
the annual declarations on the Land Parcel Identification 
System (LPIS, for EU) should significantly contribute to 
accurate and detailed land cover mapping at an annual basis. 
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