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ABSTRACT: 

 

This study presents a semi-automatic algorithm for mapping floods. Both Optical and Synthetic Aperture Radar (SAR) data are used 

to observe the flood that hit the Cukurova region of Adana (Turkey) in 2019. The performance of the interferometric coherence in 

complementing intensity component of SAR data is investigated for mapping the floods occurred in agricultural and urban 

environments. There was no ground truth data available from the flooded area, thus classification result of optical satellite image is 

used as a seed for the region growing algorithm that defines the classes according to a threshold value. The advantage of using both 

intensity and coherence change detection is verified with the results. The results have been evaluated through very high-resolution 

SPOT-6 optical image which acquired simultaneously with Sentinel-1B SAR image. The comparison with the SPOT-6 data results 

shows that the proposed approach can map flooded areas with acceptable accuracy using the SAR data from Sentinel-1 satellite 

mission. Highly affected agricultural areas along with the river line could be mapped both by optical and SAR analysis. Comparison 

of results from VV and VH polarization provided that cross-polarization VH has a very little effect on flood mapping. The proposed 

algorithm successfully distinguishes the classes among the affected region, especially in urban areas.  

 

 

1. INTRODUCTION 

1.1 General Instructions 

Synthetic Aperture Radar (SAR) and optical satellite data have 

proven to provide essential information in case of natural 

disasters like flooding. Recently floods are occurring more often 

due to changes in climate and land-use characteristics. Such 

disasters can have a strong impact on crops, housings and even 

public health. Flood monitoring and mapping can help 

organizations and authorities in disaster management. 

Moreover, highly accurate flood mapping provides key 

information in strategic planning for the authorities for damage 

estimation and sustainable urban planning to properly manage 

flood risk. Satellite images enable fast, reliable and cost-

effective monitoring of large coverages, thus provide geospatial 

information to support disaster monitoring and management in 

an effectively (Amadio, 2016). Identification of flooded areas 

become much effective and profitable by use of multispectral 

satellite data, Synthetic Aperture Radar (SAR) data or a 

combination of them (Notti et al., 2018), (Rahman and Li, 

2017), (J Li et al., 2018,) and (Muro et al., 2016). Many studies 

have proven that SAR systems are very effective and reliable 

tools for flood mapping especially on vegetated areas and the 

bare soil as well, by benefiting from their sensitivity to surface 

roughness and soil moisture changes (Schlaffer et al., 2015) and 

(Li et al., 2018).  

 

Instead of using a single image, change detection-based 

methods have an advantage in masking out false alarms like 

permanent water areas and look-alikes. Especially on bare soils, 

one SAR observation can be enough for flood mapping. 

However, in urban and agricultural areas, at least one pre-flood 

image and one after-flood image would provide more reliable 

results in a sense of change detection approach. Change 

detection based on multi-temporal SAR images is widely used 

for disaster monitoring. SAR-based change detection methods 

require repeated acquisitions that provide a static background 

against the surface change that can be distinguished by using 

the change indicator. Two types of change detection approaches 

can be performed by use of SAR data. First is the incoherent 

(amplitude) change detection (ACD), which compares the 

backscatter between two scenes and find out the changes over 

the region. The capability to detect the changes is very limited 

with this method. Second is the coherent change detection 

(CCD), which computes the phase coherence between the two 

scenes. Since the phase is very sensitive to minor changes, any 

decorrelation in the phase will result in coherence change. 

Among the InSAR techniques, coherence is one of the 

important components that is used to discriminate flooded and 

non-flooded areas (Olen and Bookhagen, 2018). Changes of the 

Earth’s surface will cause a loss of coherence between two 

images that are collected before and after the hazard.  

 

In sense of feature selection to define and model the change 

between two scenes; there are several methods used in literature 

both for pixel-based or texture-based models (Ouled Sghaier et 

al., 2018) and (J Li et al., 2018). Commonly used change 

indicators for pixel-based models are the ratio, log-ratio (Y Li, 

2018) or difference operator, which suppresses the background 

information to extract the changed region. The histogram-based 

thresholding and the distance-based clustering are also 

frequently used methods to extract the change information. The 

region growing is proposed to improve the pixel-based 

solutions. The drawback of the pixel-based method is the 

performance fails due to the speckle noise. On the other hand, 

texture-based descriptors are difficult to implement due to their 

complexity. Commonly used texture-based descriptors (Ajadi et 

al., 2016) are mathematical morphology operators, second-order 
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texture parameters, statistical and signal processing models; like 

co-occurrence matrix, wavelets, independent component 

analysis and Gabor feature. Conditional Random Field (CRF) 

(Y Li, 2018) is another contextual based model that is applied 

for both SAR image classification and detection. A statistical 

model like Expectation-Maximization (EM) is also applied with 

Markov Random Field to detect the changes in SAR images. 

Fuzzy logic classifier is also used in unsupervised change 

detection of SAR images (Twele et al., 2016). 

 

Coherence studies monitoring the surface damage have typically 

use the longer-wavelength (L-band) SAR satellites such as 

ALOS. The shorter wavelength X-band systems such as 

TerraSAR-X or COSMO-SkyMed are sensitive for urban and 

vegetation-free areas (Chaabani et al, 2018). On the other hand, 

C-band radar systems (Sentinel-1) (Borah et al., 2018) and 

(Monti-Guarnieri et al., 2018) have a higher sensitivity to 

surface changes and vegetation cover, which can produce a 

noise signal and cause potential challenges for observation. 

Despite these disadvantages, Sentinel-1 data are freely available 

and have a higher repeat time (6-12 days) [3]. In addition to 

sensor parameters, the measurement of backscattering parameter 

depends on imaging geometry, surface roughness, and the 

polarization (Kornelsen and Coulibaly, 2013). Although 

horizontal transmit-horizontal receive (HH) polarization is 

generally preferable for flood mapping (Henry et al., 2003), 

vertical transmit-vertical receive VV polarized data (Matgen et 

al., 2011) and (Schumann et al., 2009) and multi-polarized SAR 

data (Sree et al., 2006) and (Clement et al., 2017) have been 

used successfully for flood mapping in previous studies.  

 

Several parameters affect the performance of change detection 

algorithms due to the nature of SAR data: 

 

• Complicated nature of surface backscattering response 

• Multiplicative speckle noise 

• Hard to develop an automatic or adaptive technique to 

define the change detection threshold 

• Lack of location accuracy to extract the boundary of 

changed regions   

 

The interferometric coherence (γ) was demonstrated recently by 

several researches to detect floodwater (Chini et al., 2012), 

(Chini et al., 2019), (Refice et al., 2014) and (Pulvirenti et al., 

2016). When using the CCD approach to monitor the flooding, 

one important requirement for ensuring the changes in the 

observed region is caused by nothing but the flooding itself.  

 

In this study, Sentinel-1B InSAR pairs were used to calculate 

the interferometric coherence and intensity to detect the water 

body for a selected threshold. To produce a homogeneous flood 

mapping for the affected region, a standard region-growing 

algorithm (RGA) is used. The RGA searches for pixels within 

the whole SAR image that are connected neighbours to the 

pixels belonging to a seed region and that fall within a tolerance 

criterion (Haralick 1985). In addition, SPOT-6 optical data was 

used for water body detection, later used for seeding and the 

accuracy analysis of the proposed method. 

 

2. STUDY AREA AND DATASET 

2.1 Study Area 

We are interested in the region of Adana, Mediterranean city 

from the Southern part of Turkey. It is part of a historical region 

called Çukurova Plain. With its vast, fertile lands and important 

rivers such as Seyhan, Ceyhan and Göksu, the Çukurova Plain 

is one of the most productive areas of the world in terms of 

agriculture. Almost every agricultural product of Turkey such as 

cotton, soy, peanuts, corn, wheat, maize and various fruits and 

vegetables could be produced in Çukurova. The area suffered 

from temporally flooding during January 2019 due to high 

amount of precipitation (Figure 1).  The SAR data used in this 

study concern the overflowing of the Seyhan River, due to the 

widespread and persistent rainfall, which occurred January 15-

16, 2019. 

 

 
 

Figure 1. Adana monthly precipitation in January 2019 

 

2.2 Dataset 

The proposed methods were tested and evaluated on Sentinel-1 

C-band dual-polarization Interferometric Wide (IW) swath 

mode Single Look Complex (SLC) datasets over the Seyhan 

River, Turkey. Radiometric calibration, speckle filtering, 

binarization, co-registration, Range-doppler terrain correction 

were performed within the Sentinel Application Platform 

(SNAP).  During the pre-processing step, the Boxcar filter with 

a 5x5-window size was used to remove the speckle noise.  

 

The 20 January 2019 dated SPOT 6 image of the study region 

was acquired as pansharpened product.  This product includes 

blue, green, red and NIR spectral bands at 1.5 m spatial 

resolution. The first step of the pre-processing is the 

atmospheric correction of the satellite image in order to obtain 

the ground reflectance values from the quantized digital 

numbers. This process was performed using the ATCOR 

module of PCI Geomatica software. In the second step of the 

pre-processing, the image was orthorectified using the rational 

function (RF) model constructed from RPC coefficients and 

ALOS – W3D DEM data.   

  

Properties of the data that were used in this study shown in 

Table 1. 

 

Satellite Product Date  Polarization Data ID 

S-1B SLC-IW 26.12.2018 VV+VH S1 pre 

S-1B SLC-IW 07.01.2019 VV+VH S2 pre 

S-1B SLC-IW 19.01.2019 VV+VH S3 post 

S-1B SLC-IW 31.01.2019 VV+VH S4 post 

SPOT 6 PSP  20.01.2019   

Table 1. Properties of SAR and optical Dataset 

 

3. METHOD 

The method based on extracting the coherence map from the 

consecutive interferometric pair of Sentinel-1B images. Figure 2 

shows the overall process and summarizes the algorithm steps.  

 

The backscattering coefficient and interferometry coherence 

estimation among the Sentinel pairs are calculated in SNAP. 

The centroid of each segmentation is calculated from shapefiles 

containing water body detection results. Then these centroid 

locations are used as seed for the Region Growing Algorithm 

that identifies the classes.  
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Figure 2. Block diagram of the floodwater-mapping algorithm 

 

3.1 Change Detection Using the Interferometric Coherence 

and Intensity 

Interferometric coherence measures the degree of correlation 

between two complex images. Interferometric pairs can be 

chosen before the flood occurrence (Pre-event - S1 & S2), after 

the flood occurrence (Post-event - S2 & S3) or one image 

before the flood and the other is after the flood (Co-event - S2 

& S3). Post-event coherence can help in distinguishing 

vegetated areas from bare surfaces in agricultural areas. The 

algorithm is based on the detection of pixels belonging to the 

following backscatter (σ˚) / coherence (γ) classes for agricultural 

and urban areas. These classes were identified and introduced 

by Pulvirenti et al (2016). 

 

C1: γ (co-event) < Threshold  

C2: γ (co-event) - γ(pre-event) < Threshold 

C3a: γ(post-event) - γ(pre-event) > Threshold     &&  

C3b: γ(post-event) – γ(co-event) > Threshold 

C4: σ˚ (SAR-3) - σ˚ (SAR-2) < Threshold 

C5: σ˚ (SAR-3) - σ˚ (SAR-2) > Threshold 

C6: γ(pre-event) < Threshold 

 

C1 corresponds to the interferometric coherence between the 

two SAR images one of which is just before the flood and the 

other is just after the flood (Co-event). If there is a correlation 

between these two images, the coherence value will be close to 

1; if the value close to zero this means there is no coherence 

between those two passes mostly due to the flood. Therefore, 

we aim to detect the region where the coherence value is below 

the threshold.  (Agricultural areas and bare soils) 

 

C2 corresponds to the interferometric coherence difference 

between Co-event pairs and the Pre-event pairs. The decrease in 

coherence can indicate a change in the scenario caused by the 

flood. (Urban areas) 

 

C3 corresponds to the interferometric coherence difference 

between Post-event and Pre-event, and between Post-event and 

Co-event at the same time. Double bouncing enhancements 

from the flooded vegetation areas will cause high coherence at 

the Post-event pair, which can help to detect flooded 

agricultural areas with persistent standing water. (Agricultural 

areas) 

 

C4 corresponds to the difference in backscattering values 

between after the flood image and before the flood image. The 

low value of the backscattering can help to detect the presence 

of floodwater in agricultural areas. (Agricultural areas and bare 

soils) 

C5 corresponds to the difference in backscattering values 

between after the flood image and before the flood image. The 

presence of floodwater can cause double-bounce backscatter, 

which will increase the radar cross-section in an ideal situation 

of an isolated building surrounded by a homogenous ground 

surface. (Urban Areas)  

 

C6 corresponds to the interferometric coherence between the 

two SAR images before the flooding (Pre-event). Coherence in 

the vegetated areas expected to be low when the area is not 

affected by the flood. The presence of the floodwater at the 

vegetated areas can cause the double bounce effect, which will 

increase the radar-cross section. (Vegetated areas) 

  

Class Definition Pol. Thresh. Tolerance Oper. 

C1 γ (S2 & S3) VV 0.15 0.25 < 

C1 γ (S2 & S3) VH 0.15 0.22 < 

C2 γ (Co-Pre) VV -0.6 -0.4 < 

C2 γ (Co-Pre) VH -0.6 -0.4 < 

C3a γ (Post-Pre) VV 0.65 0.5 > 

C3a γ (Post-Pre) VH 0.65 0.5 > 

C3b γ (Post-Co) VV 0.65 0.5 > 

C3b γ (Post-Co) VH 0.65 0.5 > 

C4 σ (S3-S2) VV -8dB -4dB < 

C4 σ (S3-S2) VH -8dB -4dB < 

C5 σ (S3-S2) VV 8.5dB 6.5dB > 

C5 σ (S3-S2) VH 8.5dB 6.5dB > 

C6 γ (S1 & S2) VV 0.15 0.23 < 

C6 γ (S1 & S2) VH 0.15 0.23 < 

Table 2. Class Thresholds and Tolerances for each polarization 

 

The identification of classes Ci (i=1:6) has been carried out by 

applying a region growing algorithm (RGA).  

 

Floodwater mapping results from SPOT-6 images are used to 

define the thresholds for each class and this information was 

used to determine the seed region for classes on the SAR data. 

Then RGA looks for pixels that are connected as neighbours to 

the seed regions according to a tolerance criterion.  

 

• For agricultural zones: the area labelled as flooded if 

the pixels belonging to 

 F1: [C1 & C4] || [C1 & C5 & C6] || C3 

• The area labelled flooded bare soils or plants 

completely submerged by water if the pixels 

belonging to 

 F2: C1 & C4 

• The area labelled flooded vegetated areas if the pixels 

belonging to 

 F3: C1 & C5 & C6   

• For urban settlements the classification scheme labels 

as flooded if the pixels belonging to 

 F4: C2 || C5 

• Total area effected from flooding can be expressed as 

F (Total):  F1 || F2 || F3 || F4 

 

 C1 & C4 C1 & C5 & C6 C3a & C3b C2 || C5 

F1  x x x - 

F2 x - - - 

F3  - x - - 

F4 - - - x 

Table 3. Class Distribution over the land cover map 
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4. MODEL IMPLEMENTATION AND PERFORMANCE 

ANALYSIS 

4.1 Classification of the flooded areas 

The Figure 3 presents the effected urban areas from the flood. 

The model successfully distinguishes the land cover type of the 

flooded region inside the urban area and assigns the class only 

as urban. However, in few regions, some of the flooded areas 

can be assigned to two or more classes, likewise in the bare soil 

case. If the region completely submerged by water, it would be 

difficult to distinguish bare lands from the agricultural area, 

which is affected by the flood. Figure 4 shows the affected 

agricultural regions, while Figure 5 shows the same area as bare 

soil/plant completely submerged by water     

 

 
 

Figure 3. The urban area effected from the Flood 

 

 
Table 4. Flooded Area Class Legend 

 

 
 

Figure 4. Agriculture zone affected by the flood 

 

 
 

Figure 5. Bare soil zone affected by the flood 

 

4.2 Cross Polarization on flood mapping 

Figure 6 shows that, using both the cross-polarization and the 

VV polarization at the same time did not improve the flood 

mapping result. Moreover, VH polarization results were not 

successful in determining the flooded area. On the contrary, 

using the HH polarization would bring extra information about 

the flooded area, which would improve the algorithm 

performance. For the time interval, HH polarization was not 

available for the study area, so we did not have a chance to test 

the impact of HH polarization data on the proposed algorithm. 

 

 
 

Figure 6. Cross Polarization effect over flooded area 

 

 Legend Polarization Area Type 

F(Total)  VV All 

F(Total)  VH All 

F(Total)  Both All 

Table 5. Flooded area Polarization Legend 

 

4.3 Flood Mapping via SPOT 6 Satellite Image 

In flood mapping and damage assessment with use of optical 

satellite images, most researches focused on the classification of 

image bands or threshold-based analysis of spectral indices 

derivate of the image bands. The well-known spectral index for 

delineating open waters and flooded lands is introduced by Gao 

(1996), named normalized difference water index (NDWI). This 

index is based on the normalized difference of NIR and SWIR 

bands, thus applicable to images from Landsat and Sentinel 2 

missions. Modified versions of this index were applied 

successfully in recent researches, where modification is applied 

as replacing the NIR band with green, red or red edge bands 

(Xu, 2006, Zhang 2016, Notti et al 2018). 

 

McFeeters (1996) proposed different version of NDWI, which 

uses green and NIR image bands. This combination is 

applicable on high and very high spatial resolution satellite 

images such as SPOT, Pleiades and Worldview 4 operational 

missions, which do not include SWIR spectral bands (Eq. 1). 

 

NDWIMcFeeters = (Green – NIR) / (Green + NIR)     (1) 

 

The application of this index provides a value range between -1 

and 1, where positive values correspond to high moisture lands 

and open waters, while negative values corresponds to 

vegetation and dry lands. Xu (2006) reported that, although 

NDWIMcFeeters efficiently determine open water bodies and 

heavily flooded lands, it could not completely suppress the 

lower magnitude positive responses from built-up regions, 

which results with false positive detection of some built –up 

regions as water bodies. McFeeters (2013), proposed a 
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binarization procedure with single threshold value of 0.3 to 

maximize the difference between water and non-water regions 

to overcome the problem. However, this approach has the risk 

of omitting comparatively low-level flooded areas and water 

bodies with high sediment concentration, which may represent 

lower magnitude index values (0.10 – 0.30). 

To overcome the problem of false detection of built-up regions, 

a modification to NDWIMcFeeters is proposed by subtraction of 

the normalized difference vegetation index (NDVI) that is 

presented in Eq. 2. 

 

MNDWIMcFeeters = NDWIMcFeeters – NDVI  (2) 

 

The NDVI produces opposite responses for the land cover 

classes and flooded areas compared to MNDWIMcFeeters, thus 

subtraction-based modification exaggerates the index intervals 

for surface types. 

 

After index production, the data was classified using modified 

natural breaks algorithm. The natural breaks algorithm aims to 

cluster the data by grouping similar values while maximizing 

the class differences by determining the most optimal and 

natural class ranges (Jenks, 1967; Slocum, 2009). This 

phenomenon is satisfied by minimizing the within-class 

deviation while maximizing the deviation between class means 

(McMaster 1997).    

 

In this research, initially three intervals were detected by use of 

natural breaks algorithm to differentiate the vegetation, bare 

lands, and urban areas and water bodies and flooded areas. In 

the second step, the initial three intervals are divided into sub-

intervals with equal ranges, for grading purposes. A final 

classification legend with 16 intervals for representation is 

given in Figure 7.  

 

  
 

Figure 7.   The classification legend for flood mapping with 

MNDWIMcFeeters data. 

 

The resulting map of the study region with the false color image 

is given in Figure 8. The visual inspection on the map along 

with the original image pointed out an effective detection of the 

flooded areas on the land surface, well discrimination of 

vegetated areas and bare lands, and built up areas. 

 

 

 
 

Figure 8. Overview of the study area, (a) SPOT 6 Red/NIR/Blue 

composite, (b) classified MNDWIMcFeeters data. 

 

Although the produced map provides good separation between 

above-mentioned classes, there is a need for determining the 

flooded land surfaces and isolate them from the open water 

bodies. For that purpose, the last three classes belonging to 

flooded areas and water bodies were extracted as a vector file, 

and an area-based removal analysis was performed to remove 

the large-sized water bodies. The extracted vector map and the 

result of area-based removal analysis are given in Figure 9. 

 

 
 

Figure 9. Target masking results, (a) water bodies and flooded 

areas, (b) flooded areas and rivers after open water removal. 

 

4.4 Accuracy Analysis: SPOT-6 vs Proposed Model 

According to the results obtained from SPOT-6 data, the 

number of pixels affected by the flood is 114262 and the total 

area affected by the flood is 108.913 km2. On the other hand, 

according the results obtained with the proposed method, 

number of pixels affected by the flood is 112633 while the total 

area affected by the flood is 107.278 km2. Overlapped pixels 

that are identified as a flooded area in both SPOT-6 and SAR 

results are 16849 while the overlapped area size is 16.051 km2.  

 

However, to keep in mind the water bodies like rivers, lakes are 

excluded from the classification result in the proposed SAR 

method while it is seen from Figure 10 that the river is already 

included in the optical result (Blue Class). In addition, the 

SPOT-6 and the Sentinel coverage area do not perfectly match 

with each other. As can be seen on the left side of Figure 11 

SPOT-6 data coverage ends on the white and green classes’ 

border. Since the Sentinel 1B, coverage is bigger than the 

SPOT-6 in this study; it is expected to have larger affected 

flooded areas from the SAR analysis, which explain the green 

class on the left side of Figure 11.  

 

The model performs well among the riverside. As it is seen from 

Figure 11, both SPOT-6 analysis results and the proposed 
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method determine the flooded regions nearby the river 

successfully. If we look at the performance of the method in 

agricultural areas, we can still say that there is a correlation 

between the results from SPOT-6 image and the proposed 

method (Figure 12). 

 

Nevertheless, more agricultural areas are determined as affected 

in the proposed method. This result can be also explained by 

uncertainties in selecting optimum values for the thresholds and 

tolerances in the algorithm. Moreover, there were no ground 

truth data available in our study, thus we relied on the results 

from SPOT-6 optical data classification and aimed to maximize 

the match between the two results. Thus, our thresholds and 

tolerances might be higher than the optimum values and this can 

lead to a false alarm on the proposed algorithm.  

 

 
 

Figure 10. SPOT-6 vs SAR result 

 

 
 

Table 6. Spot and SAR Flooded Area Legend  

 

 
 

Figure 11. SPOT vs SAR Riverside Detailed 

 

 
 

Figure 12. SPOT vs SAR Agriculture Area Detailed 

Other factors that can affect the algorithm performance is 

choosing the optimum pairs among the SAR data. In an ideal 

case, both pre-event SAR images (S1 and S2) should be 

acquired in dry weather conditions, on the other hand, both 

post-event SAR images (S3 and S4) should be acquired in flood 

conditions. At the same time, pre-event and post-event data time 

intervals should not be long enough to cause an extra loss of 

coherence between the pairs, which makes it difficult to specify 

the reason for the degradation of the coherence. The more we 

are close to the ideal conditions; the more the coherence results 

would be reliable. In our case, S4 is acquired 12 days later than 

S3. So, the post-event coherence that is used in C3 isn’t that 

ideal.   
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