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ABSTRACT:

Deep learning classification models require large amounts of labeled training data to perform properly, but the production of refer-
ence data for most Earth observation applications is a labor intensive, costly process. In that sense, transfer learning is an option
to mitigate the demand for labeled data. In many remote sensing applications, however, the accuracy of a deep learning-based
classification model trained with a specific dataset drops significantly when it is tested on a different dataset, even after fine-tuning.
In general, this behavior can be credited to the domain shift phenomenon. In remote sensing applications, domain shift can be
associated with changes in the environmental conditions during the acquisition of new data, variations of objects’ appearances,
geographical variability and different sensor properties, among other aspects. In recent years, deep learning-based domain adapta-
tion techniques have been used to alleviate the domain shift problem. Recent improvements in domain adaptation technology rely
on techniques based on Generative Adversarial Networks (GANs), such as the Cycle-Consistent Generative Adversarial Network
(CycleGAN), which adapts images across different domains by learning nonlinear mapping functions between the domains. In this
work, we exploit the CycleGAN approach for domain adaptation in a particular change detection application, namely, deforesta-
tion detection in the Amazon forest. Experimental results indicate that the proposed approach is capable of alleviating the effects
associated with domain shift in the context of the target application.

1. INTRODUCTION

In the past years, global concern about climate change has risen
substantially, up to a point where it is now considered the major
challenge to be faced by humanity in the coming decades. Hav-
ing reached an unprecedented scale, its effects directly threaten
food production and natural resources, as well as a still unac-
counted number of life forms.

Anthropogenic driven environmental degradation is currently
believed to be one of the major causes of global warming. In
this respect, the extinction of natural forests can be directly
linked to climate change. Deforestation is one of the largest
sources of greenhouse gas emissions, which in turn contributes
to the elevation of Earth’s surface temperature. Deforestation is
responsible for the reduction of carbon storage and other seri-
ous environmental issues such as biodiversity losses (De Sy et
al., 2015).

The tropical rainforests, particularly, store up to 140 billion
metric tons of carbon, and are known to help stabilize world-
wide climate. The Amazon forest alone contains 10% of all
biomass on the planet and is home to 10% of the known life
species (De Sy et al., 2015) (The Worldwatch Institute, 2015).

Unfortunately, the Amazon biome has faced several threats as
∗ Corresponding author

a result of unsustainable economic development, linked to ex-
tensive cropping and cattle farming, forest fires, illegal mining,
and expansion of informal settlements (Goodman et al., 2019),
(Malingreau et al., 2012), (Nogueron et al., 2006).

In this context, monitoring environmental changes directly re-
lated to global warming, such the ones caused by deforestation
in the Amazon, has become a priority for authorities and institu-
tions around the world. Nevertheless, the detection of changes
on Earth’s surface, specially in a global or regional scale is a
complex and costly process, which demands solutions that sup-
port efficient analysis of large volumes of remote sensing (RS)
data.

In the past decade, artificial intelligence techniques, especially
those related with deep learning (DL), have become the dom-
inant trend in image analysis, mostly due to their capacity to
learn discriminative features directly from data, when labeled
samples are abundant (Bengio et al., 2009) (LeCun et al.,
2015) (Krizhevsky et al., 2012).

At the same time, the availability of Earth observation (EO) data
produced by RS systems has increased considerably. However,
most of the RS applications still fall short in the demands im-
posed by DL-based techniques, basically because of the high
costs required by field survey and labor-intensive visual inter-
pretation to produce a large enough quantity of labeled data.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1635-2020 | © Authors 2020. CC BY 4.0 License.

 
1635



The development of wide-reaching DL-based solutions for EO
problems, such as automatic change detection, therefore, re-
mains a challenging subject.

In this sense, transfer learning (Weiss et al., 2016) (Pan, Yang,
2010) (Nogueira et al., 2017) emerged as an attractive altern-
ative, allowing the reuse of networks already trained on large
data-sets in problems in which a limited quantity of labeled data
is available.

Such techniques, however, perform poorly when the domain
shift phenomenon is present (Wu et al., 2019) (Zhang et al.,
2019). In RS applications, domain shift can be associated with
changes in the environmental conditions during the acquisi-
tion of new data, variations of objects’ appearances, geograph-
ical variability and different sensor properties, among other as-
pects. In many applications domain shift makes it impossible
to employ pre-trained classifiers on new data, even after fine-
tuning, without a significant decrease in classification accuracy
(Schenkel, Middelmann, 2019) (Wittich, Rottensteiner, 2019).

Domain adaptation techniques can be used to alleviate the do-
main shift problem (Ganin, Lempitsky, 2014) (Sun, Saenko,
2016) (Tzeng et al., 2014). In short, domain adaptation aims
at minimizing the discrepancy between distributions of two dif-
ferent domains. One of the distributions characterizes the data
used to train a classifier; the other is associated with data that
the classifier has never seen, which may present several of the
aforementioned variations (Zhang et al., 2019).

Among existing domain adaptation methods, those based on
Generative Adversarial Networks (Goodfellow et al., 2014)
represent the current state-of-the-art. Recent improvements of
this technology (Hoffman et al., 2017) (Murez et al., 2018) rely
on the CycleGAN (Zhu et al., 2017) approach to produce in-
distinguishable features from different domains. This idea has
been adapted recently to remote sensing applications, such as
urban land cover classification (Schenkel, Middelmann, 2019)
(Wittich, Rottensteiner, 2019), cloud detection (Mateo-Garcı́a
et al., 2019), and multiple change detection with very high res-
olution (VHR) multisensor images from urban areas (Deng et
al., 2019).

The present work evaluates a CycleGAN-based domain adapt-
ation technique over RS datasets in a change detection applica-
tion, namely, deforestation monitoring in the Amazon forest.

The problem this work aims at tackling is as follows. Consid-
ering two pairs of RS images from the same area, acquired at
two different pairs of epochs, and considering solely reference
samples (about the occurrence of deforestation) for the first pair
of epochs, how can domain adaptation be used so that deforest-
ation detection can be carried out with reasonable accuracy on
the second pair of epochs?

Our results and conclusions focus on the gains brought by the
proposed approach in relation to the classification accuracy ob-
tained by a classifier trained with samples from the first pair of
epochs, but tested on a second pair of epochs.

The rest of this paper is organized as follows. Section 2 briefly
describes the basic techniques associated with the proposed
method. A detailed description of the proposed method is the
subject of the Section 3. The experimental protocol is reported
in Section 4. Section 5 shows the results obtained in the evalu-
ation experiments. Finally, Section 6 presents conclusions and
indicates future research directions.

2. FUNDAMENTALS

2.1 Domain Adaptation

Domain adaptation (DA) in the machine learning context com-
prises methods which aim at improving the performance of
models trained with a particular dataset, regarded as the source
domain, and tested on a different, but related dataset, denoted
as the target domain (Wang, Deng, 2018).

Among the various DA approaches proposed thus far those
based on deep neural networks (DNN) constitute the current
state-of-the-art, being adversarial domain adaptation techniques
using generative models the most successfully in the past few
years.

DNN-based adversarial DA techniques follow two main ap-
proaches. The first approach aims at generating synthetic (ad-
apted) images that preserve the underlying structures present
in the target domain, but that are somehow similar to the source
domain images. In sequence, a classifier trained with the source
images and corresponding references is evaluated on the ad-
apted target images (Isola et al., 2017) (Bermudez et al.,
2019) (Mateo-Garcı́a et al., 2019).

The other approach aims at aligning the domains in a common
(latent) feature space. The basic idea of this approach is to
find representations for the different domains that are domain
agnostic, i.e., representations that are associated to features
that are indistinguishable with respect to their original domains
(Wittich, Rottensteiner, 2019) (Hoffman et al., 2017) (Murez et
al., 2018).

In this work we follow the first DA approach, i.e., the one based
on the adaptation of the images latter subjected to classification.

Taking into account that the proposed DA technique relies on
generative adversarial concepts, the next sections are dedicated
to explaining the basis of the related models, as well as their
most representative examples.

2.2 Generative Adversarial Networks

GANs (Goodfellow et al., 2014) constitute a class of unsuper-
vised machine learning models composed by two neural net-
works: the generator and the discriminator. The generator
model specializes in synthesizing realistic images by learning
a function G that maps samples of a known random distribu-
tion p(z) into samples of a distribution pmodel(x). The dis-
criminator, in turn, is trained to learn a function D that distin-
guishes whether a sample comes from the real data distribution,
pdata(x), or from pmodel(x). Using a min-max procedure to
train the related neural networks, the optimal mapping function
G∗ can be found by solving the following equation:

G∗ = arg minG maxD L(G,D), (1)

where L(G,D) is the GAN loss function defined as:

L(G,D) = Ex∼pdata(x)[log(D(x))]
+ Ez∼p(z) [log(1−D(G(z)))],

(2)

where E and log are the expectation and logarithmic operators,
respectively, x is a real image, and z is a random noise vector,
sampled from a known noise distribution p(z), which is typic-
ally uniform or Gaussian.
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2.3 Cycle-Consistent Generative Adversarial Networks

CycleGANs (Zhu et al., 2017) aim at capturing the essential
characteristics of one image collection {xi}Ni=1, where xi ∈
X , and translating them to another image collection {yj}Mj=1,
where yj ∈ Y . To that end, the underlying model learns the
mapping functions G : X → Y and F : Y → X , such that im-
ages produced by G and F are indistinguishable from the real
set of images, Y and X respectively. Additionally, the model
contains two discriminators. DX is trained to discern between
real images from X and the one produced with F , while DY is
trained to discriminate between real images from Y and trans-
lated images produced by G.

The optimal mapping functions G∗ and F∗ can be found
through an optimization procedure based on the following equa-
tion:

G∗,F∗ = arg minG,F maxDX ,DY L(G,F ,DX ,DY ), (3)

where, L(G,F ,DX ,DY ) is the CycleGAN loss function
defined as:

L(G,F ,DX ,DY ) = LGAN (G,DY , X, Y )

+ LGAN (F ,DX , Y,X)

+ λcLcyc(G,F) + λdLidt(G,F).
(4)

The first and second terms of Equation 4 represent adversarial
losses, which are related to the model’s capacity to match the
data distribution of the generated images to the data distribution
of the corresponding target collections. Both terms are defined
in the same way as GAN losses (Equation 2):

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[log(DY (y))]

+ Ex∼pdata(x)[log(1−DY (G(x)))],
(5)

LGAN (F ,DX , Y,X) = Ex∼pdata(x)[log(DX(x))]

+ Ey∼pdata(y)[log(1−DX(F(y)))],
(6)

The third term, Lcyc(G,F), represents the cycle consistency
loss, which serves as a constraint to the many mappings G and
F that could be induced over Ŷ and X̂ respectively, whereby
λc is a regularization coefficient. Lcyc(G,F) is given by:

Lcyc(G,F) = Ex∼pdata(x)[||x−F(G(x))||1]
+ Ey∼pdata(y)[||y − G(F(y))||1],

(7)

The fourth term, represents the identity loss, which encourages
the mappings to preserve the characteristics of the input images
when they are already similar to those of the respective target
distributions. Tuned by λd, Lidt(G,F) is a regularization term
that forces G and F to be close to an identity mapping, such
that G(Y ) ≈ Y and F(X) ≈ X . The identity loss Lidt(G,F)
is given by the following equation:

Lidt(G,F) = Ey∼pdata(y)[||y − G(y)||1]
+ Ex∼pdata(x)[||x−F(x)||1],

(8)

Whereas CycleGANs present a more complex structure, the
training procedure is, in general, similar to that of basic GANs.
In each training cycle, the generators are trained to improve
their capacity to fool the respective discriminators; while the
discriminators are trained to better recognize between real and
generated samples.

Due to the CycleGAN’s ability of translating image character-
istics from one domain to another, recently proposed domain
adaptation approaches have benefited from its underlying ideas
(Hoffman et al., 2017) (Murez et al., 2018) (Deng et al., 2019).
In this work, we employ CycleGANs for domain adaptation in
the context of a change detection application, namely, deforest-
ation detection in the Amazon forest using RS optical images.

3. PROPOSED METHOD

The proposed method aims at alleviating domain shift phe-
nomenon in the context of deforestation change detection, by
using a DA approach based on CycleGANs. The main idea is
to learn a transformation that preserves the structural character-
istics of a sequence of two images acquired at a particular pair
of epochs, and adapt those images so that they match the ac-
quisition conditions and general landscape aspects at a second
pair of epochs.

To this purpose we train a CycleGAN model that learns non-
linear mapping functions that takes as input a combination of
two images of consecutive years and generates corresponding
images, adapted to the conditions of a second set of image com-
bination.

Formally, we consider two sets of co-registered pairs of optical
images, i.e., {xt0 , xt1} ∈ X and {yt2 , yt3} ∈ Y , taken at
epochs t0, t1, t2, and t3 respectively, where t0 < t1 ≤ t2 < t3.
Additionally, we define X as the source domain, and Y as the
target domain. The CycleGAN mapping functions are estim-
ated following the steps described next.

First, a set of patches is extracted from each domain. The
patches are extracted from the entire extents of the image com-
binations. The process is carried out by extracting patches using
a sliding window procedure, with a fixed stride size.

Second, employing the set of patches extracted from the image
combinations in each domain, the CycleGAN mapping func-
tions G(X) and F(Y ) are trained until convergence.

Third, once the models have been trained they are used to gen-
erate the adapted versions of the original image combinations
in each domain. The final result is a mosaic of the generated
patches. Similar to (Arkadiusz et al., 2017), we adopt the slid-
ing window approach with overlap for patch generation. This
allows building a mosaic free of artifacts by removing weak
predictions close to patch boundaries.

It is important to note that each domain represents a stacked
pair of images taken at a particular pair of epochs, and it is ex-
pected that the models learn to preserve the change transitions
from the spectral bands of the image pairs from each domain.
Indeed, as the target application has to do with change detec-
tion, such transitions constitute the most important structures to
be preserved during the adaptation task.

Additionally, we observe that DA is only possible when the do-
mains are not too dissimilar from each other, and that the more
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dissimilar the domains, the harder the DA task is. In fact, in
our case, preliminary results showed that when the dissimil-
arity between the source and target domains increases, some
structures that are not found in the original images appear in
the adapted images, or vice-versa. This is a well known issue
named model hallucination (Cohen et al., 2018).

We believe that such behavior may be stimulated by the identity
loss term in Equation 4. Although the term encourages the pre-
servation of characteristics from the target domain, we found
out that, at least in the context of this work, such term is related
to the generation of artifacts.

Based on those findings, we decided to explore alternatives to
control the generation of artifacts. Basically, we decided to
investigate the effects of introducing a new constrain in the
identity loss. The new two terms aim at regularizing the func-
tions G and F to be closer to identity mapping by enforcing
G(X) ≈ (X) and F(Y ) ≈ (Y ) in addition to G(Y ) ≈ (Y ) and
F(X) ≈ (X). Therefore, Equation 8 is redefined as follows:

Lidt(G,F) = λt(Ey∼pdata(y)[||y − G(y)||1]
+ Ex∼pdata(x)[||x−F(x)||1])
+ λs(Ex∼pdata(x)[||x− G(x)||1]
+ Ey∼pdata(y)[||y −F(y)||1]),

(9)

where, λt regulates the relative importance of the target domain
identity loss, while λs regulates the importance of the identity
loss considering the source domain.

4. EXPERIMENTAL ANALYSIS

The experiments aimed at verifying the effectiveness of domain
adaptation in the context of deforestation change detection. We
also evaluated the capacity of the proposed approach relative to
domain translation through a visual analysis of the translation
outcome.

4.1 Datasets

The study area is located in the Brazilian Legal Amazon,
specifically in the Brazilian Rondônia state, between the fol-
lowing coordinates: 09◦36 ’51”S - 10◦18’35”S latitude, and
062◦56’41”W - 064◦20’51”W longitude. Figure 1 (top) shows
corresponding subsets of the input images, which were acquired
between the years 2016 and 2019.

The images were produced by the Landsat 8-OLI sensor sys-
tem, with 30m resolution, 7 spectral bands (Coastal/Aerosol,
Blue, Green, Red, NIR, SWIR-1, and SWIR-2), dimensions
2550×5120 pixels, and Level-1 data processing, downloaded
from the Earth Explorer web service from the United States
Geological Survey (USGS). In all experiments, all individual
image bands were normalized to zero mean and variance equal
to one.

The reference deforestation ground truths were produced by the
PRODES Deforestation Mapping project, from the Brazilian
National Institute for Space Research (INPE). The data is freely
available at (http://terrabrasilis.dpi.inpe.br/map/deforestation).
The bottom row of Figure 1 shows the deforestation references
for the target years (dark green) and also the accumulated defor-
estation (light blue) from 2008 until the target year minus one
year. In this context, target years refer to the years where we
want to detect deforested areas.

4.2 Domain Adaptation Training Setup

The training procedure for the CycleGAN method uses
256×256 pixels patches extracted from the entire extents of the
images in both domains. The patches were extracted using a
sliding window procedure with stride equal to 50. We randomly
shuffled the sample sets in each domain to produce unpaired
training samples from both domains. Moreover, each training
pair of samples was resized to 286×286, randomly cropped to
256×256, and randomly flipped, following the same procedure
applied in (Zhu et al., 2017).

The method was trained with a batch size of 1 sample using the
Adam optimizer, with learning rate γ and momentum β1 set to
0.002 and 0.5 respectively. The coefficients λcyc and λidt of
the cycle consistency and identity loss were set to 10, while λs

and λt from Equation 9 were set to 0.5. The adversarial loss
function used the mean squared error instead the binary cross-
entropy, used in the traditional GANs. The method was trained
for 200 epochs, applying linear learning rate decay from the
100th epoch, following (Zhu et al., 2017).

4.3 Classifier Training Setup

For the deforestation detection accuracy assessment, we used
the Early Fusion (EF) classifier proposed in (Ortega Adarme
et al., 2020). Following that work, the Normalized Difference
Vegetation Index (NDVI), computed before the image normaliz-
ation process, was stacked along with the spectral image bands
of the images, resulting in images with 8 bands for each epoch.

Additionally, also following (Ortega Adarme et al., 2020), the
image space was divided into 100 tiles. Approximately 20% of
the tiles were used to extract training samples/patches, 5% to
extract validation patches, and the remaining 75% to extract the
patches used for the evaluation of the classifier. Figure 2 shows
the training, validation and test configuration tiles. Tiles 2, 6,
13, 24, 28, 35, 37, 46, 47, 53, 58, 60, 64, 71, 75, 82, 86, 88, and
93 were used for training, tiles 8, 11, 26, 49, 78 for validation
and the rest for testing.

The input to EF was a tensor of size 15×15×16. The patches
were extracted following the overlapping sliding windows pro-
cedure with a stride of 3, as in (Ortega Adarme et al., 2020).
During the training and evaluation steps, patches with central
pixels having the following characteristics were avoided: be-
longing to polygons that have been deforested in previous years;
lying inside a buffer around the deforestation reference poly-
gons; lying inside deforestation polygons smaller than 6.25 ha,
which corresponds to 69 pixels.

Regarding the first and third conditions, we simply adopted the
same procedure employed in the PRODES project. The second
condition aims at avoiding the impact of inaccuracies in the
ground truth, and produced by the rasterization process, which
was carried out with the QGIS software. Based on visual in-
spection of the correspondence between the ground truth and
the deforested areas in the images, the width of the buffer was
set to 6 pixels: 4 outside the polygons, and 2 inside them.

Data augmentation has been applied only to patches which the
central pixel is labeled as deforestation (positive samples). A
90◦ rotation, as well as vertical and horizontal flips, were the
data augmentation transformations. Additionally, only part of
the no-deforestation patches (negative samples) in the training
and validation tiles were (randomly) selected (the same number
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Figure 1. Images of study area in color composition (NIR, G, B). (a) to (d) Images from 2016 and 2019 respectively. (e) to (g)
Deforestation maps provided by PRODES project.

Figure 2. Train, Validation and Test configuration.

as positive samples), in order to balance the number of training
samples per class. In the end, as in the Patch-Wise Classifica-
tion Change Detection (Ortega Adarme et al., 2020), the clas-
sification outcome of an input patch is assigned to its central
pixel in the evaluation step.

During training, the binary cross entropy was minimized using
the Adam optimizer, with learning rate γ and momentum β1
equal to 0.0001 and 0.9 respectively. The batch size was 32,
and the early stopping procedure was used to avoid over-fitting.
The patience parameter, which controls the number of epochs
without improvements in the validation loss, was set to 10. The
classifier was executed 50 times, each time with a different (ran-
dom) initialization of the trainable parameters, and with a dif-
ferent set of randomly selected negative samples/patches.

4.4 Network Architecture

The network architecture of the CycleGAN’s generators, gen-
erators’ Resnet blocks, discriminator, and the EF classifier are
described in in tables 1, 2, 3, and 4, respectively. In the tables,
the symbols identifies the operations for each layer: convolu-
tion (C), deconvolution (D), instance normalization (In), ReLU
(Re), Leaky ReLU (LR), and MaxPooling (MP ). The number
of filters, filters’ dimensions and the convolution stride are in-
dicated in parenthesis. In the case of MaxPooling, the kernel
dimension and stride are indicated adjacently, while for Reflec-
tion Padding, the parenthesis contains the number of rows and
columns that will be reflected. Following (Zhu et al., 2017), the
CycleGAN architecture uses the instance normalization layer

Layer Output shape
Input (256, 256, 14)

Reflection Padding (3,3) (262, 262, 14)
CInRe(64, 7, 1) (256, 256 ,64)

CInRe(128, 3, 2) (128, 128, 128)
CInRe(256, 3, 2) (64, 64, 256)
1- ResNet block (64, 64, 256)

... (64, 64, 256)
9- ResNet block (64, 64, 256)
DInRe(128, 3, 2) (128, 128, 128)
DInRe(64, 3, 2) (256, 256 ,64)

Reflection Padding (3,3) (262, 262 ,64)
C(14, 7, 1) (256, 256 ,14)

Table 1. CycleGAN’s generator architecture.

Layer
Reflection Padding(1,1)

CInRe(64, 3, 1)
Reflection Padding(1,1)

CIn(64, 3, 1)

Table 2. Generator’s ResNet block.

Layer Output shape
Input (256, 256, 14)

CLR(64, 4, 2) (128, 128, 64)
CInLR(128, 4, 2) (64, 64, 128)
CInLR(256, 4, 2) (32, 32, 256)
CInLR(512, 4, 1) (31, 31, 512)

C(1, 4, 1) (30, 30, 1)

Table 3. CycleGAN discriminator architecture.

Layer Output shape
Input (15, 15, 16)

CRe(128, 3, 1) (15, 15, 128)
MP (2, 2) (7, 7, 256)

CRe(256, 3, 1) (7, 7, 256)
MP (2, 2) (3, 3, 256)

CRe(512, 3, 1) (3, 3, 512)
Flatten(.) (4608, 1)

Dropout(.) (4608, 1)
Softmax(.) (2, 1)

Table 4. EF classifier architecture.

(Ulyanov et al., 2017) instead the well known batch normaliza-
tion. The difference between them is that the instance normaliz-
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Figure 3. Temporal domain adaptation average ± standard
deviation classification results in % with the identity term

defined as in Equation 8.

ation applies the standard normalization to each single image in
the batch while batch normalization applies to the whole batch.

The discriminator, presented in Table 3, follows the architecture
proposed in (Zhu et al., 2017), 70×70 PatchGANs (Isola et al.,
2017). The α parameter in the Leaky ReLU activation function
as well as the dropout rate in EF classifier were set to 0.2.

5. RESULTS

In the experiments reported in this paper, the source domain X
was composed by the combination (stacking) of images from
2016 and 2017. The target domain Y was composed by the
combination of images from 2017 and 2018.

Figures 3 and 4 show the results obtained by the different clas-
sification schemes evaluated in this work. In the figures, X cor-
responds to the source domain, Y to the target domain, X → Y
represents the source domain adapted to the target, and Y → X
the target domain adapted to the source domain. Each group of
bars, from left to right, represents the average F1-score, Recall,
and Precision for the deforestation class, respectively. The plots
also show, in black bars, the standard deviation recorded in our
experiments.

The classification schemes in which the classifier is trained on
X → Y&X represents a sort of data augmentation, aiming at
improving the generalization capacity of the classifier by in-
creasing the number of training samples. Moreover, the classi-
fication scheme in which the classifier is trained on X and eval-
uated on Y (Tr : X,Ts : Y ) can be regarded as the baseline.

In average, the results were low in terms of the F1-score, and
the standard deviation can be considered high for all classi-
fication schemes. A plausible explanation for such results is
the low quantity of no-deforestation samples to train the classi-
fier, which, in the end, determines the total number of training
samples. Concerning the standard deviation, the high values
may be caused by the stochastic nature of some aspects of the
training process, namely, random initialization of model para-
meters, and random selection of no-deforestation samples due
to data balancing.

As expected, the results on Y with the classifier trained on X
decreased significantly in relation to the performance of the

Figure 4. Temporal domain adaptation average ± standard
deviation classification results in % with the identity term

redefined as in Equation 9.

classifier trained and tested on X in terms of the F1-score and
Precision. Recall, on the other hand, remained almost equal for
all schemes. Quantitatively, the baseline showed a decrease of
approximately 18% in F1-score, which is evidence of the afore-
mentioned domain shift phenomenon.

Regarding the results presented in Figure 3, which were con-
ducted using the formulation of the identity terms as in Equa-
tion 8, the classification results obtained with schemes that use
the images generated through the DA process consistently out-
performed the baseline, but were lower than those obtained with
the first scheme. The improvements achieved with schemes
3 to 6, were: 4.3%; 2.3%; 9%; and 9.7%, respectively. The
highest improvements were brought by those schemes that em-
ploy X → Y as data augmentation.

Figure 4 shows the DA’s results obtained using the proposed
constrain in the Equation 9. Although they follow the same
trend as in the results presented in Figure 3, a slight perform-
ance decrease in terms of F1-score can be observed in the
schemes in which the classifier is tested with the adapted im-
ages Y → X , specifically in Tr : X,Ts : Y → X (from 41%
to 39%) and in Tr : (X → Y&X), T s : Y → X (from 48%
to 45%). Such behavior can be explained by the pressure that
the new term puts in preserving the structures in the source do-
mains. Is has been observed, however, that the new term helps
to alleviate model hallucinations.

Figure 5 shows examples of the artifacts generated by the net-
work with the original loss function, as well as the results ob-
tained with the new loss term. The figure shows three images
with color composition NIR, G, B. The image on the left-hand
side (Figure 5(a)) represent a small subset of the real image
taken in 2016. On the center (Figure 5(b)), the same region on
the image that resulted from the adaptation process is shown.
On the right-hand side (Figure 5(c)) the image produced us-
ing the new term is shown. Considering Figure 5(b), the trans-
formation does not preserves the structural characteristics of the
source image in the target domain. Several deforested areas
have been created by the algorithm in regions where they do
not exist originally. Additionally, despite the already mentioned
performance decrease brought by the new loss term, it can be
observed that it prevents model hallucinations (Figure 5(c)).

Similar to (Ortega Adarme et al., 2020), which evaluated the use
of the classifier in an alarm system to reduce the human effort
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(a) (b) (c)

Figure 5. Resulting images from the adaptation process.(a) Original image of 2016 from source domain. (b) Adapted version of the
source domain’s image to the target one where artifacts where generated by the model (Compare the regions inside the black
boxes).(c) Adapted version of the source domain image to the target one applying the constrain proposed in the Equation 9.

in the deforestation monitoring, we also studied the influence of
DA in this context. As in this system the photo-interpreter just
needs to analyze areas which the classifier indicates as likely

(a)Adaptation process performed using identity term as in
Equation 8.

(b)Adaptation process performed using identity term as in
Equation 9.

Figure 6. Recall vs Alert Area.

to have been deforested, it is important to observe the relation
between the Recall and the Alert Area.

Figures 6(a) and (b) present the curves Recall versus Alert Area
of each classification scheme for the domain adaptation altern-
atives. Each point in the curve corresponds to a threshold im-
posed on the deforestation probability produced by the classi-
fier. The desirable profile is the one in which high Recall rates
are obtained by observing a small area.

Compared to (Ortega Adarme et al., 2020) an identical behavior
has been observed: as Recall increased the area to be observed
also increased. Furthermore, practically all schemes reached
90% of Recall by observing approximately 5% of the image’s
extent. Surprisingly, schemes including DA, specifically the
one denoted as Tr : (X → Y ), T s : Y , achieved the same
performance of the classifier trained and tested on X with an
Alert Area of less than 5%.

6. CONCLUSIONS

In this work, we propose a domain adaptation approach based
on CycleGANs in the context of deforestation change detection
in the Amazon forest.

Each domain comprises a pair Landsat OLI-8 images from con-
secutive years: a pair of images acquired in 2016 and 2017 rep-
resents the source domain; and a pair of images from 2017 and
2018, covering the same geographic extents, represents the tar-
get domain.

The effectiveness of domain adaptation is analyzed considering
the performance of a DNN-based change detection classifica-
tion model, and using reference samples associated solely with
the source domain.

The results showed that the domain adaptation performed with a
model that is similar to the one originally proposed CycleGAN
model was successful in mapping the domains (from source to
target and vice-versa) in the sense that the deforestation detec-
tion accuracy obtained using the translated domains is higher
than the baseline classification scheme; in which the classifier
is trained using samples from the source domain and tested us-
ing samples from the target domain, without adaptation.
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It was observed, however, that the outcome of the adaptation
process using the original CycleGAN model produces artifacts,
regarded as model hallucinations. Therefore, in an attempt to
mitigate the production of such artifacts, we investigated the
effect of introducing a new term in the loss function used in the
training procedure of the adaptation model. This new term can
be considered an extension of the so-call identity loss.

While the inclusion of the new term resulted in a slight decrease
in classification accuracy, it was successful in alleviating model
hallucinations in the resulting adaptation.

We note, however, that this is a preliminary investigation. In
this work, for instance, we did not carry out an in-depth invest-
igation of the relative impact of each individual term of the loss
function in the final deforestation detection accuracy and in the
generation of artifacts, which we plan to do in the near future.

As future research we also plan to investigate new terms in the
loss function and new components in the CycleGAN model that
enforce the preservation of the change transitions observed in
the original domains, considering their intensities and change
directions.

We also plan to further investigate the adaptation quality using
different, more complex, deep learning-based change detection
classification models.
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