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ABSTRACT: 

 

The information survey and the land use and land cover (LULC) change monitoring are essential to understand the changes in the 

landscape and their impacts on the environment. The Brazilian savanna (Cerrado) constitutes the second largest biome in Brazil and is 

highly relevant because of its rich biodiversity. The Cerrado in the Maranhão State is facing a high conversion rate of its natural 

vegetation into agricultural systems because of the agricultural development policies. This article aims to analyze and quantify the 

LULCC in the Chapadinha microregion, Maranhão State, Brazil, by comparing Landsat satellite images from 2000, 2009, and 2019. 

The Chapadinha microregion covers an area of more than 14,000 km² and, since 2000, presents significant spatial transformations 

related to agricultural expansion. The goal of this expansion is the economic development based on agricultural commodities (mainly 

soybean monoculture) for exportation. The study area is the third microregion in terms of agricultural production in Maranhão. The 

satellite image interpretation showed a reduction of more than 800 km² of natural vegetation. 

 

 

1. INTRODUCTION 

 

Since 1970s, the Cerrado biome has consolidated as the main 

region of the country in terms of expansion of the agricultural 

because of the favorable climate and soil, and the large amount 

of land available for cultivation. As a result, Brazil is one of the 

largest grain producers and exports in the world, with emphasis 

on soy production. Cerrado occupies approximately 20% of the 

Brazilian territory (~ 2 million km2) and is distributed in the 

states of Goiás, Tocantins, Mato Grosso, Mato Grosso do Sul, 

Minas Gerais, Bahia, Maranhão, Piauí, Rondônia, Paraná, São 

Paulo, and the Federal District (Sano et al., 2009). 

 

The combined influence of climate (highly seasonal), 

topography (flat or steep, depending on the location), and soils 

(highly weathered, deep, and acidic) controls the formation of 

different grass-, shrub-, and tree-dominated 

phytophysiognomies with varying proportions of these three 

strata. Cerrado has more than 12 thousand cataloged plant 

species - approximately 40% are endemic (MMA, 2015), 

therefore, it is included as one of world´s hotspots for 

biodiversity conservation. In the same time, it is considered the 

last agricultural frontier in the country (Klink and Machado, 

2005). Government incentives and private capital associated 

with the Cerrado Development Plan (Santos, 2011) increased the 

suppression of natural vegetation and the implementation of 

large-scale production of agricultural commodities (Inocêncio e 

Calaça, 2009). 

 

In Maranhão, the Cerrado occurs from southern portion to the 

north, covering 64% of its territory (74,288 km²). Recent natural 

vegetation suppression in this state is associated with Prodecer 

III project that started in the Gerais de Balsas microregion in the 

1990s. Soybean cultivation in the Maranhão started in 2000s, 
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when agricultural frontier began to shift from western Bahia 

State to the east of Maranhão. The emphasis was in the 

Chapadinha and Baixo Parnaíba microregions, considered as the 

Cerrado´s new agricultural frontier (Gaspar, 2010, Santos, 2011, 

Campos, 2011). In the 2000s, the study area presented the first 

agricultural modernization process with the insertion of the 

monoculture crop. Its consolidation started in 2003 with 

emphasis on the municipalities of Brejo and Buriti, since they 

present landscape characteristics favorable to the development 

of highly mechanized agriculture in flat terrains, regardless of 

dominant well-drained, low fertility Oxisols developed from 

pre-weathered sediments of the Barreiras Formation.  In 

addition, the prices of lands are still relatively low (Guimarães, 

2012). 

 

The use of computer tools and remote sensing techniques to 

survey characteristics of the region of interest are highly relevant 

to define and implement biodiversity conservation strategies, 

reduction of environmental impacts, and environmentally 

sustainable agriculture planning (Bendini et al., 2016, Sano et 

al. 2019a). The Brazilian savanna is a key region in terms of 

expansion and consolidation of the national agricultural 

development and the applications of remote sensing for analysis 

of monitoring agriculture, land use and land cover is very 

important for the region (Arantes et al. 2016, Bolfe et al. 2016, 

Silva et al., 2016, Picoli et al., 2018, Araújo, et al. 2019, 

Camargo et al., 2019, Alencar et al., 2020). 

 

This paper aims to analyze the dynamics of land use change in 

the Chapadinha microregion, Maranhão State, by identifying 

and quantifying the land use dynamics during the 2000-2018 

period. This study also relates the historical and socioeconomic 

activities with the processes of transformations and their 

impacts. 
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2. MATERIALS AND METHODS 

 

2.1 Study Area  

 

The Chapadinha microregion occupies approximately 10,400 

km² in the northeast of Maranhão State. It encompasses the 

municipalities of Anapurus, Belágua, Buriti, Brejo, Chapadinha, 

Mata Roma, Milagres do Maranhão, São Benedito do Rio Preto, 

and Urbano Santos (Figure 1). 

 

 
Figure 1. Location of the Chapadinha microregion in the 

Maranhão State. Source: adapted from IBGE (2019). 

 

IBGE (2019) found 219,617 inhabitants in Chapadinha in 2010, 

an increase of 22% in relation to the Demographic Census 

conducted in 2000. Approximately 45% of the population have 

been living in rural areas. The microregion of interest showed 

significant growth (138%) of urban population in the 2000-2010 

period. Regardless of presence of high-tech, mechanized 

agriculture that represents more than 80% of the current 

production model in the area, the majority of population still 

survive based on extractivism, agriculture practiced in itinerant 

way (cutting, slashing, and burning), low-productivity cattle 

ranching and fishing. 

 

The study area is located in a transition region between the 

Cerrado and Caatinga biomes (Batistella et al., 2013). There is 

predominance of arboreal forest formations belonging to the 

Cerrado domain, mixed forest, and extensive fields of open 

vegetation in tabular zones. The microregion presents high 

temperatures and annual rainfall ranging between 800 mm and 

1200 mm, and humidity ranging between 70% and 80%. It 

presents two distinct climate periods, a rainy season and a dry 

season, differentiated landscapes with high vegetation variety, 

depending on the seasonality (Reschke, 2013). 

 

The initial human occupation in the study area is strongly 

associated with the extensive cattle ranching. Since 1990s, the 

Chapadinha microregion integrates the state's agricultural 

production chain, with large-scale soy production (Gaspar, 

2010). According to Almeida (2017), the process is directly 

associated with the improvement of plant and soil management 

technologies. In fact, this improvement boosted local production 

and productivity of soybean for exportation and agroforestry for 

cellulose, causing large suppression of natural vegetation cover. 

 

According to data provided by the Municipal Agricultural 

Production (PAM) (IBGE, 2019), soybean is responsible for 85% 

of the total area of croplands. Other crops found in the study area 

are rice, corn, and cassava. Data from IBGE showed that, there 

were 411 hectares of soybean in 2000, increasing to 65,240 

hectares in 2018. The intensification of agricultural production is 

observed since 2002, when the area destined for soybean 

cultivation increased from 550 hectares to 3,716 hectares in 2003. 

The production increased from 1,320 tons to more than 8,900 

tons (Figure 2). 

 

 
Figure 2. Evolution of areas destined for agricultural production 

from 2000 to 2018 in the Chapadinha microregion.  

Source: IBGE (2019). 

 

2.2 Images 

 

The LUCL mapping was carried out based on visual 

interpretation of a set of Landsat satellite images from 2000 to 

2019. The images were downloaded from the United States 

Geological Survey Earth Explorer Platform (USGS, 2020). The 

selected images were from August to December, with less than 

5% of cloud cover (Table 1). 

 

Year Path/Row Overpass 
Spectral 

Bands 

% 

Cloud 

Cover 

2000 

219/62 28/08/2000 

1, 2, 3, 4 

and 5 

(Landsat-

5 TM) 
<5% 

219/63 28/08/2000 

220/62 22/10/2000 

220/63 22/10/2000 

2009 

219/62 08/10/2009 

219/63 09/11/2009 

220/62 29/09/2009 

220/63 29/09/2009 

2019 

219/62 18/09/2019 2, 3, 4, 5, 

6 and 7 

(Landsat-

8 OLI) 

219/63 18/09/2019 

220/62 09/09/2019 

220/63 04/05/2009 

Table 1. Characteristics of the Landsat images selected for land 

use and land cover mapping. Source: USGS (2020). 

 

The database contained 12 layers (four scenes in three periods) 

of each image, formed in the TerraView software (INPE, 2017). 

The following digital image processing tasks were performed: i) 

registration, radiometric transformations, and visual adjustments, 

ii) generation of the normalized difference vegetation index 

(NDVI), iii) image segmentation and extraction of attributes, iv) 

data mining and image classification based on the decision tree 

algorithm, and v) analysis of the results.  

 

2.3 Image Processing 

 

To minimize the atmospheric influence, the images were pre-

processed. Initially, the gray level digital numbers were 

converted into radiance and then to the surface reflectance 

following the methodology described by Ponzoni and 

Shimabukuro (2009) and using the Spring 5.6 software. For the 
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conversion of Landsat-5 images, we used the equations described 

by Rosa (2009) (Eq. 1). 

 

L = (
LMAX− LMIN

Qcalmax−Qcalmin
) ∗ (Image) +  LMINλ      (1) 

 

where L = the spectral radiance recorded by the sensor [W/m2 sr μm] 

Qcal = calibrated pixel value [DN] 

Qcalmin = minimum DN value corresponding to 

LMINλ [DN] 

Qmax = maximum DN value corresponding to 

LMAXλ [DN] 

LMINλ = spectral radiance recorded by the sensor that 

is scaled in relation to Qcalmin [W/m2 sr μm] 

LMAXλ = spectral radiance recorded in the sensor that 

is scaled in relation to Qcalmax [W/m2 sr μm]. 

 

The radiance at the top of the atmosphere was calculated from the 

function described by Ponzoni and Shimabukuro (2009) (Eq. 2): 

 

𝑝𝜆 =
𝜋∗𝐿𝜆

𝐸𝜆∗𝑐𝑜𝑠(𝑧)∗𝑑r
                                                                             (2) 

 

where dr = inverse of the square of the Earth-Sun relative 

distance in astronomical units 

z = zenital solar angle (degrees) at the time of image 

acquisition 

Eλ = average solar irradiance at the top of the 

atmosphere (mW/cm².Ω.µm) 

Lλ = monochromatic spectral radiance (W/m².sr.µm) 

ρλ = monochromatic reflectance. 

 

For the calculation of radiance and reflectance of the Landsat-8 

images, we observed changes in the conversion parameters, 

showing a multiplicative factor and an additive factor calculated 

separately and following Eq. 3: 

 

ρλ' = M*Qcal + A                                  (3) 

 

where ρλ '= spectral reflectance 

Qcal = image to be transformed 

M = multiplicative factor for the reflectance of the band 

to be converted 

A = additive factor for the reflectance of the band to be 

converted. 

 

The images had the process of atmospheric correction to 

minimize the effects of atmospheric scattering. The dark-object 

subtraction technique of multispectral data - DOS (Chaves, 1988) 

was applied using the QGIS software through the Semi-

Automatic Classification Plugin (Congedo, 2016). 

 

Based on radiance and reflectance values, the NDVI was 

obtained as a tool for monitoring plant vigor, since NDVI is 

sensitive to green biomass variation, chlorophyll content, and 

water stress (Sano et al., 2019b). Its calculation based on the 

relationship between the red and near infrared bands (4). 

 

                 NDVI =
(PNIR − PR)

(PNIR+PR)
                                                    (4) 

where NDVI = normalized difference vegetation index 

PNIR = near infrared band 

PR = red band 

                                                             
1 Similarity threshold / area 10/100 was established for Landsat 5, 

and for Landsat 8 50/300, following the parameters described in 

Meneses and Almeida (2012). 

After the conversion, a histogram contrast was applied. It consists 

of the pixel scattering process with a linear function of 1 being 

applied, without changes in the original spectral characteristics 

of the targets (Meneses and Almeida, 2012). The images were 

clipped to the boundaries of the Chapadinha microregion 

provided by IBGE (2019). We then generated a merged image 

with all multispectral bands and NDVI. The metafile was 

elaborated in the TerraView image visualization software. 

 

The images were also segmented and classified by using the 

Geographic Data Mining Analyst (GeoDMA) platform (Korting 

et al., 2009). It integrates methods of image analysis with data 

mining techniques from spatial and spectral information, 

functioning as a TerraView plug-in (Korting et al., 2009). 

 

2.4 Segmentation, Attribute Extraction, and Sample 

Collection 

 

Image segmentation consists of a process of grouping pixels 

having similar characteristics in discrete and contiguous regions 

without intersecting themselves and constituting in segments 

(objects). We used segmentation by growing regions (Baatz and 

Schape, 2000), which, according to Benz et al. (2004), is a 

technique of pixel aggregation that starts with a pixel (seed), pre-

defined values of similarity 1 , threshold, and scale, grouping 

neighbors having similar properties and considering the spectral 

and spatial characteristics in the composition of objects (Zanotta 

et al., 2019). 

 

After the segmentation process, attributes related to the relational 

objects present in the image and associated with spatial (13) and 

spectral (15) characteristics were extracted, resulting in a total of 

28 attributes for each scene or 112 attributes for each image. This 

step was performed using the Geodma plug-in available in the 

TerraView 5.3.3 software. 

 

Six LULC classes were defined: Field, Forest, Bare Soil, 

Agricultural Areas, Water, Built Area. At least 68 sampling 

points were collected for each LULC class, according to the 

methodology proposed by Sano et al. (2009). 

 

2.5 Classification and Validation 

 

This step was performed by Geodma. We used the decision tree 

procedure (Korting et al., 2009) created by the classification 

algorithm C5.0 for classifying and mapping LULC classes. The 

results were obtained based on the visual interpretation of the 

images and definition of LULC classes according to the technical 

manual proposed by IBGE (2009).  

 

The process starts with the definition of hierarchy of data by 

internal nodes and leaves connected by branches. Each node 

corresponds to a variable that is used for classification. The first 

node is known as the root, and the others are called intermediate. 

The leaves correspond to the variables related to the classes that 

each intermediate node is associated (Korting et al., 2009). 

 

Initially, three decision trees were created, aiming to identify trees 

that presented a lower branching pattern and better performance, 

allowing their use for all images. For this purpose, the Kappa and 

the performance indices were used as the validating model to 

classify the maps generated. The maps were analyzed and compared 

with the thresholds established by Landis and Koch (1977). 
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𝑘 =
𝑛∗∑𝑑𝑝−𝛴(𝑙∗𝑐)

𝑛2−∑(𝑙∗𝑐)
                                                  (5) 

 

where k = index value 

n = total number of samples 

Σdp = sum of the main diagonal 

Σ(l*c)= product of the sum of the row by the columns 

of each representative class. 

 

Kappa index was evaluated considering the following categories: 

Very Bad = <0.00, Bad = 0.00 - 0.20, Regular = 0.21 - 0.40, Good 

= 0.41 - 0.60, Very Good = 0.61 - 0.80, and Excellent = 0.81 - 1.00. 

 

To validate the classifications, a cross combination was carried 

out with ground truth data and GeoEye images that are available 

for free in the Google Earth platform. The following satellite 

overpasses were selected: December 30, 2000, April 23, 2009, 

and May 22, 2019, in jpeg format, using 122 points for the year 

2000 classification, 114 points for the year 2009, and 165 points 

for 2019. They were created using the random points available in 

the QGIS 2.18.8 software. 

 

2.6 Change Detection 

 

After correcting the errors associated with the classification, the 

vector data related to land cover classes were converted into 

matrix information using conversion tools available in the QGIS 

2.18.8 software. The purpose here was to perform change 

detection analysis and to generate transition matrices among the 

mapped classes. Thus, the Molusce (Modules for Land Use 

Change Simulations) alteration detection statistics available in 

the QGIS were applied. The results generated tables with 

information on the class area and frequency of coverage, besides 

reference matrices related to the years 2000 to 2009, and to the 

years 2009 to 2019. The results identified a percentage of the loss 

and gain rates between the classes. 

 

3. RESULTS 

 

3.1 Validation of the Classification 

 

 LULC changes, as well as to identify the advance of 

deforestation in the Cerrado associated with the advance of the 

agricultural frontier in 2000, 2009, and 2019. The Landsat 

satellite images allowed the mapping of the main patterns of land 

cover changes. The validation of the classification models was 

performed using the confusion matrix and the Kappa index. 

 

The overall accuracy rate were 76%, 67% and 59% respectively 

for the years 2000, 2009 and 2019. The forest class hit were 77%, 

87%, and 72%, and the agricultural areas were 87%, 88%, and 

88% for the classified classes. It is worthwhile to mention the low 

hit rate for the silviculture (17%, 8%, and 28%), with a high rate 

of confusion with the forest and agricultural areas. This relatively 

high rate of confusion is possibly associated with climatic of 

drought during the acquisition of the analyzed images and the 

natural conditions of cerrado, as expected in the naturally 

heterogeneous cerrado (Alencar et al., 2020). 

 

Kappa index values ranged from good to very good. Images from 

the years 2000, 2009 and 2019 presented Kappa indices of 0.708, 

0.603, and 0.519, respectively. The results showed efficiency of the 

classification elaborated from data mining. The level of confusion 

                                                             
2 Fl = Forest, Fd = Fields, Ac = Agricultural Areas, Sc = Silviculture, 

Ex = Bare Soil, W = Water, Ot = Others, and B = Built Areas. 

was high, mainly for the year 20192. Tables 2, 3, and 4 show the 

confusion matrices elaborated to generate the Kappa index. 

 

 Classification 

Reference Fl Fd Ac Sc Ex W Ot B 

Fl 23        

Fd 5 28 3  8 2   

Ac 2  8  2 2   

Sc 2   4     

Ex     11 2   

W     1 10   

Ot       0  

B        9 

Table 2. Confusion matrix for year 2000. 

 

Reference 
Classification 

Fl Fd Ac Sc Ex W Ot B 

Fl 22 3       

Fd 6 17 3  5 2   

Ac 2 3 15  4 2   

Sc 2   4     

Ex     6 2   

W 1    2 4   

Ot       0  

B        9 

Table 3. Confusion matrix for year 2009. 

 

Reference 
Classification 

Fl Fd Ac Sc Ex W Ot B 

Fl 21        

Fd 8 13 3  8 2   

Ac 2 6 17  7 2   

Sc 8 3 1 17     

Ex  2 12  11 2   

W     1 10   

Ot       0  

B        9 

Table 4. Confusion matrix for year 2019. 

 

3.2 Land Use and Land Cover 

 

The generation of thematic LULC maps allowed the mapping and 

quantifying transition rates, in addition to the analysis of 

agricultural expansion in the area. Table 5 and Figures 3, 4, and 

5 show the LULC classes as well as their quantification in net 

values and relative frequency for years 2000, 2009, and 2019. 

 

 

Classes 
2000 

(Km²) 

2000 

(%) 

2009 

(Km²) 

2009 

(%) 

2019 

(Km²) 

2019 

(%) 

Fl 6617.48 63.38 6145.44 58.94 5755.28 55.34 

Fd 3523.81 33.75 3253.99 31.21 3388.43 32.58 

Ac 68.86 0.66 664.17 6.37 872.65 8.39 

Sc 24.47 0.23 67.41 0.65 251.57 2.42 

Ex 99.26 0.95 126.43 1.21 37.78 0.36 

W 51.73 0.50 69.52 0.67 55.03 0.53 

Ot 41.16 0.39 78.20 0.75 15.14 0.15 

B 14.33 0.14 21.38 0.21 24.73 0.24 

Table 5. Changes in the land use and land cover changes in the 

Chapadinha microregion. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1607-2020 | © Authors 2020. CC BY 4.0 License.

 
1610



We can observe the temporal advance of agriculture over natural 

areas (grasslands and forests), mainly in the eastern portion 

(municipalities of Brejo, Buriti, and Anapurus), and silviculture 

in the northern portion (Urbano Santos municipality). 

 

 
Figure 3. Land use and land cover map of the Chapadinha 

microregion (year: 2000).  

 

The main changes observed in the area are related to agricultural 

expansion over the areas of natural vegetation, with a gradual 

reduction in the areas of forest and grasses. In 2000, these classes 

represented 6617.4 8km² and 3523.81 km², respectively. In 2019, 

they were reduced to 5755.28 km² and 3388.43km², that is, a 

reduction of approximately 863 km² of forested areas, and 135 

km² of grass-dominated areas. 

 

Along the period, a significant increase occurred in new 

agricultural and forestry areas in the Chapadinha microregion. 

The data showed an increase of more than 800% between in the 

2000-2019 period. This was boosted mainly by state policies in 

association with private capital, as highlighted by Gaspar (2010) 

and Almeida (2017). 

 

 

 
Figure 4. Land use and land cover map of the Chapadinha 

microregion (year: 2009). 

 

The pattern of agricultural expansion was defined as selective, 

predominantly in the east and center of the microregion, mainly 

in the municipalities of Brejo, Buriti, Anapurus, and Mata Roma. 

The predominance is associated with geomorphological 

characteristics and the topographic profile (composition of 

tabular features with slope varying from flat to smooth) that 

enabled the implementation of modern agricultural practices and 

the use of fertilizers, resulting in significant agricultural 

advances. Araújo et al. (2019) emphasized that the municipality 

of Buriti presented 78% of new areas destined to agricultural 

production between 2000 and 2007. Almeida (2017) noted that 

the municipality of Brejo presented significant increase in areas 

for agricultural production between 2000 to 2015. When 

analyzing the vegetation cover conditions in the region, Silva et 

al. (2016) highlight the area has shown high rates of deforestation 

in recent decades. 

 

 

 
Figure 5. Land use and land cover map of the Chapadinha 

microregion (year: 2019).  

 

 

3.3 Detection of Change - 2000 to 2009 

 

Table 6 describes the areas occupied by each LULC classes, and 

the corresponding percentages of transitions that occurred in 

Chapadinha microregion between 2000 and 2009. The forest 

class showed significant reduction, approximately 7.13%, or a 

total of 473 km². The main conversions from forest areas were to 

fields, approximately 280 km², agricultural areas 133 km², and 

forestry 22 km². The regeneration areas totalized approximately 

773km², 21% of which came from rural areas, 13% from exposed 

soil areas, and 38% expansion. It is worth noting that the class 

had a maintenance rate of 81%, which indicates 5517.78km² of 

forest areas maintained between 2000 and 2009. 

 

2
0

0
0
 

Classes 
2009 

Fl Fd Ac Sc Ex W Ot B 

Fl 0.81 0.16 0.02 0.00 0.00 0.00 0.01 0.00 

Fd 0.21 0.59 0.14 0.01 0.02 0.00 0.01 0.00 

Ac 0.05 0.06 0.88 0.00 0.01 0.00 0.00 0.01 

Sc 0.15 0.03 0.00 0.82 0.00 0.00 0.00 0.00 

Ex 0.13 0.35 0.13 0.00 0.34 0.03 0.00 0.01 

W 0.09 0.11 0.00 0.00 0.04 0.75 0.01 0.00 

Ot 0.38 0.45 0.00 0.01 0.00 0.00 0.15 0.01 

B 0.04 0.13 0.03 0.00 0.01 0.01 0.00 0.78 

Table 6. Matrix of transition between 2000 to 2009.  
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Grasslands showed significant reduction in the analyzed period. 

This class represented 33% of the total area of the microregion in 

2000. In 2019, it was reduced to 31%. From 2000 to 2009, the 

microregion lost approximately 7% of natural grasslands (~269 

km²). In the period analyzed, this class presented a preservation 

rate of 59% (2022.48 km²). The main changes were for the forest 

class (21%) and agricultural areas (14%). 

 

Bare soils showed an increase of ~27% between 2000 and 2009. 

This increase reflects the agricultural expansion between 2000 

and 2009. The expansion resulted in the new areas suppressed for 

crop plantation. Bare soil corresponds either to the areas prepared 

for plantation or to the areas in processes of loss of vegetation 

cover, without clear management. 

 

The agricultural areas presented the highest percentage of 

increase between 2000 and 2009. In 2000, agricultural areas 

occupied less than 1% of the Chapadinha microregion, mainly 

related to agriculture of subsistence practiced by the local 

communities. In 2009, this class covered more than 6% of the 

total area. Agricultural areas showed significant increase 

(>800%) from 2000 to 2009, going from 68 km² to 664 km² 

(Table 6). The main gains are associated with the conversion of 

rural areas (~453 km²), and areas classified as bare soils (211 

km²). The conversion of agricultural areas into other classes was 

low (<10%). 

 

Figure 6 shows the transition values between the LULC classes. 

Significant advance of agricultural areas and reduction of forest 

and grasslands was observed. 

 

 
Figure 6. Transition of land use and land cover classes in the 

Chapadinha microregion (2000-2009 period). 

 

3.4 Change Detection - 2009 to 2019 

 

Between 2009 and 2019, the area faced a gradual change in terms 

of LULC classes (Table 7). Forests presented a constant rate of 

74% (4857 km²), with lower loss of forests to agriculture 

(conversion rate of 6.3% and a reduction of 390 km²). Forests lost 

357.30 km2 for rural areas, 81 km² for agriculture, and 38 km² for 

silviculture. Regarding the regeneration, the rate reached 18%, 

due to the recomposition of rural areas in new forested areas 

(~1061 km²). Other classes accounted for 53% of forest 

conversion rates. 

 

The patterns of changes for rural areas showed a gradual increase 

in relation to 2009 (~134 km²), representing an increase of 4% 

between 2009 and 2019. This class presented a gain rate of 

approximately 4%, with the highest conversion of forest areas to 

grasses (357 km²). The conversion rates of grasslands to 

agriculture and silviculture were 154 km² and 99 km², 

respectively. 

 

 

2
0

0
0
 

Classes 
2009 

Fl Fd Ac Sc Ex W Ot B 

Fl 0.74 0.23 0.02 0.01 0.00 0.00 0.00 0.00 

Fd 0.34 0.54 0.07 0.03 0.00 0.00 0.00 0.00 

Ac 0.06 0.10 0.77 0.07 0.00 0.00 0.00 0.00 

Sc 0.08 0.12 0.00 0.79 0.00 0.00 0.00 0.00 

Ex 0.22 0.46 0.16 0.01 0.13 0.01 0.00 0.00 

W 0.26 0.13 0.01 0.00 0.04 0.55 0.00 0.00 

Ot 0.53 0.44 0.00 0.02 0.00 0.00 0.00 0.00 

B 0.12 0.13 0.01 0.00 0.01 0.00 0.00 0.72 

Table 7. Matrix of transition between 2009 to 2019.  

 

The advance of agriculture over natural areas was lower in 

approximately 1%, as compared with that from 2000 to 2009. 

Between 2009 and 2019, there was an 31% increase. New 

agricultural areas increased 200 km², mainly associated with the 

reuse of areas already destined for grain production. In this 

period, the main classes that showed conversion to agriculture 

were grasslands (7%) and bare soils (17%). These classes had a 

low conversion rate to other classes: 10% to rural areas and 6% 

to forest. 

 

Forests showed a gradual growth, going from 24 km² in 2000 to 

67 km² in 2009. Between 2009 and 2019, an increase of 187 km² 

occurred, mainly in the northern portion of the microregion. The 

main classes converted for the implementation of silviculture 

were grasslands (3%) and agricultural areas (7%). About 12% of 

area occupied by silviculture were converted into grasslands, 

indicating a regeneration or Eucalyptus pruning for cellulose. 

 

Figure 7 shows the conversion model of losses and gains between 

forest, grasslands, agricultural areas, and forestry classes from 

2009 to 2019. The regeneration of rural areas was due to the 

abandonment of forest areas and the implementation of 

silviculture over the old agricultural areas. 

 

 
Figure 7. Transition of land use and land cover classes in the 

Chapadinha microregion (2009-2019 period). 

 

Araújo et al. (2019), when analyzing land use by Landsat satellite 

images between 2000 and 2017, indicates that the region 

underwent intense environmental changes caused mainly by 

transformations in the land cover, these are directly related to the 

socioeconomic activities related to the insertion of the soybean 

monoculture. 
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4. CONCLUSIONS 

 

The use of Landsat images was essential to support the 

interpretation of the different types of LULC classes in the study 

area. It enabled the creation of an updated base of conversion and 

advance of soybean production in the area. The use of digital 

image processing techniques proved to be satisfactory to assess 

and analyze changes and to identify temporal changes at 

municipality level. The data survey of images and classifications 

and their insertion in a geographic database generated 

information about LULC changes. The object-oriented 

classification method was considered significant, as it allowed 

great automation of the mapping process and reduction in the 

efforts of manual editing’s. 

 

There was a 13% deforestation rate in the analyzed period, with 

high percentage associated with the insertion of annual crops. 

The agricultural area increased over 500 km² between 2000 to 

2019. Despite the high rate of deforestation, forest and 

countryside areas still represent the predominant land cover 

classes in the microregion. It represents approximately 88% of 

the land cover, mainly in the western and southern parts of the 

microregion, with emphasis to the municipalities of Chapadinha 

and Belágua that had a deforestation rate below 20%. The 

municipalities of Brejo, Buriti, Anapurus, and Mata Roma 

presented deforestation rates higher than 45%. 

 

The data may serve as an instrument to elaborate protective 

environmental policies for the Cerrado at municipality level, as 

well as a management tool for public and private sectors. 
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