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ABSTRACT: 

 

Bush encroachment in African savannahs has been identified as a land degradation process, mainly due to the detrimental effect it has 

on small pastoralist communities. Mapping and monitoring the extent covered by the woody component in savannahs has therefore 

become the focus of recent remote sensing-based studies. This is mainly due to the large spatial scale that the process of woody 

vegetation encroachment is related with and the fact that appropriate remote sensing data are now available free of charge. However, 

due to the nature of savannahs and the mixture of land cover types that commonly make up the signal of a single pixel, simply mapping 

the presence/absence of woody vegetation is somewhat limiting: it is more important to know whether an area is undergoing an increase 

in woody cover, ever if it is not the dominant cover type. More recent efforts have, therefore, focused in mapping the fraction of woody 

vegetation, which, clearly, is much more challenging. This paper proposes a methodological framework for mapping savannah woody 

vegetation and monitoring its evolution though time, based on very high-resolution data and multi-temporal medium-scale satellite 

imagery. We tested our approach in a South African savannah region, the Northwest Province (>104,000 km2), 0.5m-pixel aerial 

photographs for sampling and validation and Landsat data. 

 

1. INTRODUCTION 

Savannah ecoregions are important ecosystems with high 

biodiversity. They provide a number of ecosystem services, e.g. 

grazing for pastoralist communities, or the supply of fuelwood, 

amongst others. Over the last years, savannahs have been under 

pressure from human activities, exacerbated by climate change, 

with dramatic shifts in savannah vegetation distribution and, 

consequently, alterations of their function. Bush encroachment, 

fuelwood overexploitation, increased carbon emissions, loss of 

biodiversity are processes that are often being flagged as of 

concern for most savannah ecoregions worldwide (Symeonakis 

et al. 2018). Therefore, monitoring their extent and composition 

is of importance and directly links to a number of UN Sustainable 

Development Goals (United Nations, 2015) and the target to 

achieve Land Degradation Neutrality (LDN) by 2030 (von 

Maltitz, et al., 2019). 

 

Earth observation technologies are the only viable approach for 

achieving this due to the spatial coverage they provide, the ever-

increasing access to open-source data archives and the 

computational and technological improvements. However, due to 

their structural properties and composition, traditional ‘hard 

classification’ mapping approaches are not helpful in 

successfully monitoring savannah condition (Higginbottom et al. 

2018). Rather, the ability to assess the contribution of each of the 

main savannah vegetation components and the evolution of those 

through time is needed. Over recent years, a limited number of 

studies have addressed this issue with varying degrees of success 

(Ludwig, et al., 2019). 

 

Here, we address the issue of accurately mapping the fractional 

cover of one of the main constituents of savannah ecoregions, 

woody vegetation, by testing a methodological framework 

                                                                 
*  Corresponding author 

 

incorporating a deep learning approach in a southern African 

savannah context. 

2. MATERIALS & METHODS 

2.1 Study area 

The study area is the Northwest Province (NWP) of South Africa. 

It covers an area of 104,882 km2 (Figure 1). 

 

Figure 1. The study area of the Northwest Province, and its 

location within South Africa 

 

Temperatures range from 17° to 31 °C in the summer and from 

3° to 21 °C in the winter. Annual rainfall is ~360 mm (~14 in), 

with nearly all of it falling during the summer wet months, 

between October and April (Wikipedia, 2016). Around 70% of 

the Province falls within the Savannah Biome (Bushveld 

vegetation). The remainder falls within the Grassland Biome, 
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which contains a variety of grasses typical of arid regions. Ten 

different vegetation types are found, mostly belonging to the 

thornveld, bushveld or savannah grassland categories (Walmsley 

and Walmsley, 2002). The vegetation variation follows the 

respective east-west variation in the climatic characteristics. 

 

2.2 Datasets 

Training and validation data came from the open-access 0.5m-

pixel RGB aerial photography of the South African mapping 

agency, the National Geospatial Institute (NGI). The NGI makes 

the aerial photographs available as an ArGIS basemap dataset 

(ESRI, 2019). For our area of study, the photos were taken 

between 2009 and 2013. 

 

We used all available Level 1 Landsat 5, 7 and 8 from the USGS 

archive from 1986 to 2019 with less than 80% cloud cover. This 

amounted to 16,456 images. The Landsat data were accessed 

through the data catalogue of Google Earth Engine (GEE; 

https://earthengine.google.com; Gorelick et al. 2017).  

 

2.3 Methods 

On the aerial photography data, we manually annotated 12048 

points with classification in three classes, woody vegetation, non-

woody vegetation, and non-vegetation. For 2525 of these points 

we estimated visually the woody cover percentage in 10% 

intervals (i.e. in 11 classes from 0% to 100%) for an area of 90m 

x 90m, corresponding to a 3x3 pixel area on the equivalent 

Landsat data. 

 

We started our analysis from the epoch centred around 2010. We 

first trained a Random Forest Classifier on the 12048 aerial image 

data points, inputting the RGB colour and the Visible Vegetation 

Index (Liaw and Wiener, 2002) and outputting one of the three 

classes with an 88% accuracy. The model was then used to 

generate predictions for every point of a 180x180 pixel aerial 

image area centred around each of the 12048 points. The 

percentage of pixels classified as woody vegetation was used as 

an estimation of fractional woody cover of the equivalent 3x3 

pixel (90m x 90m) Landsat area. The per-pixel predictions also 

constitute a 3-class semantic segmentation mask for the aerial 

image.  

 

We then trained a deep learning image segmentation model (i.e. 

per pixel classifier) based on the U-Net Convolutional Neural 

Network architecture (Ronneberger et al., 2015), using the aerial 

images as input and the predicted masks as labels. The U-Net we 

employed was 3-layer deep with 32x32 resolution at the 

narrowest convolutional layer. It reached 93% accuracy on a 

held-out test dataset of 1200 images. The U-Net model was 

finally used to generate another set of 12048 fractional woody 

cover estimations. 

 

Finally, we trained a woody coverage regression model. The 

input consisted of the Landsat bands and spatio-temporal 

variability metrics derived from the Landsat data in the five years 

between 2009 and 2013 of a 3x3 pixel Landsat area (Symeonakis 

et al., 2018). The Landsat metrics were calculated using Google 

Earth Engine. To find the best model architecture we performed 

a 5-fold cross validation grid search between various 

configurations of Random Forest Regressors, Gradient Boosted 

Regression Trees from the XGBoost (Chen et al., 2016) library 

and Multilayer Neural Networks. 

 

All configurations were trained on 3 datasets: the manually 

annotated 2525 point dataset (A) and the two 12048 point 

datasets estimated by the Random Forest Classifier and U-Net 

models above (datasets B and C). The model was then applied to 

7 other epochs of the Landsat bands and metrics centred around 

1988, 1993, 1998, 2003, 2008, 2013 and 2018. 

 

3. RESULTS & DISCUSSION 

The regression model results for the 3 datasets are depicted in 

Table 1. The best performing models were the ones trained using 

the masks from the U-Net model (dataset C). 

 

 RF - A RF - B RF - C 

MAE 0.2723 0.1847 0.1953 

MSE 0.0955 0.0524 0.0511 

 XG - A XG - B RF - C 

MAE 0.2736 0.1888 0.1953 

MSE 0.1055 0.05916 0.0581 

 NN - A NN - B NN - C 

MAE 0.2840 0.1786 0.1693 

MSE 0.1629 0.0831 0.0873 

Table 1. Mean Average Error and Mean Squared Error for the 

Random Forest (RF), Gradient Boost Tree (XG) and Neural 

Network (NN) regression models tested on the 3 datasets (A, B, 

and C) 

Using the best performing regression model based on lowest 

Mean Squared Error (RF-C) we calculated the woody cover 

percentage for different areas and epochs. Figure 2 is the outcome 

for the entire study area, while Figure 3a is the same for an area 

on the border with Botswana, close to the town of Bray (Figure 

3a). Figure 3b is the area around Bray as seen on the NGI 0.5m 

pixel aerial photos. 

 

Figure 4 depicts the results for four out of the eight epochs of our 

study (1993, 2008, 2013 and 2018), as displaying all epochs 

would restrict the ability to visually assess the outcome. A 

zoomed in area in the west of the Province is also shown where 

the pattern of the increase until 2010 and the decrease in the last 

epoch is more evident.  

 

 

 
Figure 2. Fractional woody cover as estimated for the year 2010 

for the Northwest Province 
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Figure 3. (a) Fractional woody cover as estimated for the year 

2010 for an area near the town of Bray. (b) The area near Bray 

as seen on the NGI aerial photos 

 
Figure 4. Fractional woody vegetation results for 1993, 2008, 

2013 and 2018 (i.e. four out of the eight epochs of our study) 

The multi-temporal results show an increasing trend in woody 

cover densities throughout most of the study area from 1988 to 

2013. A decreasing trend is then observed in the last epoch 

(centred around 2018).  

 

Figure 5 shows the overall trend in fractional woody vegetation 

cover over the 30 years of the period of study (1988-2018) for the 

entire Province (Figure 5a) and for an area on the border with 

Botswana, near the town of Tosca (Figure 5b).  

 

 
Figure 5. Fractional woody vegetation change from 1988 to 

2018, over (a) the study area; (b) over an area on the border 

with Botswana 

Results showing an increasing trend corroborate some of our 

earlier findings in the region (Higginbottom et al. 2018; 

Symeonakis et al. 2014) and are in line with the scientific 

consensus that, due to climate warming and the subsequent effect 

of carbon fertilisation, the increasing trend in woody 

densification and encroachment might be continuous in space and 

time (Eldridge et al., 2011; Ward, 2005). 

 

Areas that exhibit a decreasing trend appear to be in disagreement 

with this notion. However, it must be noted that a number of bush 

encroachment control measures are in place in the Province, with 

varying degrees of success. Such measures range from reactive 

management approaches (including manual, mechanical control, 

and chemical control) to a combination of proactive land 

management practices (such as grazing control, fire and post-

burn management (Dreber, et al., 2019; Harmse, etal., 2016; 

Turpie et al., 2019). 

 

In this preliminary study, we used a limited amount of annotated 

data, occupying only a small fraction of the study area. Future 

work will address this issue by employing the machine learning 

technique of active learning (Settles, 2009): after selecting a set 
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of images in which the U-Net model has the lowest average 

prediction confidence, we will involve a human annotator to fine-

tune the U-Net model on new annotations, repeating the process 

until no significant improvement in accuracy between iterations 

is achieved. 

 

Finally, a planned field visit later in the year will focus on 

validating the latest results with in-situ data. 

4. CONCLUSION 

Long-term monitoring of woody savannah cover is needed to 

enhance the understanding of broad-scale changes in woody 

vegetation and the possible relationship between such changes 

and ecosystem resilience or degradation. The Landsat archive has 

been the workhorse for characterizing land cover using optical 

data given its long-standing archival imagery and high spatial 

resolution. We employed a deep learning approach to 

spatiotemporal metrics calculated with GEE from thousands of 

Landsat multi-temporal imagery to map the evolution of the 

fractional woody vegetation in an area of South Africa. We 

conclude that our approach is beneficial compared to previous 

attempts (e.g. using machine learning techniques) and should 

therefore be preferred for such monitoring endeavours in dryland 

environments. 
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