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ABSTRACT:

Updated information on urban land use allows city planners and decision makers to conduct large scale monitoring of urban areas
for sustainable urban growth. Remote sensing data and classification methods offer an efficient and reliable way to update such land
use maps. Features extracted from land cover maps are helpful on performing a land use classification task. Such prior information
can be embedded in the design of a deep learning based land use classifier by applying a multitask learning setup—simultaneously
solving a land use and a land cover classification task. In this study, we explore a fully convolutional multitask network to classify
urban land use from very high resolution (VHR) imagery. We experimented with three different setups of the fully convolutional
network and compared it against a baseline random forest classifier. The first setup is a standard network only predicting the land
use class of each pixel in the image. The second setup is a multitask network that concatenates the land use and land cover class
labels in the same output layer of the network while the other setup accept as an input the land cover predictions, predicted by a
subpart of the network, concatenated to the original input image patches. The two deep multitask networks outperforms the other
two classifiers by at least 30% in average F1-score.

1. INTRODUCTION

Urban land use maps provide essential information on the util-
ization of urban spaces. Updated information on urban land
use allows city planners and decision makers to conduct large
scale monitoring of urban areas for sustainable urban growth.
Remote sensing data and methods offer an efficient and reli-
able way to update such land use maps. Using images regularly
acquired by spaceborne and airborne sensors provide a much
higher degree of objectivity and automation than traditional in-
situ mapping methods. In this manner, extensive and updated
information on urban land use can be made available on a reg-
ular basis.

Transforming large scale remote sensing data into func-
tional land use maps requires advanced classification meth-
ods. Knowledge-driven rule sets from object-based classific-
ation techniques have been employed for such purpose (Vol-
tersen et al., 2014). However, those require tedious craft-
ing of features extracted from the input data. More recently,
deep learning techniques applied on remote sensing data fur-
ther automated this feature crafting step by learning empirical
data representations that are optimized for the classification task
(Bergado et al., 2016; Mboga et al., 2017; Huang et al., 2018;
Persello et al., 2019; Zhang et al., 2018). Particularly, Huang
et al. (2018) used a patch-based convolutional network com-
bined with a post-classification trimming step to classify land
use from high spatial resolution multispectral imagery; while
Zhang et al. (2018) used an object based CNN to classify land
use from very high resolution imagery.

A subset of handcrafted features employed in knowledge-driven
land use classification can also be extracted from land cover
maps (Voltersen et al., 2014). Such prior information can be
embedded in the design of a deep learning based land use clas-
sifier by applying a multitask learning setup—simultaneously
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Figure 1. Sample image and corresponding reference for test
Tile 1.

solving a land use and a land cover classification task. Fully
convolutional network variants have also been recently found
to be more effective than their patch-based counterparts (Volpi
and Tuia, 2017). In this study, we explore a fully convolutional
multitask network to classify urban land use from very high res-
olution (VHR) imagery. To the best of our knowledge, this is
the first study to explore performing a land use and a land cover
classification simultaneously, in an end-to-end manner.

2. DATA AND METHODS

In this study, we utilized a deep fully convolutional multitask
network to perform urban land use classification from VHR
imagery. The dataset comprises of a Worldview-03 satellite im-
age of Quezon City, Philippines acquired on 17th April 2016
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Figure 2. Illustration of the three different fully convolutional networks. STN (single task network) is a standard network only
predicting the land use class of each pixel in the image. PMN (parallel multitask network) is a multitask network that concatenates the

land use and land cover class labels in the same output layer of the network while SMN (sequential multitask network) accept as an
input the land cover predictions, predicted by a subpart of the network, concatenated to the original input image patches.

and manually prepared reference images extracted by updating
a Land Use Map of Metro Manila, the capital region where
Quezon City is. Fully labeled reference images of land use
classes were obtained from this step. Sparsely labeled refer-
ence images for the land cover classes to be used by the multi-
task networks were manually prepared via photointerpretation.
The satellite image has a panchromatic band of 0.3 m resolu-
tion and four multispectral bands (near-infrared, red, green, and
blue) of 1.2 m resolution.

The satellite image was pan-sharpened using the Gram-Schmidt
pansharpening technique (Laben and Brower, 2000) and was
subdivided into smaller non-overlapping image tiles of size
3200 × 3200 pixels. Twelve tiles were chosen, taking into ac-
count the presence of land use classes of interest, and grouped
into training, validation, and testing set—six for training, three
for validation, and three for testing. Reference images cor-
responding to the 12 input image tiles were prepared with 6
land use classes: i) educational and cultural, ii) residential, iii)
religious and cemetery, iv) informal settlements, v) commer-
cial and industrial, vi) government and military. The image
tiles were systematically sampled into smaller non-overlapping
128 × 128 image patches that are then fed as input to the net-
work. The training set was further augmented by two flips and
three 90◦rotation transformations. Figure 1 shows a sample im-
age and reference tile from the test set.

2.1 Standard approach

We used two methods as baseline approaches to be com-
pared to our proposed methods. Firstly, a pixel-based random
forest classifier trained to classify land use from the input pan-
sharpened images. Secondly, a standard fully convolutional

network (FCN) classifying land use from the same input pan-
sharpened images; but instead of accepting a 1D input vector
of pixel values as done in the random forest classifier, accepts a
3D array of values from the 128×128 image patches, and thus,
takes spatial context into account. For notational purposes, we
call this network STN (single task network).

We used a modified version of U-Net (Ronneberger et al., 2015)
as the base network architecture of all our convolutional net-
works. The weights of the encoder is also initialized from a pre-
trained VGG16 (Simonyan and Zisserman, 2015). The modi-
fication, similarly done by Sherrah (2016), involves adding an
additional set of kernels in the first convolutional layer, this ad-
ditional kernel is initialized from randomly choosing one of the
three original kernels from the pretrained VGG16. The num-
ber of channels of the output layer was also correspondingly
changed to be equal to the number of our target land use and
land cover classes.

2.2 Proposed approach

The proposed approach multitask LULC networks has two vari-
ants: first is a multitask network that concatenates the land use
and land cover class labels in the same output layer of the net-
work; second is a variant that accept as an input the land cover
predictions, predicted by a subpart of the network, concaten-
ated to the original input image patches. We call the first vari-
ant PMN (parallel multitask network) and the second one SMN
(sequential multitask network). The three networks can be rep-
resented by the following functions:

yu = STN(x) (1a)
[yu, yc] = PMN(x) (1b)
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Figure 3. Predicted land use maps of the four classifiers on test Tile 1.

{
yc = SMNα([x, y

0
c ])

yu = SMNβ([x, yc])

(1c)
(1d)

where x is the pansharpened input image patch, yu is the out-
put land use predictions, yc is the output land cover predictions,
SMNα and SMNβ are two sub networks of SMN, y0

c is land
cover class initialization (in the experiments we initialized all
the values to zero), and [ ] is a channel-wise concatenation op-
eration. Equations 1c and 1d are jointly optimized. Figure 2
shows a diagram of the three networks, highlighting the differ-
ence between the input and output layers of each network.

All the networks were trained to optimize a cross-entropy loss:

EN = −
N∑
n=1

tn • log(yn) (2)

where E is the loss function value evaluated over N samples,
tn is a binary vector encoding the the target class labels (with
the index corrresponding to a class having a value of 1 and 0
otherwise), • denotes the dot product, and yn is the class score
maps of a sample n calculated using a softmax activation func-
tion. STN and PMN defines one cross-entropy loss function in
their output layers while SMN decomposes the total loss func-
tion into two equally-weighted cross-entropy losses at the out-
put layers of SMNα and SMNβ .

The loss was optimized using Adam (Kingma and Ba, 2014) for
150 epochs utilizing a batch size of 64. The base learning rate
used was 0.0001 which was reduced by a factor of 10 every 50
epochs.

Class Frequency (%)
Educational and Cultural 22
Residential 39
Religious and Cemetery 2
Informal Settlements 3
Commercial and Industrial 19
Government and Military 15

Table 1. Land use class frequency averaged over the whole set of
image tiles

Since there is an imbalance in the distribution of the land use
classes present in our image tiles (see Table 1), we assessed the
classification performance of the four classifiers using the aver-
age class F1-score. This metric will be more robust to the class
frequency imbalance than the standard overall classification ac-
curacy, the latter generally giving overly optimistic estimates of
the classifier performance.

Figure 4. Confusion matrix of PMN on the three test tiles.

3. RESULTS

Classifier Tile 1 Tile 2 Tile 3
random forest 1.07 14.27 12.36
STN 25.48 21.59 29.63
PMN 57.90 52.89 57.44
SMN 59.87 52.53 53.34

Table 2. Average land use class F1 scores of the classifiers on
the three test tiles

The land use classification accuracy of the different classifiers
assessed on the three test image tiles (1, 2, and 3) are shown in
Table 2. PMN achieves the highest average class F1 score in
two of the three test tiles, with SMN having better results for
Tile 1. There is a considerable increase in the classification ac-
curacy of the classifier by using a standard fully convolutional
network over the baseline random forest classifier. This shows
that the features learned in the hidden layers of the convolu-
tional network is helpful for this land use classification task.
There is also an observable increase in performance, at least
about 30% in average F1-score, when using the two multitask
network over the standard one. Such improvements are consist-
ent with the intuition that features extracted from land cover can
help the land use classification task.

Figure 3 shows the predicted maps of all the classifiers on Tile
1. All the three networks produced maps of better quality than
the baseline random forest classifier. All of three confuses the
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Figure 5. Comparison of predicted land cover maps of Tile 3 using the plain network STN and one of the multitask network PMN.

underrepresented (see Table 1) informal settlement classes as
residential areas. This is due to the visual similarity of high
density residential areas in the city to informal settlements. This
is further affected by the limited number of training labels for
this class. This can also be observed in the resulting confusion
matrix (see Figure 4) of PMN on the three test tiles where it can
clearly be seen the poor performance of the classifier on both
the underrepresented two classes (religious and cemetery and
informal settlements). On the other hand, the educational and
cultural land use class appears to have the least misclassification
compared to other classes.

Figure 5 shows a comparison of predicted land cover maps of
Tile 3 using the plain network STN and one of the multitask
network PMN. The plain network poorly classifies the car class
which are confused with building pixels. Predictions of the
underrepresented car class were greatly improve by using the
multitask learning setup. There is also less overclassification of
the impervious surface class after using the multitask network
PMN. This shows that the learned features shared by both tasks
help on improving the each other’s predictions.

4. CONCLUSION

Classification of urban land use maps is essential to provide up-
dated information on utilization of urban spaces. This study
shows that performing land use classification simultaneously
with classifying land cover improves the resulting classified
land use maps. Comparing two multitask networks, we ob-
tained an improvement of at least 30% in the average F1-score
as compared to standard classification approaches. Such an ap-
proach can be embedded in the design of a deep learning based
classifier. The multitask network also improves the predictions
on the additionally embedded land cover prediction task.
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