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ABSTRACT: 

 

Non-Photosynthetic Vegetation (NPV) coverage is an important parameter for wildfire danger rating, prevention of soil erosion and 

carbon sequestration estimations. A group of spectral indices have been developed to map NPV distribution based on hyperspectral 

data or particular application scenarios. However, the NPV coverage estimated by those indices are not stable because they are 

sensitive to soil moisture or snow cover. This paper aims to develop a spectral linear transformation named as Non-photosynthetic 

Vegetation Index (NPVI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate non-photosynthetic 

vegetation (NPV) coverage in north Asian steppe. The validation result of field spectral experiment and field survey shows the NPVI 

has good potential to estimate NPV coverage and are robust to soil moisture and snowmelt. Furthermore, the seasonal variation of 

NPVI offers the possibility to monitor the wildfire risk and grazing intensity. 
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1. INTRODUCTION 

Non-Photosynthetic Vegetation (NPV) consists of dry/dead 

grasses, plant litter, dead foliage and dead wood. NPV coverage 

in steppe is an important parameter for many applications 

including prevention of soil erosion, wildfire danger rating, 

carbon sequestration estimations and nutrient cycling (Daughtry 

et al., 2005). A group of spectral indices have been developed 

to map NPV distribution. For example, hyperspectral cellulose 

absorption index (CAI) (Elmore et al., 2005; Nagler et al., 2003) 

can well extracts NPV coverage based on the special peak of 

lignocellulose absorption around 2100 nm, however its 

requirement on narrow-width spectral bands limits its 

application on most available satellite sensors. Other Indices 

using wide-width spectral bands, such as Dead Fuel Index (DFI), 

Normalized Difference Index (NDI) and Soil Adjusted Corn 

Residue Index (SACRI) (Cao et al., 2010; McNairn and Protz, 

1993; Biard et al., 1995; Van Deventer et al.,1997), could 

discriminate NPV in particular scenarios. For example, indices 

based on Landsat Thematic Mapper (TM) (e.g. NDI, SACRI) 

were proposed to retrieve NPV coverage in NPV-soil mixture 

scenario by employing the absorption feature of cellulose in 

short wavelength infrared (SWIR) bands. Unfortunately, they 

often fail due to the landscape consisting of more land cover 

components, like the mixture of Photosynthetic Vegetation 

(PV), soil and NPV (Xu et al., 2014). Moreover, Landsat 

sensors cannot reveal the seasonal variation of NPV due to its 

low revisiting frequency. Remote sensor at coarser spatial 

resolution, e.g. Moderate Resolution Imaging 

Spectroradiometer (MODIS), offer the possibility of monitoring 

seasonality of NPV thanks to its higher revisiting frequency. 

Dead Fuel Index (DFI) developed for the landscape of three-

component mixture (NPV, PV and soil) has been used to 

estimate the NPV coverage based on MODIS imagery, which is 

expressed as: 

7 1
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DFI 100 (1- )
R R

R R
=         (1) 

where R1, R2, R6 and R7 are the reflectance of MODIS bands 1, 

2, 6 and 7, respectively. This index combines the spectral 

reflectance peak in near infrared (NIR) band of PV, and 

absorption valley of SWIR band of NPV; and is able to estimate 

NPV coverage in the dry season when the wildfire risk is high. 

However, DFI developed based on spectral mixture model lacks 

verifications in the scenarios that includes more complex land 

cover components and seasonal variations. Especially, DFI of 

snow cover exhibits very high value, thus overestimates NPV 

for the scenario with snow cover. Besides, the spectral 

absorption features of cellulose employed by the above indices 

are somehow overlapped with the water absorption feature, 

leading to the sensitivity to soil moisture. Thus, these indices 

fail to capture the seasonal variation of NPV due to their 

sensitivity to soil moisture or snow cover (Quemada and 

Daughtry, 2016). The most NPV indices proposed previously 

were designed based on the expert experience on several 

spectral features of limited components, thus often work poorly 

in more complex scenarios. In this study, instead, we attempt to 

develop a novel index through learning from a large spectral set 

with more land cover components and larger spectral variations. 

The influence of soil moisture variation and snow-cover 

contamination were considered when establishing the spectral 

set. Then, the simplest learning method, multiple linear 

regression model, was used to derive a novel linear spectral 

transformation for MODIS data to estimate NPV based on the 

established spectral set.  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-221-2020 | © Authors 2020. CC BY 4.0 License.

 
221

mailto:chenxuehong@bnu.edu.cn


 

2. METHODOLOGY 

The novel linear spectral transformation named as Non-

Photosynthetic Vegetation Index (NPVI) is developed based on 

the combination of spectral mixture simulation and multiple 

linear regression model in this study. The flowchart is shown in 

Fig.1.  

 

 
Fig.1 Development of NPVI 

 

First, typical endmember spectra of NPV, PV, soil with 

different moisture and snow were collected by Analytical 

Spectral Devices (ASD) Field Spec Pro spectroradiometer 

(Fig.2). The four kinds of PV spectra represent the main green 

vegetation species in north Asian steppe. The soil moisture of 

selected soil spectra was ranged from 2.43% to 25.78% 

considering the rainfall and snowmelt. Second, the endmember 

spectra were resampled with MODIS spectral response function. 

Third, mixed spectra were simulated by combining these 

endmembers and randomly generated coverages. The linear 

spectral mixture model could be expressed as:  

mix NPV NPV PV PV soil soil snow snow

NPV PV soil snowsubject to: 1

R f R f R f R f R

f f f f

= + + +

+ + + =

 (2) 

where Rmix refers the reflectance of mixture at MODIS band 1 

to 7. RNPV, RPV, Rsoil and Rsnow are the reflectance of each 

component after resampling with MODIS spectral response 

function. fNPV, fPV, fsoil and fsnow are the fraction of each 

component. They are range from 0 to 1. The distribution of the 

randomly generated fraction is shown Fig. 3. 

 
Fig.3 The distribution of generated fractions: (a) NPV; (b) PV; 

(c) soil; (d) snow. 

 

Finally, a linear transformation of MODIS bands was acquired 

by regression between simulated NPV coverage and mixed 

spectra, which is expressed as: 

1 2 3 4

5 6 7

NPVI 0.2 10.7 4.1 3.6 16.0

10.6 17.0 10.7

R R R R

R R R

= + + + −

− + −

  (3) 

where R1 to R7 are the reflectance of MODIS bands 1 to 7, 

respectively. 

 

 

 
Fig.2 Reflectance spectra of (a) NPV, the wavelength ranges of MODIS bands are located by grey columns; (b)PV, (c)soil and 

(d)snow 
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Fig.4 shows the values of NPVI and DFI for different land 

cover components. It shows that NPVI can well distinguish 

NPV from PV, soil with different moisture, and snow. In 

contrast, DFI confuses NPV with the mixture of snow and wet 

soil.  

 
Fig.4 The distribution of NPVI (a) and DFI (b) for the four 

components 

 

For the above simulated mixed data, NPVI shows a good linear 

correlation with NPV coverage (Fig. 5b). As a comparison, DFI 

shows much poorer correlation with simulated NPV coverage 

because of the influence of soil moisture and snow 

contamination (Fig. 5a). 

 
Fig.5 Relationship between NPV coverage and (a) DFI and (b) 

NPVI for the simulated data. Red, green and blue represent the 

different soil moisture ranging from 2.43% to 25.78% 

 

3. RESULT 

Field spectral experiments and plot investigated data were used 

for quantitatively validating the performance of NPVI at 

different scales. The validation results of DFI were also showed 

for comparation.  

 

3.1 Validation result of field spectral experiment 

To measure the sensitivity of NPVI to soil moisture, a group of 

NPV-soil mixed spectra were measured through a field 

experiment (Fig. 6). The NPV coverage varied from 0 to 1 and 

soil moisture set at 10%, 16% and 21%. Then, NPVI and DFI 

were calculated based on the measured mixed spectra through 

MODIS band simulation, respectively. As shown in Fig.7, 

NPVI (R2 = 0.86) performs much better than DFI (R2 = 0.086) 

in estimating NPV coverage. With the increase of soil moisture, 

the sensitivities of DFI and NPVI to NPV coverage become 

worse, whereas NPVI remains a good linear relationship with 

NPV coverage even in the wet soil background. 

 Fig.7 Relationship between NPV coverage and DFI (a), NPVI 

(b) in field experimental data. Red, green and blue respectively 

represent soil moisture of 11% ,16% and 21%. 

 
Fig. 6 (a) Experiment designment; (b) Samples with different NPV coverage 

 
3.2 Validation result of field survey 

In order to examine the performance of NPVI on a larger spatial 

scale, we checked the relationship of NPVI at MODIS pixels 

and the corresponding NPV coverage sampled through field 

survey. Field survey NPV coverage data at 64 plots were 

collected in the autumn of 2004, 2007 and 2017 (Fig. 8a) and 

the corresponding MOD09A1 reflectance at sample plots were 

extracted to calculate NPVI and DFI. The results show that 

NPVI is also better correlated with NPV than DFI in MODIS 

pixel scale (Fig. 9). The higher r-square of NPVI suggests its 

better relationship with NPV coverage even without snowmelt 

or wet soil background.                     
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Fig.8 (a) Plots of field survey data, (b) Typical temporal profiles of NDVI, DFI and NPVI in typical grassland in 2017 

 

 
Fig.9 Relationship between measured NPV coverage and 

(a)DFI, (b)NPVI in 2004 (red), 2007(green) and 2017(blue) 

 

3.3 Validation result of seasonal variation  

Furthermore, the seasonal profiles of NPVI and DFI derived 

from MODIS data in 2017 shows that NPVI can capture the 

reasonable seasonal variation of NPV coverage (Fig.8b). As a 

reference, the NDVI time series (green line in Fig.8b) shows the 

variation of PV. In the growing season, both of DFI and NPVI 

are negatively correlated with NDVI because the vegetation 

growth could reduce the NPV coverage. NPVI is low in winter 

due to the snow contamination while DFI shows unreasonably 

high value because of its high value under snow cover 

background. The overestimation of NPV coverage could lead to 

misleading in the wildfire risk assessment in the winter. On the 

contrary, two peaks of NPVI in April and September correctly 

correspond to high-risk seasons of wildfire.  

 

4. CONCLUSION AND DISCUSSION 

The novel spectral linear transformation, developed from linear 

spectral mixed model of 4 components mixture of NPV, PV, 

soil and snow, can well estimate NPV coverage and capture the 

seasonal change of NPV coverage in north Asian steppe. This 

MODIS-based index, NPVI, was evaluated by field spectral 

experiment and field survey. Validation results suggests NPVI 

shows more robust performance than DFI. The time series of 

NPVI could help to monitor the wildfire risk and grazing 

intensity. 

However, the NPVI still need further validations for 

applications. First, the selection of feature spectra in the linear 

spectral mixed model is mainly based on the north Asian steppe, 

and the performance of NPVI in other regions need more 

examinations. Second, it is lack of quantitative validation of the 

seasonal curve of NPVI.  Thus, validations in more areas and 

more periods will be conducted in in the future. 
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