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ABSTRACT: 

This paper describes a methodology to produce a 7-classes land cover map of urban areas from very high resolution images and                     
limited noisy labeled data. The objective is to make a segmentation map of a large area (a french department) with the following                      
classes: asphalt, bare soil, building, grassland, mineral material (permeable artificialized areas), forest and water from 20cm aerial                 
images and Digital Height Model. 
We created a training dataset on a few areas of interest aggregating databases, semi-automatic classification, and manual annotation                  
to get a complete ground truth in each class. 
A comparative study of different encoder-decoder architectures (U-Net, U-Net with Resnet encoders, Deeplab v3+) is presented with                 
different loss functions. 
The final product is a highly valuable land cover map computed from model predictions stitched together, binarized, and refined                   
before vectorization. 

Figure 1. Final land cover map, Andernos-les-Bains, France 
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1. INTRODUCTION 

 
Land cover maps are cartographic products widely demanded        
by land managers. As they provide a quantification of land          
resources into thematic categories (e.g. forest, water or asphalt         
surface), land use/land cover maps are used to measure current          
conditions and how they are changing. 
 
The different classes composing the final land cover map are          
derived from OCSGE product (Description of OCSGE). They        
have been selected to best fit the description of urban areas:           
asphalt, bare soil, building, grassland, mineral material, forest,        
and water. The final product (Figure 1) can be used for deriving            
environmental indicators and measuring land consumption. 
 
In the following paper, we propose a full methodology to          
produce a very high resolution 7-classes land cover map at a           
large scale with aerial images. Specific attention has been given          
to subsequent tasks:  

● creating a consistent and representative training      
dataset for each class 

● benchmarking different models and configurations 
● producing a relevant land cover map from model        

predictions 
 
As databases (BDTOPO® or OpenStreetMap®) do not describe        
all the objects of each class, manual annotation is needed. We           
chose to create full ground truth on specific areas of interest           
(AOI) in the production zone to facilitate the labelling process.          
In the end, only 10% of the targeted zone is used for training. 
Semantic segmentation of aerial images with convolutional       
neural networks is then performed from this training dataset.  
 
Since the publication of an encoder-decoder deep convolutional        
network architecture (Ronneberger et al., 2015), scientists have        
tried to improve semantic segmentation on medical images        
(Ibtehaz, Rahman, 2019) or terrestrial images (Kaiming He et         
al., 2015; Liang-Chieh Chen et al., 2018) and others have          
transposed those solutions to earth observation with high        
resolution images taken from satellite (Nagesh Kumar Uba,        
2019), airplane (Ce Zhang et al., 2019) or drone (Zhang et al,            
2019). Multiple competitions have been recently carried out to         
improve semantic segmentation results on earth observation       
images with a provided dataset (Spacenet challenges, ISPRS        
semantic labelling contest). Lots of work on roads or building          
extraction from satellite images (Zhengxin Zhang et al., 2017)         
have been published. 
 
We propose to reuse top-class semantic segmentation       
architectures (U-Net with ResNet encoders, DeeplabV3+) on       
very high resolution aerial images.  
This article also describes some post-processing techniques to        
convert model predictions to a relevant land cover map. 
 
 

2. METHODOLOGY 

2.1 Input data 

We chose a sample size of 512 pixels for convenience as we are             
using a DeeplabV3+ model with a receptive field of 470 pixels           
and a GPU with limited memory (8Gb). 
  

2.1.1 Images: As input data, we use a mosaic of aerial          
images with a resolution of 20cm. The camera has 4 bands           
(Red, Green, Blue and Near-Infrared) and original pixel depth is          
reduced to 8 bits before the mosaicing process. As a          
complement, a Digital Surface Model - derived from the aerial          
images by photogrammetric techniques - is used in combination         
with a Digital Terrain Model to produce a Digital Height Model           
(also called normalized DSM) that we concatenate as a 5th          
channel to input images. 
 

 
Figure 2. Digital Height Model (source Intermap on Twitter) 

 
2.1.2 Masks: Associated masks are created separately for       
each class. 
Some classes are labelled with different techniques detailed in         
paragraph 3.1. 
A multi-channel binary image is produced to store the label          
information with a band for each class. 
 
2.1.3 Samples: In the end we feed the model with a tuple of            
(image, mask) with the shapes: 
 

image.shape = (​512​, ​512​, ​5​)  
# 5 for (R, G, B, IR, MNH)  

mask.shape = (​512​, ​512​, ​8​)  
# 8 for the 7-classes + complementary mask 

 
Figure 3 shows a representation of a training sample. 
 

Figure 3. Example of input data (RGB, Infra-Red, DHM, labels) 
 
2.2 Network architectures 

Three encoder-decoder network configurations are assessed in       
this article. Original U-Net is the baseline configuration and we          
measure precisely improvements brought by more sophisticated       
architectures: U-Net with ResNet50 as encoder on one side and          
DeeplabV3+. Those models have very different characteristics       
and specificities.  

● U-Net is a simple encoder-decoder convolutional      
network. The encoder part processes the input image        
through several convolutional and down-sampling     
layers, giving semantically rich feature maps. The       
decoder part consists of convolutional and upsampling       
layers combined with skip connections with the       
encoder feature maps to access further spatial       
information. Those connections furthermore alleviate     
the risk of vanishing or exploding gradients. 
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● ResNet, used as an encoder, differs mainly by the use          
of skip connections between consecutive layers in the        
encoder path, allowing to learn residual feature maps. 

● DeepLabV3+ (Figure 5) puts together several      
developments in Deep Convolutional Neural     
Networks (Liang-Chieh Chen et al, 2018). The       
network follows an encoder-decoder scheme, using      
Atrous Convolution and Atrous Spatial Pyramid      
Pooling to extract rich multi-scale information and       
Depthwise convolution to reduce computational costs.      
The model is implemented with MobileNetv2      
(Sandler et al, 2018) as backbone. 

 
Figure 4. Deeplab V3+ architecture 

Those models differ not only in their architecture but also in the            
number of parameters, impacting both the amount of training         
data and of computation time required. The smallest models are          
based on U-Net and the largest on Resnet18 encoders. 
 
2.3 Loss functions 

Several loss functions are evaluated in this work.  
● Cross-Entropy (CE) loss takes into account the       

variation between prediction and target. But it is        
evaluated on individual pixels, thus large objects       
contribute more to it than small ones which can be an           
issue when dealing with land cover objects. 

● Weight-balanced Cross-Entropy (WCE) loss is used      
to tackle the problem of an unbalanced training        
dataset. Under-represented classes get higher weights      
to assure that all classes contribute equally to the loss          
value. 

● Binary Cross-Entropy (BCE) is used to evaluate the        
benefits of allowing the network to perform a        
multi-label classification task (each pixel could      
belong to multiple classes). 

● A combo loss with BCE + Jaccard. Jaccard loss is          
computed from the Jaccard index defined by: 

 
(1) 

 
with a predicted segmentation and a ypred      ytrue   
ground truth labelling.  
Jaccard index is transformed to obtain Jaccard loss: 

 

 (2) 
 

The combo loss is a weighted combination of BCE         
and Jaccard loss: 

 

 (3) 

Using Jaccard loss mixed with BCE is a quite         
common technique used to handle imbalanced input. 

 
2.4 Post-processing 

The raw result is a probability map or heat map with a band per              
class. Each pixel is represented by a vector of belonging          
probability with values rescaled between 0 and 255.  
We perform a 2-level thresholding: 

● binarization of heat map with a low threshold 
● vectorization 
● averaging of probability by object 
● filtering of objects whose average probability is below        

a high threshold 
 
A last, a refining process is made to remove objects according           
to their size, then geometries are simplified. 
 
 

3. EXPERIMENTS 

We focus on producing a land cover map of the urban area of             
Gironde department (Figure 7). Aerial images taken by the         
French Mapping Agency in 2018 with a resolution of 20cm, the           
associated Digital Surface Model and BDALTI® are used to         
build the image samples. 
 

 
Figure 5. Urban areas of Gironde department 

 
3.1 Training dataset elaboration 

The dataset specifications are issued from some practical        
choices during its production. 
Most of the time, when training datasets are not provided for           
experiments, they are generated by picking a large number of          
random samples among the targeted area. We decided instead to          
create our dataset focusing on 5 consistent areas of interest          
carefully selected to best represent the overall territory        
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characteristics (Figure 6). This choice has been determined by         
two main reasons:  

● It is easier to automatize or semi-automatize the        
training label production, with standard machine      
learning tools, on large images tiles than on many         
small patches.  

● It brings more flexibility in the choice of relevant size          
and resolution for training samples. 

 
3.1.1 AOIs characteristics: This dataset is mainly      
dedicated to urban area segmentation. 
 

 
Figure 6. Training zones 

 
So, areas where land cover is mainly forest, natural or cropland           
have not been taken into consideration. But in order to catch           
urban area diversity, territories with different urban morphology        
have been manually selected. The chosen urban morphology is         
coastal and touristic areas (dark green in Figure 6), dense          
downtown (red in Figure 6), residential suburban zones (orange         
in Figure 6) and small towns in agricultural territories (light          
green and yellow in Figure 6). 
 
3.1.2 Labelling: Each class is labelled separately. French       
BDTOPO® database provides consistent information for      
buildings, roads, natural water areas. But it does not contain any           
parking lots or sidewalks useful for asphalt class nor urban          
grassland or forests and mineral materials. Those objects are         
extracted either with manual annotation or semi-automatic       
techniques from classical machine learning. Some of them are         
detailed in the following sections. 

Classical machine learning for vegetation: To build the        
training dataset for vegetation classes (forest and grassland),        
classical machine learning is used. We combine a pixel-based         
classification through random forests and a large-scale mean        
shift segmentation. 
Vegetation indices NDVI and NDWI, as well as RGB and          
Near-Infrared bands, are used as input of a supervised random          
forest classifier. We finally combine the pixel classification        
with regions of a large scale mean shift segmentation. Thanks to           

a majority voting on pixel class among each region, we get           
larger homogenous regions. Taking advantage of DHM and        
NDVI to detect vegetation and trees, the results are acceptable          
as is for ground truth. 
All those processings are done using functionalities of        
orfeo-toolbox (Grizonnet et al., 2017) command-line tools. 

 

 

 
Figure 7. Example of forest (green) and grassland (yellow) 

ground truth generated semi-automatically 
 

CNN predictions for mineral materials areas: Minerals       
objects (Figure 8) are not easy to extract, as they have no            
signature in DHM or radiometric bands.  
 

 

 
Figure 8. Example of mineral materials objects (path, railways, 

dumps, yard) 
 
The strict definition for mineral material class is: every area          
with a permeable but man-made coverage, including path,        
railways, yards, … It can be easily mistaken for asphalt or           
concrete. The common approach to this problem relies on         
massive manual annotation for each training zone. We rather         
choose to use a basic U-Net trained on a tiny subset of the             
training data manually labelled (5 km​2 over 100 km​2​). The          
network predictions over the 5 training areas are then         
post-processed (vectorization, simplification, merging with     
available vector data like road network) and manually corrected         
to constitute a ground truth. 
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3.1.3 Training dataset consistency: From each AOI, we       
extract square samples of 512 pixels width. 
The constituted training dataset is evaluated to ensure that each          
class is adequately represented.  
Here are few statistics on the dataset showing that it is quite            
balanced with only 2 classes under-represented: mineral       
materials and bare soil (see Table 2).  
 

stat value 
share_multilabel 0.02 
entropy 0.98 
nb_class 4.72 
nb_samples 7777 

Table 1. Global statistics of the dataset 
 
Table 1 gives global statistics with: 

● share_multilabel ​: Overall share of pixels with      
multiple classes. 

● nb_class​: Mean of the number of classes present in         
each sample 

● entropy​: Mean of the class distribution entropy for        
each sample. For each sample, the entropy is at least 0           
if a single class is represented and at most log(C) with           
C the number of classes. The entropy of a sample is           
log(C) if every class is equally represented. The        
greater the entropy, the semantically richer the sample        
is. 

● nb_samples​: the number of samples in the dataset. 
 

class pixel_frequency 
building 0.12 
forest 0.28 
grassland 0.2 
asphalt 0.12 
mineral materials 0.02 
bare soil 0.01 
water 0.1 
unlabelled 0.17 

Table 2. Per class statistics 
 
3.2 Benchmarking configurations 

The dataset is split in train|test|validation parts: 
● training set represents 64% of the total 
● validation set (16% of the total) used between each         

epoch to prevent overfitting and decide when       
convergence is reached 

● test set (20%) is used to provide the metrics reported          
in the following paragraphs 

The experiment is run on a desktop computer with the following           
characteristics: Intel(R) Core(TM) i7-6950X CPU @ 3.00GHz       
and 16Gbits of RAM and a GPU NVIDIA GeForce RTX 2070           
with 8Gbits of RAM. 
The source code of the processing pipeline is based on pytorch           
and will be made available soon. 
 
Training hyper-parameters are: 

● training on 300 epochs with a patience of 20 (if loss           
do not decrease on the validation set for 20 epochs,          
the training is stopped) 

● learning rate starts at 0.001 and is halved when the          
loss on validation does not decrease 

● Adam optimizer 
Every network is trained from scratch. 

We use basic data augmentation with a randomized 90-degree         
rotation. 
 
3.2.1 Configuration performances: The measure used to      
compare configurations is the Intersection Over Union (IOU)        
index also known as the Jaccard index described by formula 1.           
This index measures the overlap between prediction and ground         
truth. It is preferred to pixel accuracy as it is not affected by             
class imbalance. The following table presents IOU results (in         
percentage) computed on the test dataset which has 1935         
samples. 
 

model loss building forest grass asphalt mineral bare soil water 
CE 77.76  84.14 74.56 77.68 40.81 72.82 96.12 
BCE 77.9 84.74  75.23  77.42 41.20 74.91 95.85 
WCE 72.99  80.39  69.08 62.48 20.50  57.86  93.04 
Combo 77.60  84.75 74.80 77.56 39.44  72.12 95.69 
CE 77.27 84.75 73.67 71.62 21.67 36.96 93.24 
BCE 76.60 84.06 72.31 71.07 21.64 9.990 93.09 
WCE 76.55  83.40 72.37 69.85 27.26 32.73  94.31 
Combo 77.27 85.27 73.61 71.12 21.38 36.67 94.38 
CE 82.66  85.83 77.78 79.36 46.59 82.57 96.43 
BCE 82.32  86.95 78.42 77.98 41.85 86.77 97.46 
WCE 81.78  83.97 77.26 76.63 41.57 89.54 96.75 
Combo 82.49  87.47 78.87 77.70 45.23 77.35 97.59 

Table 3. IOU in percentage for each class and architecture 
configuration 

 
The overall result is quite good even if we note a severe defect             
for mineral material class which is known to be problematic.          
The training dataset is not very reliable for this class and it is a              
real challenge even for a human eye to distinguish between          
concrete and mineral material on proposed images.  
 
 
3.2.2 Analysis: Although it has more trainable parameters,       
Resnet18 based models perform equally with simple U-Net or         
even worse for difficult classes (mineral materials and bare         
soil). It seems that our dataset is too small to be able to benefit              
from the complexity of Resnet18.  
 

number of parameters training time/epoch 
U-Net 453 393 9 minutes 
Deeplab V3+ 6 236 784 11 minutes 
Resnet18 24 507 344 16 minutes 
 

Table 4. Global training figures 
 
DeeplabV3+ architecture with its atrous convolution feature       
performs better than U-Net based models.  
 
Loss performances are quite equivalent for this experiment. We         
note that the use of Binary Cross Entropy degrades measured          
performances and combo loss (BCE + Jaccard loss) improves         
IOU for many classes but to a relatively limited extent. 
 
3.2.3 Visual comparison: Results are generally equivalent,      
though we can point out some minor differences. Deeplab         
models delineate objects more precisely than U-Net and give         
better performance on small objects. 
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Figure 9. Comparison of U-Net and Deeplab binarized 
predictions (top: RVB images, middle: U-Net predictions and 
bottom: Deeplab predictions) for mineral materials and forest 

classes. 
 
Figure 9 shows in the first column dirt pitches being segmented           
more precisely with Deeplab and in the second column building          
being extracted by Deeplab model while ignored by U-Net.  
 
Whereas visual differences between CE, BCE or even Combo         
losses are not significant, WCE loss performs better for         
subsidiary classes. Mineral materials or bare soils segmentation        
get improved. 
 

Figure 10. Comparison of BCE and WCE losses binarized 
predictions (top: RVB images, middle: BCE predictions and 
bottom: WCE predictions) for mineral materials and building 

classes. 
 
 
3.3 Global land cover map from model predictions 

Having a trained model performing well on test images is one           
thing many studies would settle for. But the final purpose here           
is to produce a global vectorized land cover map describing          
elementary objects. 
 
3.3.1 From model predictions to stitched map: A trained        
model predicts probability of class belonging for tiled images         
also called patches. Stitching those predicted tiles together is         
challenging. Vignetting effects can appear on predictions due to         
a poor consideration of models' receptive fields. As (Bohao         
Huang et al, 2018) points out, modern Convolutional Neural         
Networks used in this article do not guarantee translational         
equivariance due to zero-padding and strides operations       
underlying. 
We present results of 2 methods to perform a smooth          
combination of predictions: 

● clipping edges of patches 
● blending predictions with a windowing function 

 
Clipping edges of patches: The following predictions are made         
on larger tiles (2048 x2048 pixels) to optimize the available          
GPU memory . A fishnet is calculated with an overlap size           
chosen with respect to  the network receptive field. 
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Figure 11. Overlapping tiles for prediction 

 
The resulting map is an image where the connections between          
the tiles are barely visible. 
 

 

 
Figure 12. Extract of stitched raw predictions for building class 
 
Blending prediction with a windowing function: Work from        
(Chevalier, 2017) has been reused to improve the final result.          
The algorithm makes several predictions of a single tile with          
transformations applied (rotations, mirrors) and averages them.       
Then it uses a 2d spline function to blend overlapping          
predictions together. 
 
The result is of very high quality. Not only each pixel prediction            
is much more precise, but connections between prediction tiles         
have totally disappeared. 
 
 

Figure 13. Extract of predictions for building class (left column) 
and asphalt (right column) with edge clipping (middle row) and 

smooth blending (bottom row) 
 
Vectorized land cover map: Figure 1 shows an extract of the           
final product build upon predictions map from DeeplabV3+        
model with BCE loss. 
 

 

 
Figure 14. Vectorization of asphalt class, from left to right and 

top to bottom: heat map from predictions, comparison of 2 
double-threshold processes (yellow and red), vector 

 
The second image in Figure 14 shows how we can adjust the            
thresholds to retrieve more objects from predictions. The final         
result is refined with a removal of elements of small size and            
geometry simplification. 
 
 

4. CONCLUSIONS 

This article gives hints to build a training dataset for classes           
asphalt, bare soil, buildings, grassland, mineral materials       
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(permeable artificialized areas), forest and water from scratch        
when full manual annotation is not an option. 
DeeplavV3 architecture shows very good results for semantic        
segmentation of aerial images.  
Dataset quality is the most important criteria to obtain good          
results on prediction. Prediction concatenation is a real        
challenge when a seamless heat map is expected.  
This experiment has been conducted within a project whose         
objective is modernizing production lines for land cover        
products on French territory. Land cover maps produced on         
Gironde department are then derived to a generalized product         
and will be used by public authorities to monitor the land           
consumption. 
In the future, the dataset will be completed with new images           
captured at other dates and in other departments (with different          
lighting conditions). We will study how the model can be          
generalised with more data augmentation techniques dealing       
with radiometry. 
The current experiment focuses on urban areas but there is a           
work in progress to generate land cover maps on rural areas           
with slightly different classes though. 
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