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ABSTRACT: 

 

Flood extent delineation from RADAR images usually entails manual thresholding per scene, which is not feasible when tackling 

large-scale floods that often covers multiple RADAR scenes. It is also computationally intensive when processed through traditional 

remote sensing techniques that limit its use during emergency situations. To hasten the production of flood maps from RADAR images 

during flooding incidents, a deep learning model using Fully connected Convolutional Neural Network (FCNN) has been developed 

to delineate flooded areas with minimal human intervention. The model was formulated from the data gathered during a flooding event 

captured by both Sentinel-1A SAR satellite and Planet’s Dove optical satellites. Two pre-flood and one post-flood SAR scenes were 

used to detect the occurrence of water by analysing drops in backscatter values. The potential flood extents were verified using optical 

images which were then used to train the AI model. The model is currently being used operationally to map flood extent across the 

Philippines with no human intervention from data download to detection of flooded areas. The technique can detect floods across five 

Sentinel 1 scenes in less than four hours upon download of new satellite data. 

 

 

1. INTRODUCTION 

1.1 Background of the Study 

Flood maps in the Philippines are available in different types and 

accuracies.  Various agencies are mandated to conduct flood-

related mapping with distinct objectives. The Mines and 

Geosciences Bureau of the Department of Environment and 

Natural Resources (DENR-MGB) produces flood susceptibility 

maps for the entire country through their National Geohazard 

Assessment Program (Nieves, n.d). These maps were released in 

1:10,000 scale for critical areas and 1:50,000 for other areas. The 

map classifies areas with more than one-meter flood as highly 

susceptible, and low to moderately susceptible for areas with less 

than one-meter flood during heavy or prolonged rainfalls.  

 

A different approach was conducted by a Department of Science 

and Technology (DOST)-funded research and development 

project called the Nationwide Operational Assessment of 

Hazards (Project NOAH). The project  produces high-resolution 

flood hazard maps from one-meter resolution LiDAR data 

(Lagmay, et al., 2017) through hydrologic modelling.  The 

project produced maps for 5-, 25-, and 100- year rainfall return 

events. The flood hazard maps were initially processed for the 

Philippines’ 18 major river basins, also covering around 200 

principal river basins across the country with LiDAR data.  

 

Another agency under the DOST, the Philippine Atmospheric, 

Geophysical and Astronomical Service Administration 

(PAGASA), produces regular flood forecasting and advisory for 

different river basins and dams in the country (“PAGASA”, n.d) 

through its Flood Forecasting and Warning System (FFWS). The 

system uses a network of rain gauges, water level gauges, 

warning posts, and monitoring stations to produce flood bulletin 

and flood information ("Flood Forecasting and Warning System 

for Dam Operation", n.d.).  

More specialized systems for area-based flood monitoring were 

developed by the Advanced Science and Technology Institute of 

DOST (DOST-ASTI) through the use of sensors with predictive 

capabilities (Garcia et al., 2016). This type of urban flood 

monitoring system can predict flood heights with high accuracies 

and send warnings on nearby areas with available sensors.  The 

same applies for the forecasting system by PAGASA but without 

the flood height estimates. This gap in PAGASA’s system can be 

filled by the flood simulation maps of Project NOAH for different 

river basins if a rainfall event matches with the simulated map. 

On the other hand, the MGB flood susceptibility map covers the 

entire country but are too generalized to use on actual events.  

 

Given all the available flood datasets, there is a gap for data that 

delineates the actual extent of flooding during an event. To 

achieve this, an actual image of the flooded area is needed. 

Remote sensing techniques, specifically RADAR images, have 

been proven effective in solving these gaps. 

 

1.2 Objectives 

This study aims to create an automated flood delineation 

technique with minimal human intervention that is operationally 

viable on a national scale. The method must produce flood maps 

in near-real time (NRT) conditions especially during disaster 

events. The said maps can be printed or used by appropriate 

authorities and government agencies that handle and administer 

emergency response operations. 

 

2. REVIEW OF RELATED LITERATURE 

Floods can be easily identified in RADAR images due to the low 

backscatter values caused by specular reflection of RADAR 

signals on water surface (Westerhoff et al., 2013). This 

characteristic of RADAR signal has been utilized by many 

studies in detecting water bodies. There are different methods 
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used in processing RADAR data to detect water. A review of 

these methods was conducted by Shen et al., (2019) which 

include: supervised and unsupervised; threshold determination, 

segmentation, change detection, visual inspection and manual 

editing vs fully automated processes; and water detection beneath 

vegetation or in urban areas. They all operate on the principle that 

water areas return low backscatter values. Most of them employ 

the thresholding method (Pulvirenti et al., 2010) to isolate water 

bodies in RADAR images. These methodologies are dependent 

on the choice of threshold values since different areas have 

different types of environmental parameters like land cover, 

slope, elevation, aspect and other geomorphological 

characteristics which also differs in every RADAR scene. For 

very large areas, it may also require a different threshold even if 

the water body being delineated is one and the same as 

demonstrated by Tan et al., (2004). Thresholding method entails 

manual work per RADAR scene making it not feasible for NRT 

applications. To overcome this limitation, a different approach is 

hereby proposed for faster production of flood maps using 

Artificial Intelligence (AI) specifically Artificial Neural 

Networks (ANN). 

 

AI has been employed to analyze satellite images for disaster 

applications. Amit et al., (2016) developed a Convolutional 

Neural Network (CNN)-based detection model of natural 

disasters in satellite imagery. The model consists of three 

convolutional and maxpooling layers followed by two fully 

connected layers. The model was evaluated on two different 

types of natural disasters, namely landslides and floods.  

 

Automatic detection of disaster-affected areas in satellite 

imageries can also be done using deep learning models along 

with wavelet transformation (Liu and Wu, 2016). Another 

interesting approach uses Generative Adversarial Network 

(GAN), originally proposed for retinal vessel segmentation, to 

detect floods (Ahmad et al., 2017). Moumtzidou et al., (2018) 

used a ResNet-50, pre-trained on ImageNet and fine-tuned on 

224x224 satellite image patches to automatically identify 

passable roads in flood-affected areas. 

 

Image classification using neural networks, once trained, can 

benefit from an end-to-end classification methodology and a 

semantic segmentation technique that incorporates spectra, 

feature, and form in its partitioning. The CNN is the ideal 

architecture for this application; it is designed to take advantage 

of the 3D structure of the input image. The architecture of CNN 

is limited to three dimensions: width, height, and depth. This 

constraint allows for a more efficient forward function and 

reduced number of parameters of the neural network (Karpathy, 

2018).  

 

But the default architecture of CNN is insufficient in realizing 

full semantic segmentation (Längkvist et al., 2016). To be able to 

delineate features in an end-to-end manner, the Fully 

Convolutional Network (FCN) can be utilized. FCNs, proposed 

by Long et al., (2015), were one of the first architectures to 

perform pixel-level segmentation by replacing the fully 

connected layer of the neural network with a convolutional neural 

layer. This modification transforms the CNN into a feature 

extractor outputting spatial maps instead of classification scores. 

However, FCNs produce coarse segmentation maps because of 

the inherent loss of information during pooling operations (Yue 

et al., 2016). Thus, there is a need to further modify the FCN to 

produce pixel-level high-resolution segmentation results.   

 

Our proposed solution is based on a modified FCN architecture 

called U-Net (Ronneberger et al., 2015). It was previously used 

for biomedical image segmentation. Its architecture has both 

contracting and expansive paths and its feature maps from the 

contracting path are cropped and copied for the corresponding 

upsamplings in the expansive path. This allows combining low-

level feature maps with higher-level ones, enabling precise 

localization. (Li et al., 2018) implemented a type of U-Net called 

DeepUNet to perform pixel-level sea-land segmentation. Results 

show significant improvement of sea-based complex structure 

segmentation over other neural networks like SegNet. Iglovikov, 

et al. (2017) utilized the U-Net structure to perform object 

detection and feature segmentation of WorldView-3 satellite 

images by training separate models per feature.  

 

3. METHODOLOGY 

The proposed method in this study is to train an AI model to 

detect floods from manually processed multi-temporal SAR 

imagery. It operates in the concept that consistent backscatter 

values must be observed in areas with no physical changes. A 

significant decrease in backscatter can be attributed to presence 

of flood. 

 

Study Area: Typhoon Urduja (international name: Kai-Tak) 

struck the Philippines on December 12-19, 2017 (see Figure 1) 

and left widespread flooding across 484 barangays and resulted 

to more than 47 people died (“NDRRMC Update: SitRep No. 

28”, 2018).  

 

 

Figure 1. Track of Kai-Tak 

 

 

Figure 2. Location of ASTI’s water level Sensor in Biliran. 

 

One of the most affected areas is Biliran Island located in Eastern 

Visayas which reported 26 people dead and isolated the island 

due to damage to at least five bridge (Viray, 2017), one of which 
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was captured by DOST-ASTI’s water level sensor (see Figure 2 

and 3).  

 

 

Figure 3. Water level sensor readings. 

 

Dataset Used: European Space Agency (ESA)’s Sentinel-1A 

satellite took capture of the study area at 6:00 AM local time on 

December 16, 2017. The pass took place immediately after the 

typhoon onslaught capturing the extent of flooding. Two (2) pre-

typhoon RADAR images captured during dry conditions 

(November 10 and 22, 2017) were also downloaded to serve as 

base images to detect the presence of flood. The datasets were 

retrieved from the Copernicus Open Access Hub of ESA with 

details shown in Table 1.  

 

Product Type SLC 

Acquisition Mode IW 

Antenna Pointing Right 

Relative Orbit 32 

Pass Descending 

Sub-swath 3 

Incidence Angle 41.82 - 46.08 degrees 

Capture Dates 
April 13, April 25, 

December 16, 2017 

Table 1. Properties of the SAR images used in the study. 

 

PlanetScope scenes taken on November 22, and December 29, 

2017 were also gathered from DOST-ASTI’s Philippine Earth 

Data Resource and Observation Center (PEDRO) (see Figure 8). 

The images were used to verify the flooded areas detected from 

the SAR images. 

 

The proposed methodology consists of four major steps; data 

processing, training data generation, AI training, and flood 

prediction. 

 

 

Figure 4. General Workflow. 

 

3.1 Data Processing 

Data processing include pre-processing the RADAR datasets to 

bring them into the correct position on the ground and correct 

different geometric errors. Another part is preparation of the 

optical images to be used in verifying the flooded areas before 

converting the detected floods into labelled data to train the AI 

model. 

 

3.1.1 RADAR Data Pre-Processing: RADAR data pre-

processing generates a terrain-flattened Gamma Nought image 

for all three images. Precise orbit files were applied into the two 

pre-typhoon images while the most recent orbit file was applied 

to the post-typhoon image. Radiometric terrain flattening 

algorithm was applied to the datasets to account for geometrical 

characteristics of the ground and eliminate errors due to slope, 

aspect, and their orientation to the sensor. The three images are 

then co-registered and stacked in order of acquisition. Terrain 

correction was also performed to bring the data to a common 

coordinate reference system from RADAR coordinate system. 

All the processing was done using ESA’s Sentinel 1 Toolbox. 

 

 

Figure 5. Pre-processing workflow. 

 

The stacked image is visualized in a GIS software using R-G-B 

color combination where the post-typhoon image is assigned in 

Red Band, and the two pre-typhoon images assigned in the Green 

and Blue input bands. 

 

The resulting RBG color composite shows areas with decreased 

backscatter values in cyan color due to the lower values in the 

Red band and higher values in Green and Blue. Areas without 

change will show random grey intensities as shown in Figure 7. 

 

 

Figure 6. Pre-processed images. Dec 6 (a), Nov 1 (b), Nov 2 (c). 

 

 

Figure 7. Stacked images. 

 

3.1.2 Planet Imagery Processing: The differentiation of 

flooded and non-flooded areas was verified using Normalized 

Difference Water Index (NDWI) values calculated from Planet 

images captured before and after the flooding event. 

 

Data 
Processing

Training 
Data 

Generation

AI 
Training

Flood 
Prediction
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Figure 8. Planet images taken November 22, 2017 (true color-

upper left, NDWI-lower left) and December 29, 2017 (true 

color-upper right, NDWI-lower right). 

 

 

Figure 9. Stacked NDWI for Biliran Island (left) and the 

heavily-flooded area (right) 

 

3.2 Training Data Preparation 

The goal of this process is to mark all the flooded areas from the 

RADAR images which will be converted into a flood mask as 

input in training the model together with the original stacked 

image. 

 

3.2.1 Object-Based Image Segmentation and 

Classification: To properly isolate the flooded areas from the 

stacked image, an Object-Based Image Segmentation approach 

was used. Image segmentation works faster than manually 

digitizing the extent of flooded areas. Segmentation also avoids 

human-induced errors that arises from manual digitization of 

flood extents. Image segmentation breaks the image into objects 

(segments) with similar statistical characteristics. The Mean-shift 

segmentation was used as implemented in Orfeo Toolbox (OTB); 

an open-source software for image analysis which implements 

many tools from OpenCV (an open-source computer vision 

software). The Mean-shift algorithm finds the centroid of a group 

of pixels with similar statistical values. The grouping will depend 

on the spatial and spectral (radiometric) radius defined by the 

user. The algorithm iterates until it can no longer shift the 

centroid or until a convergence value specified by the user is 

reached. The algorithm produces a vector file which contains 

statistical values of each object in each band; the mean 

backscatter values and the variances. The segments that fell 

within slopes of greater than 20% were removed. The slope 

threshold was chosen as it is above the regulatory limit of 

habitable areas. A total of 12,398 objects were created with a 

minimum size of fifty (50) m2 using the parameters in Table 2. 

 

Spatial Radius 3 

Range Radius 9 

Minimum Segment Size 50 

Table 2. Segmentation Parameters. 

 

 

Figure 10. Objects created from Mean-shift segmentation. 

 

3.2.2 Boost Classification: The segments must be classified 

into flooded and non-flooded data. To aid in the classification, an 

algorithm called boost classification was used. Boost 

classification (Boosting) is a classification method that combines 

outputs of many "weak" classifiers to produce a powerful 

"committee". The predictions from the weak classifiers are 

combined through a weighted majority vote to produce the final 

prediction. The purpose of boosting is to sequentially apply the 

weak classification algorithm to repeatedly modified versions of 

the data, thereby producing a sequence of weak classifiers (Hastie 

et al., 2009). 

 

Sample flooded and non-flooded segments were selected as 

training datasets for the boost classifier; 276 flooded, and 692 
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non-flooded objects (see Figure 11). The differentiation of 

flooded and non-flooded objects was verified using Planet 

imageries. Different combinations were tested to highlight the 

flooded areas including stacking pre- and post-typhoon NDWI 

values. The objects classified into Class 1 and 2 for flooded areas 

and non-flooded areas, respectively.  

 

A vector classifier was trained using Real Adaboost algorithm 

implemented in OTB (see Table 3 for parameters). Real 

Adaboost is a version of boost classification that “utilizes 

confidence-rated prediction and works well with categorical 

data” (“Boosting — OpenCV 2.4.13.7 documentation”, n.d.). 

 

Weak Count 100 

Trim Rate 0.95 

Maximum Depth of tree 1 

Table 3. Boost Vector Classifier Training parameters 

 

 

Figure 11. Training segments for Boost Classifier. 

 

 

Figure 12. Classified flood segments overlaid with SAR data. 

 

 

Figure 13. Classified flood segments overlaid with stacked 

Planet NDWI. 

 

The classified vector file was converted into a classified raster 

with values of 0 and 1 corresponding to non-flooded and flooded, 

respectively. 

 

3.3 AI Training and Prediction 

The machine learning framework used for the U-Net Architecture 

in this study is Keras. The user-friendly nature of Keras allows 

us to perform rapid prototyping by building and testing the neural 

network with minimal lines of code. The modular nature of Keras 

also makes it easy to build and modify the U-Net architecture and 

its hyperparameters.  

 

 

Figure 14. The U-Net Architecture. 

        

Batch normalization was used for convergence acceleration 

during training. The primary activation function used is the 

exponential linear unit (ELU). ELU helps to learn representations 

that are more robust to noise (Iglovikov et al., 2017). The number 

of feature channels is doubled at each corresponding 

downsampling and upsampling step. The contractive path of the 

U-Net follows a typical convolutional neural network. The 

expansive path, on the other hand, consists of an upsampling 

operation of the feature maps followed by convolution with half 

the number of feature channels, concatenation with the 

corresponding feature map from the contracting path, followed 

by batch normalization and ELU. 
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The default input for the neural network is the concatenation of 

the stacked RADAR images converting them into a single tensor.  

The loss function used for this classification task is binary cross 

entropy. Nadam Optimizer (Adam with Nesterov momentum) 

(Dozat, 2016) was incorporated and the network was trained for 

50 epochs with a learning rate of 1𝑒−3. 

 

Each epoch was trained on 400 batches with each batch 

containing 128 image patches. Additionally, each batch was 

created by randomly cropping 112x112 patches from the stacked 

RADAR image. Each patch was also modified for data 

augmentation by applying a random transformation from the 

Dih4 group (Dummit, 2013) in group theory. 

 

 

Figure 15. Model Training workflow. 

 

3.4 Flood Prediction 

The AI Flood Model accepts an input of 3 stacked SAR images 

(2 Before Event Images, 1 After Event Image). It outputs a raster 

mask with two binary values: 1 for Flooded Areas and 0 for Non-

Flooded Areas. The raster mask is then vectorized using a GIS 

software to produce shapefiles of potential flooded areas.  

 

4. RESULTS AND DISCUSSION 

To quantify the actual ground detection accuracy, the AI-

predicted flood maps was compared to the flood waters captured 

by Sentinel-2 optical satellite (see Figure 16) during a flooding 

event brought by Typhoon Mangkhut (local name: Ompong) that 

battered the Philippines with 145 to 165 km/hr of winds last 

September 2018. 

First, flooded areas were predicted by the trained model (see 

Figure 18) and compared to the 10-meter-resolution image 

captured by Sentinel-2. A cloud-masking algorithm was applied 

to remove the cloudy portions of the image. A section with 

minimal cloud cover was selected as the validation site with an 

approximate area of 625 km2 which comprises parts of the City 

of San Carlos, Municipalities of Lingayen, Binamaley, 

Bugallion, Aguilar, Urbiztondo, Malasiqui and Bayambang in 

Luzon Island, Philippines. The data was converted into Top of 

the Atmosphere Reflectance (ToAR) where Modified 

Normalized Difference Water Index (MNDWI) was computed 

using the value of 0.2887 and above as water threshold (Du et. al 

2016). 

Two hundred (200) random points were generated in the 

validation area and classified into flood and non-flood points (see 

figure 17 and 18). A confusion matrix was generated to calculate 

the producer’s, user’s and overall accuracies. The method 

achieved a producer’s accuracy of 89.11%, a user’s accuracy of 

90%, and overall accuracy of 89.50% with 0.79 Kappa 

coefficient (see Table 4). 

 

 Flood Not Flood User Accuracy 

Flood  90 10 90 

Not Flood 11 89 89 

Producer 

Accuracy 

89.11 89.90 89.50 

Table 4. Confusion Matrix (n=200). 

 

 

Figure 16. Sentinel 2 image with cloud mask taken September 

18, 2018. 

 

 

Figure 17. Sentinel 2 MNDWI-based water bodies with 

validation points. 
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Figure 18. Flood prediction (in green). 

 

The whole flood map production from SAR image download to 

flood prediction has been automated using Python scripts that 

runs in DOST-ASTI’s High Performance Computing (HPC) 

facility. The method was operationalize in 2018 and 2019 and 

distributed into various agencies and Local Government Units 

(LGU) across the country. Feedback from people on those areas 

attested the accuracy of the mapped floods.  Figure 19 shows one 

of the detected large-scale floods during a monsoon event in the 

Philippines. It covers two swaths of Sentinel-1 images. The data 

was released in printable map layouts (1 layout per tile) for use 

in response and recovery operations. 

 

 

Figure 19. Flood prediction (in red) during a monsoon event. 

 

5. CONCLUSION 

The flood monitoring workflow using multi-temporal Radar 

images is a new technique developed which exploits the basic 

concept of color-mixing using the RGB channels to analyse drops 

in backscatter values due to water saturation. It operates on the 

concept that when flooding occurs, the backscatter of an area 

drastically decreases compared to the previous values when 

flooding is not observed. Image segmentation and Boost 

classification techniques were used to create the labelled training 

data to train the AI model. The trained model was able to 

delineate flood extents from different flooding events caused by 

weather disturbances in the Philippines. With accuracy of 90%, 

it provides a very handy tool for disaster management activities.  
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