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ABSTRACT: 
 

Modelling of land surface temperature (LST) is conducted to be able to explain the spatial and temporal variations of LST using a set 

of explanatory variables. LST in a previous study was modelled as a linear function of vegetation cover and built up cover as 

quantified by the normalized difference vegetation index (NDVI) and the normalized difference built-up index (NDBI), respectively, 

and other variables, namely, albedo, solar radiation (SR), surface area-volume ratio (SVR), and skyview factor (SVF). SVF requires a 

digital surface model of sufficient resolution while SVR computation needs 3D volumetric features representing buildings as input. 

These inputs are typically not readily available. In addition, NDVI and NDBI do not fully describe the spatial variability of vegetation 

and built-up cover within an LST pixel. In this study, PlanetScope images (3m resolution) were processed to provide soil-adjusted 

vegetation index (SAVI) and VgNIR Built-up Index (VgNIR-BI) layers. The following gray level co-occurrence matrices (GLCM) 

were generated from SAVI and VgNIR-BI: Mean, Variance, Homogeneity, Contrast, Dissimilarity, Entropy, Second Moment, and 

Correlation. Random Forest regression was run for several cases with different combinations of GLCM features and non-GLCM 

variables. Using GLCM features alone yielded less satisfactory models. However, the use of additional GLCM features in 

combination with other variables resulted in lower MSE and a slight increase in R2. Considering NDBI, NDVI, 

SAVI_GLCM_contrast, VgNIR-BI_GLCM_contrast, VgNIR-BI_GLCM_dissimilarity, and SAVI_GLCM_contrast only, the RF 

model yielded an MSE=1.657 and validation R2=0.822. While this 6-variable model’s performance is slightly less, the need for DSM 

and 3D building models which are necessary for the generation of SVF and SVR layers is eliminated. Exploratory regression (ER) 

was also conducted. The best 6-variable ER model (Adj. R2=0.79) consists of SVR, NDBI, NDVI, SAVI_GLCM_second_moment, 

VgNIR-BI_GLCM_mean, and VgNIR-BI_GLCM_entropy. In comparison, OLS regression using the 6 non-GLCM variables yielded 

an Adj. R2=0.691. The results of RFR and ER both indicate the value of GLCM features in providing valuable information to the 

models of LST. LST is best described through a combination of GLCM features describing relatively homogenous areas (i.e., 

dominant land cover or low-frequency areas) and the more heterogenous areas (i.e., edges or high-frequency areas) and non-GLCM 

variables. 
 

 

 

1. INTRODUCTION 

As cities continue to densify and expand, urban heat islands 

(UHI) are increasingly becoming larger and more persistent. 

UHIs have adverse impacts in urban environments such as 

increases energy consumption and thermal discomfort 

(O’Malley et al., 2014, Yang et al., 2016). Surface urban heat 

islands are examined using land surface temperatures (LST) 

estimated from thermal bands of satellite systems such as 

Landsat, MODIS, and Sentinel-3. According to Zhou et al. 

(2018), more than 70% of UHI studies have utilized Landsat 

and MODIS images, largely due to their temporal resolution and 

availability.  

 

Beyond examining the spatio-temporal variation of LST, efforts 

have been made in modelling or estimating LST. These are 

attempts to understand how LST are affected by the mix of 

environmental variables and to possibly estimate LST for 

different future scenarios (e.g., urban expansion, decrease of 

vegetation cover). Variables describing the distribution of land 

use land cover types, materials, urban morphology, and solar 

irradiance, among others, have been used in previous studies to 

model LST (see Alcantara et al., 2019, Baloloy et al., 2019, 

Cañete et al., 2019). 

 

The main objective of this study is to evaluate the usefulness of 

texture measures derived from high-resolution satellite image in 

estimating Landsat-derived land surface temperature (30-m 

resolution). Gray-level co-occurrence matrix (GLCM) textural 

images generated from 3-meter PlanetScope-derived vegetation 

and built-up layers were subjected to regression modelling 

together with commonly used layers (e.g., NDBI, NDVI). The 

results of this study could be used in understanding how spatial 

variation of features within a pixel affects the LST at that 

location.  

 

2. DATA AND METHODS 

2.1 Study Area 

Situated in the northeast portion of Metro Manila, Quezon City 

is close to the region’s major activity centers, including the 

Ninoy Aquino International Airport (NAIA). It is a highly 

urbanized city with an area of 16,112.58 hectares. Among the 

sixteen (16) cities and one (1) municipality in the region, It is 

the largest and almost one-fourth the size of Metro Manila. It 

also has the largest total population of over 2.9 million 

according to the 2015 Census of Population. Composed of 142 

barangays (villages), the city is mostly residential and 

commercial. As per World Population review 2019, its average 

population density is approximately 18,000 residents per sq. km 

with a recent annual population growth rate of more than 2%. 

LST hotspots are frequently and commonly found in Quezon 

City (Landicho and Blanco, 2019) 
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Figure 1. Quezon City in Metro Manila, Philippines 

 

2.2 Methodology 

The general methodology is shown in Figure 2. Layers 

representing different variables related to or known to affect 

LST are prepared. In this study, the following data layers were 

from Alcantara et al. (2019): LST, NDVI, NDBI, Albedo, Solar 

Radiation (SR), Surface Area-Volume Ratio (SVR), and 

Skyview Factor. The generation of these layers were described 

in detail in Alcantara et al. (2019) and will not be presented in 

in this paper. PlanetScope image (acquired on 23 March 2019) 

is processed to generate soil-adjusted vegetation index (SAVI) 

and visible green NIR built-up index layers at 3-m resolution. 

GLCM textures layers are then derived from SAVI and VgNIR-

BI to characterize the spatial pattern of vegetation and built-up 

within an LST pixel. The layers, in various combinations, are 

subjected to Random Forest Regression (RFR) and Exploratory 

Regression to evaluate the importance and utility of GLCM 

textures in estimating LST.  

 

 

 

Figure 3. General workflow of the study.  

 

2.2.1 Landsat Image and Derivative Layers 

 

The derivation of LST from Landsat image was described in 

several papers (see Alcantara et al., 2019, Baloloy, et al., 2019). 

Previous studies have used the LST retrieval method developed 

by Jeevalakshmi et al. (2017) and implemented it using Google 

Earth Engine (GEE). The LST layer used in this study is shown 

in Figure 3. 

 

 

Figure 4. Spatial distribution of land surface temperature (LST) 

in Quezon City.  

 

 

2.2.2 SAVI and VgNIR-BI from PlanetScope Image 

 

Built-up index (VgNIR – BI) and SAVI (soil-adjusted 

vegetation index) were derived from PlanetScope to show the 

spatial variability of the vegetation and built-up cover at a 

higher resolution. For this study, the interest is the description 

of these spatial variability within each of the Landsat-based 

LST pixels. 

 

 2.2.2.1   SAVI 

 

SAVI was established to improve the sensitivity of NDVI to soil 

backgrounds. It minimizes the influence of soil brightness by 

introducing the soil conditioning index “L” in the formula 

below which was developed by Huete. The range of L is from 0 

to 1. The value of L depends on the specific environmental 

condition. When the vegetation cover degree is high, L is close 

to 1, and can only be applied to large canopy density and 

coverage (Xue and Su, 2017). But when L values are close to 

zero, SAVI is equal to NDVI (Royimani et.al). In this study, L 

=0.5 was used which is a common practice for most 

environmental conditions (Xue and Su, 2017).  

 

𝑆𝐴𝑉𝐼 =  
ρ𝑁𝐼𝑅 − ρ𝑅𝑒𝑑

ρ𝑁𝐼𝑅 + ρ𝑅𝑒𝑑 + 𝐿
 (1 + 𝐿) 

 
 Figure 5 shows the SAVI layer of Quezon City. Water areas 

(with very low SAVI value) were excluded in subsequent 

analysis. 

 

2.3.2.2 VgNIR Built-up Index 

 

 Visible (Vis) - based built up indices have a better potential in 

separating built-up lands from dry vegetation, which has been 

an important challenge in the application of spectral indices for 

classifying built-up lands from satellite imageries (Estoque and 

Muruyama, 2015). In this study, a layer was generated to show 

the spatial variability of the built-up areas in the region. The 
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visible green built up index (VgNIR-BI) formula used the 

visible green and NIR channel as shown below.   

 

𝑉𝑔𝑁𝐼𝑅 − 𝐵𝐼 =  
ρ𝐺𝑟𝑒𝑒𝑛 − ρ𝑁𝐼𝑅

ρ𝐺𝑟𝑒𝑒𝑛 + ρ𝑁𝐼𝑅
 

 

Figure 6 shows the VgNIR-BI layer of Quezon City. 

Water areas (with very high VgNIR-BI value) were 

excluded in subsequent analysis. 

 
 

 

Figure 5. Soil-adjusted vegetation index derived from 

PlanetScope image of Quezon City  

 

 

 

Figure 6. Visible green near infrared built-up index derived 

from PlanetScope image of Quezon City 

 

2.3.2.3 Textural Indices 

 

Gray-level co-occurrence matrix (GLCM) is a statistical method 

of examining texture that considers the spatial relationship of 

pixels (Suresh, 2012). Developed from a gray-level image, 

GLCM indicates the joint probability of distribution of a pair of 

gray levels at specific distance and orientation (Mhangara and 

Odindi, 2013). Haralick et al. (1973) described 14 statistics that 

can be calculated from the co-occurrence matrix with the intent 

of describing the texture of the image. In this study, eight 

GLCM textures were were generated from the SAVI and 

VgNIR-BI layers using a neighbourhood of 11 x 11 pixels and 

1-pixel shift in both x- and y-directions: Mean, Variance, 

Homogeneity, Contrast, Dissimilarity, Entropy, Second 

Moment, and Correlation.  See the equations used to calculate 

each feature (Table 1) and the brief definitions/descriptions that 

follow. The value of GLCM at the center of the 30-m LST pixel 

was utilized as the GLCM value for that pixel. 

 

 

Table 1. GLCM features computed from the vegetation index 

and built-up index layers. P(i,j) = GLCM value on element (i,j) 

and N = Number of  gray levels used in quantization process. 

 

Figure 7 shows a subset of the study area and the GLCM layers. 

The following are the description from Haralick et al. (1973), 

Ham (n.d.), and Mohanaiah et al. (2013). Mean (µ) is the grey 

level weighted sum of joint probabilities. Variance/Sum of 

Squares (σ2) is the variance of the intensities of all reference 

pixels in the relationship that contributed to the GLCM. 

Homogeneity measures how close the distribution of elements 

in the GLCM are to the GLCM diagonal. The intensity of the 

image or the local variations present in an image to show the 

texture fineness is measure by Contrast. For an image with no 

variation, contrast is zero. Dissimilarity measures the distance 

between pairs of objects (pixels) in the region of interest. 

Entropy is a measure of the disorder of an image. Angular 2nd 

moment/Energy/Uniformity measures the uniformity of the gray 

level distribution of the image. Images with a smaller number of 

gray levels have larger uniformity. Correlation measures the 

linear dependence of gray level values in the co-occurrence 

matrix, describing how correlated a pixel is to its neighbor over 

GLCM Feature Formula 

Mean ∑ ∑ 𝐼 ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Variance ∑ ∑(𝑖 − 𝜇2) ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Homogeneity ∑ ∑
1

1 + (𝑖 − 𝑗)2
∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Contrast ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Dissimilarity ∑ ∑ 𝑃(𝑖, 𝑗) ∗ |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Entropy − ∑ ∑ 𝑃(𝑖, 𝑗) ∗ log (

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑃(𝑖, 𝑗)) 

Second Moment ∑ ∑[𝑃(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Correlation 
∑ ∑ (𝑖, 𝑗) ∗ 𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
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the whole image. Its value ranges from 1 (perfectly positively) 

to -1 (perfectly negatively) correlated image, and infinity for a 

constant image (no variation image). 

 

 

Figure 7. Subset of the study area depicted as (from top-left, left 

to right) Satellite image, OSM map, and GLCM textures from 

VgNIR-BI: Mean, Dissimilarity, Variance, Entropy, 

Homogeneity, Second Moment, Contrast, and Correlation. 

 

2.2.3 Random Forest Regression 

 

Previous studies utilized ordinary least squares (OLS) 

regression to explain LST in terms of NDBI, NDVI, and other 

variables. OLS Regression minimizes the sum of squares of the 

residuals in estimating the linear relationship between the 

independent and dependent variables by minimizing the sum of 

the squares of the residuals (Butler, 1999).  

 

This study utilized random forest regression (RFR) to address 

the inherent limitations of linear regression techniques. Model 

inputs are the Landsat-based NDVI and NDBI, albedo, SVR, 

SVF, SR, and the PlanetScope-based GLCM features. The value 

of GLCM at the center of the 30-m LST pixel was utilized as 

the GLCM value for that pixel. RF was run for the following 

input variable cases: Case 1 (6 original variables, namely, 

NDBI, NDVI, SR, Albedo, SVR, SVF), Case 2 (SAVI_GLCM 

features), Case 3 (VgNIR-BI_GLCM features), Case 4 

(SAVI_GLCM features and VgNIR-BI_GLCM features) and 

Case 5 (A. all variables/features, B. selected variables/features 

from results of A). 

 

2.2.4 Exploratory Regression 

 

Exploratory regression was also conducted to create 6-variable 

regression models of LST and compare with the OLS model 

comprising of the non-GLCM variables. To remove redundant 

and statistically insignificant predictors and bring down the 

number of variables to 6, stepwise multilinear regression via 

backward elimination was performed. Percentage of Variable 

Significance (%Significance) and Maximum Variance Inflation 

Factor (VIF) were used as the exclusion criteria.  

 

3. RESULTS AND DISCUSSION 

3.1 Random Forest Regression Models  

Table 2 summarizes the performance of the RF regression 

models for the cases considered in this study. Case 1 resulted to 

MSE=1.559 and validation R2=0.835. NDBI, NDVI, and SVR 

are the top variables with variable importance of 34%, 33%, and 

20% respectively. Case 2 resulted to MSE=2.076 and validation 

R2=0.776. Mean, Correlation, and Contrast are the top 

SAVI_GLCM variables with variable importance of 43%, 15%, 

and 11% respectively. Case 3 resulted to MSE=1.975 and 

validation R2=0.789. Mean, Contrast, Homogeneity, and 

Dissimilarity are the top VgNIR-BI_GLCM variables with 

variable importance of 40%, 15%, 12% and 11% respectively. 

Case 4 resulted to MSE=1.851 and validation R2=0.802. 

VgNIR-BI_GLCM_mean, SAVI_GLCM_mean, VgNIR-

BI_GLCM_contrast, SAVI_GLCM_correlation, and VgNIR-

BI_GLCM_dissimilarity are the top variables with variable 

importance of 29%, 21%, 13%, 7%, and 7% respectively. 

Contrast feature is a measure of the amount of local variations 

present in an image. This local variation is not adequately 

accounted for by the mean GLCM texture measures. High 

values of GLCM contrast can be found in heterogeneous areas 

or areas with considerable variation in cover. It can be inferred 

however that using GLCM features alone yielded less 

satisfactory models compare to Case 1 model.  

Table 2. Performance of the random forest regression models 

Case 5 resulted to MSE=1.246 and validation R2=0.866. NDBI, 

NDVI, VgNIR-BI_GLCM_mean, SAVI_GLCM_mean, and 

SVR are the top variables with variable importance of 22%, 

16%, 16%, 11%, and 10%, respectively (Figure 8). The use of 

Case Variables MSE R2 

1 NDBI, NDVI, SR, Albedo, 

SVR, SVF 

1.559 0.835 

2 SAVI_GLCM features (with 

Mean, Correlation, Contrast as 

most important)  

2.076 0.776 

3 VgNIR-BI features (with Mean, 

Contrast, Homogeneity, and 

Dissimilarity as most important) 

1.975 0.789 

4 All GLCM features (with 

VgNIR-BI_GLCM_mean, 

SAVI_GLCM_mean, VgNIR-

BI_GLCM_contrast, 

SAVI_GLCM_correlation, 

VgNIR-BI_GLCM_dissimilarity 

as most important) 

1.851 0.802 

5 All features (with NDBI, NDVI, 

VgNIR-BI_GLCM_mean, 

SAVI_GLCM_mean, SVR as 

most important) 

1.246 0.866 
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additional GLCM features resulted in a decrease of MSE from 

1.559 (Case 1) to 1.246 (Case 5) and a slight increase in R2. 

Analysis of the scree plot of variable importance for Case 5 

indicates that NDBI, NDVI, SAVI_GLCM_contrast, VgNIR-

BI_GLCM_contrast, VgNIR-BI_GLCM_dissimilarity, 

SAVI_GLCM_contrast can be retained for a 6-variable model 

(Case 6). RF model of these 6 variables yielded an MSE=1.657 

and validation R2=0.822. While this 6-variable model’s 

performance is slightly less compared to Case 1, the need for 

DSM and 3D building models which are necessary for the 

generation of SVF and SVR layers is eliminated. 

 

 

Figure 8. Random forest-derived variable importance expressed 

in percentage 

 

 

3.2 Exploratory Regression Models 

Based on the resulting best 6-variable model (Adj. R2=0.79), the 

variables selected are SVR, NDBI, NDVI, 

SAVI_GLCM_second_moment, VgNIR-BI_GLCM_mean, and 

VgNIR-BI_GLCM_entropy. In comparison, OLS regression 

using the 6 RF Case 1 variables yielded an Adj. R2=0.691. The 

second best ER model has the following explanatory variables: 

SVR, NDBI, NDVI, SAVI_GLCM_entropy, VgNIR-

BI_GLCM_mean, and VgNIR-BI_GLCM_entropy. The third 

best ER model is composed of the following explanatory 

variables: SVR, Albedo, NDBI, NDVI, VgNIR-

BI_GLCM_mean, and VgNIR-BI_GLCM_entropy. It should be 

noted that NDBI and NDVI are key variables as they directly 

estimate the abundance of built materials and vegetative cover, 

respectively. VgNIR-BI_GLCM_mean is included in these 

three models, indicating the significant additional information 

provided by the mean textural layer derived from the built-up 

index VgNIR-BI. VgNIR-BI_GLCM_entropy proved to be 

significant since entropy feature measures the degree of disorder 

in the image. This degree of disorder which can be related to the 

way the built-up structures are arranged and interspersed with 

vegetative cover is not accounted for by NDBI and NDVI. 

 

3.3 On the importance of GLCM features 

Figure 8 show the variable importance of all variables (GLCM 

and non-GLCM). NDBI and NDVI are the two most important 

variables regardless of the models used. The GLCM mean 

features follow next and are found to be more important than 

SVR which describes in an integrated manner the form and size 

of the buildings and houses.  VgNIR-BI_GLCM_mean is also 

included in the top 3 ER models. In this study, as explained 

earlier, the GLCM textures were generated from PlanetScope-

derived vegetation and built-up index layers. Hence, they 

describe spatial variations within 30m x 30m LST pixels. 

Spatial (textural) relationships are not necessarily correlated 

with spectral data (Hall-Beyer, 2013) or derivatives spectral 

data such as vegetation and built-up indices. GLCM Mean, 

Homogeneity, Correlation and Second Moment are associated 

with patch interiors (Hall-Beyer, 2013; see Figure 7).  

 

It can be seen that after SVR, three texture measures, namely, 

VgNIR-BI_GLCM_contrast, VgNIR-BI_GLCM_dissimilarity, 

and SAVI_GLCM_correlation have higher variable importance 

compared to Albedo and SVF. Contrast, Dissimilarity, Entropy 

and Variance are commonly related to visual edges (Hall-Beyer, 

2013; see Figure 7). Edges in the spectral image are areas where 

abrupt transitions from one cover to another occur. LST at these 

transitional areas generally fall between higher LST ranges and 

lower LST ranges. Inclusion of these edge-related GLCM 

features allows the models to describe LST in less homogenous 

areas. 

 

In the RF and ER models with input GLCM features, patch 

interior-related and edge-related GLCM features are typically 

present in the same model. This implies that LST is best 

described through a combination of GLCM features describing 

relatively homogenous areas (i.e., dominant land cover or low-

frequency areas) and the more heterogenous areas (i.e., edges or 

high-frequency areas). 

 

 

4. CONCLUSION AND RECOMMENDATIONS 

The use of GLCM features alone yielded less satisfactory 

models compared to the model based on non-GLCM features. 

The addition of GLCM features to non-GLCM features in a 

random forest regression model led to a significant decrease in 

MSE. However, improvement in the validation R2 is very 

minimal. While the performance of a 6-variable model 

comprising of GLCM and non-GLCM features is slightly less 

compared to that of an all-non-GLCM model, the need for DSM 

and 3D building models which are necessary for the generation 

of SVF and SVR layers is eliminated. GLCM contrast provided 

significant information to the RF-based models. Based on 

exploratory regression (ER), the best models are a mix of non-

GLCM and GLCM features, though the non-GLCM features, 

specifically NDB and NDVI, are commonly more important 

than the GLCM features. In ER model, GLCM entropy proved 

to be significant. The results of RFR and ER both indicate the 

value of GLCM features in providing valuable information to 

the models of LST. Furthermore, it was observed that each 

model includes GLCM features describing patch interior and 

edges. 

 

It is recommended to further examine GLCM features in terms 

of kernel size and shift, and analyse how their explanatory 

power changes. Different resolutions of vegetation and built-up 

index layers should also be evaluated in terms of describing the 

spatial patterns within LST pixels. GLCM describes textures of 
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single variable. It would be interesting to examine metrics 

jointly characterizing patterns of vegetation and built-up 

indices. 

 

ACKNOWLEDGEMENTS  

This research is part of the Geospatial Assessment and 

Modelling of Urban Heat Islands in Philippine Cities (Project 

GUHeat) with Project No. 4028, 2019, funded and monitored 

by the Philippine Council for Industry, Energy and Emerging 

Technology Research and Development – Department of 

Science and Technology (PCIEERD - DOST). Utmost 

acknowledgement is given to Planet Labs for providing free 

access to the high-resolution PlanetScope image that was used 

in this study. 

 

REFERENCES 

Alcantara, C. A., Escoto, J. D., Blanco, A. C., Baloloy, A. B., 

Santos, J. A., and Sta. Ana, R. R.: GEOSPATIAL 

ASSESSMENT AND MODELING OF URBAN HEAT 

ISLANDS IN QUEZON CITY, PHILIPPINES USING OLS 

AND GEOGRAPHICALLY WEIGHTED REGRESSION, Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W16, 

85–92, https://doi.org/10.5194/isprs-archives-XLII-4-W16-85-

2019, 2019. 

 

Baloloy, A., Sta. Ana, R. R., Cruz, J. A., Blanco, A. C., Lubrica, 

N. V., Valdez, C. J., and Cajucom, E. P.: SPATIOTEMPORAL 

MULTI-SATELLITE BIOPHYSICAL DATA ANALYSIS OF 

THE EFFECT OF URBANIZATION ON LAND SURFACE 

AND AIR TEMPERATURE IN BAGUIO CITY, 

PHILIPPINES, Int. Arch. Photogramm. Remote Sens. Spatial 

Inf. Sci., XLII-4/W19, 47–54, https://doi.org/10.5194/isprs-

archives-XLII-4-W19-47-2019, 2019. 

 

Butler, N. A., 1999. The efficiency of ordinary least squares in 

designed experiments subject to spatial or temporal variation. 

Statistics & Probability Letters, 41(1), 73–81. doi: 

10.1016/s0167-7152(98)00126-6 

 

Cañete, S. F., Schaap, L. L., Andales, R., Otadoy, R. E. S., 

Blanco, A. C., Babaan, J., and Cruz, C.: ANALYSIS OF THE 

IMPACT OF VEGETATION DISTRIBUTION, 

URBANIZATION, AND SOLAR RADIATION ON THE 

SEASONAL VARIATION OF THE URBAN HEAT ISLAND 

EFFECT IN CEBU CITY USING LANDSAT AND GLOBAL 

HORIZONTAL IRRADIANCE DATA, Int. Arch. 

Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W19, 93–

100, https://doi.org/10.5194/isprs-archives-XLII-4-W19-93-

2019, 2019. 

 

Hall-Beyer, M., 2017. Practical guidelines for choosing GLCM 

textures to use in landscape classification tasks over a range of 

moderate spatial scales. International Journal of Remote 

Sensing, 1312-1338 

 

Ham, H. (n.d.). Texture Descriptor: Gray level Co-occurrence 

Matrix (GLCM). Retrieved April 2020, from 

https://socs.binus.ac.id/2017/03/09/glcm/ 

 

Haralick, R. M., Shanmugam, K., & Dinstein, I., 1973. Textural 

Features for Image Classification. IEEE Transactions on 

Systems, Man, and Cybernetics, SMC-3(6), 610–621. doi: 

10.1109/tsmc.1973.4309314 

 

Jeevalakshmi, D., Narayana Reddy, S., Manikiam, B., 2017. 

Land Surface Temperature Retrieval from LANDSAT data 

using Emissivity Estimation. International Journal of Applied 

Engineering Research, Volume 12, Number 20, 9679-9687. 

http://www.ripublication.com/ijaer17/ijaerv12n20_57.pdf 

 

Landicho, K. P. and Blanco, A. C.: INTRA-URBAN HEAT 

ISLAND DETECTION AND TREND 

CHARACTERIZATION IN METRO MANILA USING 

SURFACE TEMPERATURES DERIVED FROM MULTI-

TEMPORAL LANDSAT DATA, Int. Arch. Photogramm. 

Remote Sens. Spatial Inf. Sci., XLII-4/W19, 275–282, 

https://doi.org/10.5194/isprs-archives-XLII-4-W19-275-2019, 

2019. 

 

Mhangara, P., Odindi, J., 2013. Potential of texture-based 

classification on urban landscapes using multispectral aerial 

photos. S Afr J Sci 2013:109(3/4), Art.#1273 

 

Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L., 2013. 

Image Texture Feature Extraction Using GLCM Approach. 

Retrieved 2020, from http://www.ijsrp.org/research-paper-

0513/ijsrp-p1750.pdf 

 

O’Malley, C., Piroozfarb, P. A. E., Farr, E. R. P., Gates, J., 

2014. An investigation into Minimizing Urban Heat Island 

(UHI) effects: A UK perspective. Energy Procedia, 62(1), 72–

80. doi.org/10.1016/j.egypro.2014.12.368. 

 

Planet Imagery Product Specification: PlanetScope and 

Rapideye. (n.d.). Retrieved from 

https://www.planet.com/products/satelliteimagery/files/1610.06

_Spec Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf 

 

Royimani, L., Mutanga, O., Odindi, J., Zolo, K.S., Sibanda, M., 

Dube, T., 2019. Distribution of Parthenium hysterophoru L. 

with variation in rainfall using multi-year SPOT data and 

random forest classification. Remote Sens. Appl. Soc. Environ. 

13, 215– 223. https://doi.org/10.1016/j.rsase.2018.11.007 

Suresh, A., & Shunmuganathan, K. (2012). Image Texture 

Classification using Gray Level Co-Occurrence Matrix Based 

Statistical Features. European Journal of Scientific Research, 

75(4), 591-597. Retrieved 2020, from 

https://www.researchgate.net/publication/267708413_Image_Te

xture_Classification_using_Gray_Level_Co-

Occurrence_Matrix_Based_Statistical_Features 

Xue, J., & Su, B. (2017). Significant Remote Sensing 

Vegetation Indices: A Review of Developments and 

Applications. Journal of Sensors, 2017, 1-17. 

doi:10.1155/2017/1353691 

Yang, L., Qian, F., Song, D.-X., & Zheng, K.-J., 2016. Research 

on Urban Heat-Island Effect. Procedia Engineering, 169, 11–

18. doi: 10.1016/j.proeng.2016.10.002 

 

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, 

Y., Sobrino, J., 2018. Satellite Remote Sensing of Surface 

Urban Heat Islands: Progress, Challenges, and Perspectives. 

Remote Sensing, 11(1), 48. doi: 10.3390/rs11010048 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-23-2020 | © Authors 2020. CC BY 4.0 License.

 
28

http://www.ripublication.com/ijaer17/ijaerv12n20_57.pdf
https://www.planet.com/products/satelliteimagery/files/1610.06_Spec%20Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf
https://www.planet.com/products/satelliteimagery/files/1610.06_Spec%20Sheet_Combined_Imagery_Product_Letter_ENGv1.pdf



