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ABSTRACT: 
 
A large-scale disaster has occurred due to the earthquake. In particular, 20% of the world's earthquakes with a magnitude of 6 or 
more occur near Japan. Damage analysis of buildings by image analysis have been effectively carried out using optical high-
resolution satellite images and aerial photograph with spatial resolution of about 2 m or less. In this study, the damaged buildings 
caused by large-scale and continuous earthquakes in Kumamoto, Japan that occurred in April 2016 was selected as a typical example 
of damaged buildings.  For these earthquake event, the applicability of damage distribution of buildings and recovery/restoration 
status by texture analysis was examined. The applicability of the representative in the dissimilarity texture analysis methods Gray-
Level Co-occurrence Matrix (GLCM) method by image interpretation in the case of a large number of collapsed and wrecked 
buildings in a wide area was assessed. These results suggest that dissimilarity was applicable to the extraction of damaged and 
removed buildings in the event of such an earthquake. In addition, the analysis results were appropriately evaluated by comparing 
the field survey results with the image interpretation results of the pan-sharpened image. From these results, we confirmed the 
effectiveness of texture analysis using time-series high-resolution satellite images in grasping the damaged buildings before and 
immediately after the disaster and in the restoration situation 1 year after the disaster. 
 
 

1. INTRODUCTION 

On the 2016, two large earthquakes occurred continuously on 
April 14 and April 16 in Kumamoto prefecture, Japan (GSI, 
2017). In Mashiki town located near the epicenter due to this 
earthquake, 3000 buildings were completely destroyed and a 
massive building damage occurred (CAO, 2017). Immediately 
after the disaster, the damaged buildings were identified mainly 
through field surveys. Four years after the disaster, restoration 
and reconstruction work is still in progress to restore buildings 
and roads, water and sewage. In the case of such a large-scale 
damage, it is necessary to grasp the damage situation as soon as 
possible, and it is effective to collect damage information by 
satellite remote sensing. Continuous use of satellite information 
over the long term is expected to effectively restore the 
infrastructure and reconstruction of the community. Moreover, 
the obtained evaluation result is profitable spatial information 
for the disaster prevention in the future. Furthermore, the 
resolution of the satellite image has been increased, and Method 
of object-based and pixel-based texture for extracting detailed 
damage information of the building and grasping the damaged 
area have been studied (Hussain et al., 2011; Chen et al., 2018; 
Suzuki et al., 2016; Horlick et al., 1973; Miura et al., 2012; 
Huyck et al., 2005). In addition, cases of using UAV that can 
obtain high-resolution images have also been reported 
(Ghaffarian and Kerle, 2019). In general, many parameters are 
required for image segmentation and image classification by the 
object-based method. On the other hand, Texture-based analysis 
can be performed with relatively few parameters. The damage 
caused by the optical and SAR images observed immediately 
after the damage has been investigated and the damage of the 
building by the field survey is being investigated (Liu et al., 
2017; NILIM and BRI 2017; Sumida et al., 2019). As a use of 
texture analysis for building damage in the 2016 Kumamoto 
earthquake, studies using aerial photographs and SAR satellite 
images are being conducted (Naito et al., 2018; Yamada et al., 

2017). However, long-term time series surveys before and after 
the disaster and several years after the disaster using texture 
analysis of satellite images have not been studied. In this study, 
the characteristics of the texture index were evaluated using 
high-resolution satellite images observed before and after the 
earthquake and 1 year after the earthquake. 
 

2. DATA 

2.1 Satellite data 

QuickBird satellite data observed before the earthquake (March 
24, 2004). QuickBird satellite sensor produces 4-band 
multispectral images and a panchromatic image with a 
resolution of 0.6 × 0.6 m and 2.4 × 2.4m, respectively. 
WorldView-3 satellite data observed after the earthquake (May 
5, 2016) and 1 years after the earthquake (March 11, 2017). 
WorldView-3 satellite sensor produces 8-band multispectral 
images and a panchromatic image with a resolution of 0.3 × 0.3 
m and 1.2 × 1.2m, respectively. These three satellite image data 
have almost the same season (Figure 1). 
 
2.2 GIS data 

The building area was created by converting the perimeter lines 
of buildings issued by the GSI (The Geospatial Information 
Authority of Japan) to polygons. Information on the presence or 
absence of removal was added to the building polygons by 
image interpretation from the pan-sharpened image 1 year after 
the disaster. For the evaluation of the analysis results, the 
building damage survey results investigated by the 
Architectural Institute of Japan (AIJ) were used. 
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3. METHODS 

3.1 Study area 

The study area was 1.5 x 1.5 (km) in Mashiki town, which was 
severely damaged by the 2016 Kumamoto earthquake (Figure 
2). There are about 3,300 building polygons, and the number of 
meshes in the building damage survey results is 329. The 
Akitsu River flows from west to east on the south side of the 
study area, and the old river channel exists along the Akitsu 
River.  

 
3.2 Texture analysis 

First, the texture index was calculated using the co-occurrence 
matrix, and the distribution of building damage was evaluated. 
In this study, we used the dissimilarity as a texture index based 
on the Gray-Level Co-occurrence Matrix (GLCM). The 
dissimilarity has the characteristic that it becomes high at the 
place where the bright pixel and the dark pixel are adjacent 
(rubble etc.). In the damaged building, the rubble generated 
from the roof and the walls is scattered, so the bright and dark 
pixels are adjacent around the building area, and it is assumed 
that the texture is not uniform. In the restoration and 
reconstruction phase, it was presumed that the texture becomes 
uniform as the debris is removed. Therefore, the dissimilarity 
was adopted as the texture index based on the Gray-Level Co-
occurrence Matrix (GLCM). The dissimilarity calculation 
formula is shown in (1). 
 

                      (1) 

   
where i is row number and  j is column number. P(i, j) is 
probability value recorded for the cell i, j. 
 
The band used was the red band after pan-sharpening. The pixel 
size was resampled to 0.6m. The frequency distribution of pixel 
values of usage data is different. For this reason, pixel values 
with cumulative frequency between 2% and 98% were used to 
convert to 8-bit images. The window size for calculation of the 
dissimilarity was set to 25 × 25pixels. These processing 
methods were applied to three satellite images. The 
characteristics of building damage were grasped by image 
interpretation from the obtained time-series dissimilarity images. 
Also, statistics were calculated with building polygons 
containing information on the removal 1 year after the disaster. 

Figure 2. Study area 

(b) Immediately after the disaster 
(Acquisition date: May 5, 2016) 

(a) Before disaster 
(Acquisition date: March 24, 2017) 

Figure 1. Satellite image in study area 

(c) After the disaster 
(Acquisition date: March 11, 2017) 
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3.3 Grasp building condition based on dissimilarity  

Next, in order to examine the grasp of the building condition, 
the damaged buildings immediately after the disaster and the 
restored buildings 1 year after the disaster were extracted using 
the dissimilarity. Note that damaged buildings were judged 
from the dissimilarity immediately after the disaster. By setting 
a threshold, damaged and undamaged buildings were classified. 
The set threshold value was the mean value of polygons that 
aggregated the dissimilarity immediately after the disaster. The 
classification results were compared with the building damage 
rate (destruction rate) of the building damage survey results. 
The building damage survey results is the value obtained by 
dividing the damage level of wreck, collapse, and collapse in 
the mesh area of about 57 × 57m by the total number of 
buildings in the mesh area. The building damage survey results 
was set based on Damage Grade (D1~D6) judged by the 
Architectural Institute of Japan (Okada and Takai, 1999). The 
wreck rate is the ratio of the number of buildings (destruction; 
D4) or more in the mesh area divided by the total number of 
buildings in the mesh area. The extraction of the buildings that 
were removed by the restoration and reconstruction work used 
the dissimilarity immediately after the disaster and 1 year after 
the disaster. The normalized value was calculated using the 
dissimilarity of the building polygons immediately after the 
disaster and 1 year after the disaster. The removed buildings 

were classified by setting the threshold value to the mean value 
of the normalized values for each building polygon. (2) as 
follows: 
 
DISSNORM  = ( DISS2016 − DISS2017 ) / ( DISS2016 + DISS2017 )  (2) 
 
where DISS2016 is the dissimilarity processed by WorldView-3 
images observed on May 5, 2016. DISS2017 is the dissimilarity 
processed by WorldView-3 images observed on March 11, 
2017. 
 
The analysis result was evaluated by comparing with the result 
of image interpretation. Accuracy verification was evaluated by 
extraction rate and justification rate. The extraction rate 
indicates the ratio of the removed building polygons extracted 
from the satellite image in the removed building polygons by 
image interpretation. The justification rate indicates the ratio of 
the building polygons removed by image interpretation among 
the extracted building polygons. 
 

4. RESULTS AND DISSCUSSION 

4.1 Interpretation by the dissimilarity images 

Figures 3 and 4 show heterogeneity images and pan-sharpened 
images for three periods at two locations within the study area. 

aa 

Figure 3. Comparison of dissimilarity in site-A Figure 4. Comparison of dissimilarity in site-B 

dissimilarity image pan-sharpened image dissimilarity image pan-sharpened image 

pan-sharpened image dissimilarity image pan-sharpened image 

dissimilarity image pan-sharpened image dissimilarity image pan-sharpened image 

(a) Before disaster (Acquisition date: March 24, 2017) (a) Before disaster (Acquisition date: March 24, 2017) 

(c) After the disaster (Acquisition date: March 11, 2017) (c) After the disaster (Acquisition date: March 11, 2017) 

site-A) site-A) 

site-A) site-A) 

site-A) site-A) 

site-B) site-B) 

site-B) site-B) 

site-B) site-B) 

dissimilarity image 
(b) Immediately after the disaster (Acquisition date: May 5, 2016) (b) Immediately after the disaster (Acquisition date: May 5, 2016) 

10 0 10 0 

10 0 10 0 

10 0 10 0 
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Immediately after the disaster, high values were observed 
around buildings where rubble was generated due to building 
damage. These were confirmed from the enlarged views before 
and immediately after the disaster. A high value is also 
distributed in the buildings that are being removed 1 year after 
the disaster. After the disaster, the situation became uniform 
due to the removal of rubble and land readjustment projects, 
and the tendency for the dissimilarity to decrease was 
confirmed. In addition, areas with continuous cars on roads and 
parking lots tended to have a high the dissimilarity. The 
building polygons near roads and parking lots are expected to 
increase in the dissimilarity due to the influence of vehicles. 
The blue tarp covering the roof immediately after the disaster 
was not affected by the use of the red band. It was possible to 
grasp the approximate distribution of the damage status of 
buildings and the restoration status from the dissimilarity 
images of the three periods obtained from the texture analysis. 
 
4.2 Change of the dissimilarity in the building polygons 

The mean value in the building polygons was calculated from 
the dissimilarity images of three periods. The results of 
tabulation are shown in Table 1. The mean value was 4 to 4.5, 
and the standard deviation was 1.1 to 1.4. Moreover, in image 
interpretation, the dissimilarity tended to increase due to debris 
immediately after the disaster, but comparing the mean values 
before and immediately after the disaster, the values before the 
disaster were higher. It is considered that these are due to the 
long difference in satellite observation period before and after 
the disaster and to different satellites. Focusing on the mean 
value of the removed building polygons 1 year after the disaster, 
the dissimilarity tends to be lower than immediately after the 
disaster because many damaged buildings have become uniform. 
Similarly, the standard deviation of the removed building 
polygons 1 year after the disaster was confirmed to be lower 1 
year after the disaster. On the other hand, it was confirmed that 
1 year after the disaster, unremoved buildings that had been 
damaged had high values due to the increase in debris being 
removed. 
 
 

Not removal Removal All Not removal Removal All

March 23, 2004 4.40 4.58 4.45 1.14 1.09 1.13

May 5, 2016 3.92 4.22 4.01 1.16 1.08 1.13

March 11, 2017 4.83 3.38 4.40 1.27 0.95 1.36

Obsebation Date
Mean Standard deviation

 
 
 
 
4.3 Classification of damaged building polygons by the 
dissimilarity 

From the result of totaling the dissimilarity in the building 
polygons, it was not possible to confirm the tendency that the 
pixels became disordered before and after the disaster. 
Therefore, we examined the classification of damaged and 
undamaged buildings using the dissimilarity immediately after 
the disaster. Figure 5 shows the dissimilarity within the building 
polygons immediately after the disaster. It was confirmed that 
polygons with a high the dissimilarity tended to be distributed 
on the south side. From the enlarged view, it was found that the 
location where rubble was generated was highly heterogeneous 
due to the damage caused by the earthquake. Therefore, the 

 

site-A 

Table 1. The dissimilarity statistics 

(a) The buildings damage rate with mesh calculated from 
the dissimilarity 

Figure 5. Mean value of the dissimilarity of the building 
polygons 

site-A 

Figure 6. Comparison of the destruction rate and the 
buildings damage rate using the dissimilarity 

(b)The building damage survey (destruction rate) by AIJ 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1709-2020 | © Authors 2020. CC BY 4.0 License.

 
1712



 

mean value of the dissimilarity within the building polygons 
immediately after the disaster was set as the threshold value. In 
addition, the results classified into 5 levels are shown in Figure 
6-(a) for comparison with the results of the building damage 
survey results. Figure 6-(b) shows the results of a 
comprehensive survey by the Architectural Institute of Japan 
(AIJ). There was a tendency for overestimation on the north 
side of the target area where damage was particularly small. 
Assuming use during a disaster, it is important to identify a 
location where damage is large during a disaster and take 
prompt rescue measures. Therefore, we compared meshes with 
a crushing rate of 50% or more between the building damage 
survey results and satellite analysis results. It was found from 
the building damage survey results that the damaged area was 
concentrated in the old river channel, and the mesh created 
from the satellite analysis results showed a similar distribution. 
The extraction rate was 73%. The extraction rate indicates the 
ratio of buildings with 50% or more of damaged buildings in 
satellite image analysis for meshes with a crushing rate of 50% 
or more as a result of the building damage survey results. From 
these, it was shown that the distribution tendency of damaged 
buildings could be grasped from the dissimilarity obtained from 
high-resolution satellite images immediately after the disaster. 

 
4.4 Classification of removal building polygons by the 
dissimilarity 

As a survey of the restoration status, focused on the removal 
status of damaged buildings. Figure 7 shows the result of the 
judgment of the removed building polygons by image 
interpretation using the pan-sharpened image one year after the 
disaster. One-third of the building polygons had been removed 
in the study area within 1 year from the disaster. In addition, 
many of these are distributed on the south side where damage is 
concentrated. From Table 1, it was confirmed that the mean 
value and the standard deviation of the dissimilarity tended to 
decrease when comparing the removed building polygons 
immediately after the disaster and 1 year after the disaster. 
From these results, the polygon-based classification of removed 
buildings was based on the dissimilarity immediately after the 
disaster and 1 year after the disaster. Figure 8 shows the 
normalized values of the building polygons. In the case where 
the dissimilarity is reduced, the normalized value is 0 or more. 
As mentioned above, the dissimilarity of the Removed 
buildings tends to decrease as the soil is leveled. Therefore, it is 
estimated that the removed buildings tend to show a normalized 
value of 0 or more. It was found that 0 or more building 
polygons were distributed on the south side where the damaged 
buildings were concentrated. In addition, the normalized value 
was higher in the removed building compared to the image 
interpretation result. On the other hand, within the building 
polygons that has not been removed, 1 year after the disaster 
becomes a high value due to the increase in rubble being 
removed. Therefore, the removed buildings were classified 
using the mean value of the normalized values of polygons as a 
threshold. As a result of the classification, the extraction rate 
was 73%, the justification rate was 63% (Table 2). The main 
misidentification factors were vehicles on roads and parking 
lots. In addition, it was speculated that the building could not be 
observed with debris from satellite images immediately after 
the disaster. Furthermore, it is considered necessary to consider 
the relationship between the types of buildings. From these 
results, it was possible to determine the existence of polygon-
based removal using the dissimilarity. In addition, it was also 
possible to confirm the restoration status from the mesh created 
from the dissimilarity image 1 year after the disaster. 

 

site-A 

Figure 8. Extraction of removed building polygons by 
analysis 

Figure 7. Extraction of removed building polygons by 
image interpretation 

site-A 

Table 2. Evaluation of classification accuracy 

Removal Not Removal

Removal (a) 713 (b) 271

Not Removal (c) 418 (d) 1,906

Extraction rate [%]   =  a / ( a + b )  : 73%
 Justification rate [%] =  a / ( a + c )  : 63%

Extraction by satellite images

Image
interpretation
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5. CONCLUSION 

In this study, using high resolution satellite observation data 
observed in time series before and after the disaster, for the 
2016 Kumamoto earthquake, the texture index by the Gray-
Level Co-occurrence Matrix (GLCM) is calculated, and 
examined the grasp of the state of the building from the 
distribution and statistical values. As a result, it was possible to 
grasp the damage situation on a mesh basis. In addition, it was 
possible to understand the removal status of the building, which 
shows the progress of restoration, on a polygon basis. From 
these results, we confirmed the effectiveness of texture analysis 
using high-resolution satellite images in grasping the damaged 
buildings before and immediately after the disaster and in the 
restoration situation 1 year after the disaster. In the future, we 
plan to apply the index value used for extracting bare ground to 
texture analysis and evaluate the effect. In addition, we will 
consider the improvement of accuracy by sorting out incorrect 
extraction factors and combining analysis methods. 
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