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ABSTRACT:

The various forms of humanitarian operations include operations concerning the management of migrant movements and refugees.
Managing those operations is non-trivial. A large number of refugees have to be welcomed, registered, forwarded, and be given
supplies and accommodation. This is due to a lack of current and sufficient information about the refugees, making planning and
execution of operations challenging, expensive and cumbersome. The earlier information about the refugees is available, the better.
The method “Dwelling Detection”, conducted on satellite imagery of refugee camps, can provide large-scale heads-up information
fast, complementing information already available to operators at the ground. With “Dwelling Detection”, dwellings in a camp and
their extent are detected using machine learning methods. An estimate of inhabitants of the camp is computed using the number
and the extent of the detected dwellings. Our workflow uses a Faster R-CNN, an object detection network. To train the network,
we developed a fast training data annotation workflow. We use the dwellings detected by the faster R-CNN to estimate a number of
inhabitants. The quality of the analysis can be evaluated by a confidence-metric, computed out of the results of the Faster R-CNN.
The results can be used in humanitarian operations. We tested the workflow using different configurations and data. From those
tests, we give recommendations on how to build a dwelling detection classifier. We propose to humanitarian operators to build a
dwelling detection classifier according to our recommendations and use satellite images in actual humanitarian operations. This
could help to reduce stress for all people involved in a humanitarian (crisis) situation.

1. INTRODUCTION

In 2015/16, the biggest migration movements to Germany after
the Second World War occurred. The civil war in Syria and the
terror organization Islamic State (IS) mainly caused these mi-
gration movements. While being high throughout the whole
year, the number of refugees arriving in Germany and Aus-
tria intensified in September 2015 after the Dublin Regulation
was deferred. At peaks, more than ten thousand refugees were
crossing the Austrian-German border a day. Since then, the
global situation has not relaxed. The United nations High Com-
missioner for Refugees reported that in 2018 “the worlds for-
cibly displaced population remained yet again at a record high”
(“Global Trends - Forced Displacement in 2018” 2018). In
2020, the refugee situation at the Greek-Turkey border is tens-
ing (Rankin et al., 2020).

Due to a short reaction time and the high intensity of the mi-
gration movements, the humanitarian and administrative chal-
lenges are high during humanitarian operations. Refugees have
to be welcomed, registered, forwarded and be given supplies
and accommodation. Problems are caused by the high number
of people as well as by the lack of quickly available informa-
tion, making humanitarian and administrative operations chal-
lenging, expensive and cumbersome. As a complement to the
information already available at the borders themselves, satel-
lites can provide large-scale heads-up information fast. When
dealing with a migration situation, satellite images can give in-
formation about where refugees are way before they arrive at a
border giving first responders urgently needed lead-time.
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Dwelling Detection (Spröhnle et al., 2014), conducted on satel-
lite images of refugee camps, count dwellings in a camp even
far away from a border. Due to advances in satellite sensors
(Campbell, Wynne, 2011, p.187ff) and object detection using
machine learning (Zhao et al., 2019), this task can be auto-
mated. In Dwelling Detection, the number of inhabitants in
a camp can be estimated from the found dwellings, given a
knowledge of how many persons fit into dwellings of different
sizes. To count the dwellings, object detection machine learn-
ing methods can be used.

In this paper, a dwelling detection workflow using a Faster R-
CNN (Ren et al., 2017), used for object detection, is described.
To train the Faster R-CNN, we developed a fast training data
annotation workflow. The Faster R-CNN finds bounding boxes
around dwellings and outputs an estimate of people living in
a camp, derived from the number and the extend of the found
dwellings. The workflow produces results useful for humanit-
arian operations of the future, when immediate estimates are
required, helping the authorities and organizations managing
a humanitarian operation on one side, and the refugees them-
selves on the other side. After developing a workflow, we con-
ducted various tests: The training data annotation workflow was
tested using two different workflow configurations (see Figure
1), different results for colour- vs. greyscale- image-analysis
were compared and generalisation was tested using a second set
of satellite images (see Figure 2). From this, we derived recom-
mendations concerning the training of a deep neural network
dwelling detection classifier to be used in a dwelling detection
workflow.

The research described in this paper was conducted in the con-
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(a) Annotations made on colour images (b) Annotations made on grayscale-images

Figure 1. Example of the two annotation modes. The annotations shown are made on a satellite image of the Juba camp, South Sudan

text of the HUMAN+1 project. In the HUMAN+ project, a real-
time situational awareness system for efficient management of
migration movements was developed. Besides the dwelling de-
tection module, camera streams from cameras located at bor-
ders are analyzed, social media platforms are evaluated con-
cerning migration movement and reports from operators in the
field are collected and included in the situational awareness sys-
tem.

2. METHODOLOGY

In the following, we describe the approach “Dwelling Detec-
tion” in Section 2.1, the training process in Section 2.2 and the
final Dwelling Detection workflow in Section 2.4. Those sec-
tions are cited from (Wickert et al., 2020). Section 2.3 describes
extensive tests of the achieved Dwelling Detection classifier,
evaluating the performance and behaviour of various configur-
ations.

2.1 Deep Learning Dwelling Detection

Because individual humans cannot be seen on commercially
available satellite images, Dwelling Detection, conducted on
very high-resolution (VHR) satellite images of refugee camps
offers a fitting method for extracting valuable information about
humans from satellite imagery. Dwellings are counted and mul-
tiplied with an average, size-based factor of how many people
live in one dwelling. From this, an estimate over how many
people may live in a camp can be made. This information can be
used in medium-term planning of humanitarian operations dur-
ing migration situations, corresponding to the assessment phase
in the UNHCR operations management cycle. In the assess-
ment phase, “needs and the scale of the response required” are
identified (UNHCR, 2015). Reasons why these information are
not available for humanitarian operators include that camps are
run by private companies (Katz, 2016), that camps do not de-
velop as planned because of a rapid growth of inhabitants (Dalal
et al., 2018) or because camps are makeshift camps which are
created arbitrarily, sometimes called “jungles”; (Katz, 2016)
and (Beznec et al., 2016).

1 https://giscience.zgis.at/human/ (20 April 2020)

Experts traditionally do dwelling Detection by hand, taking a
lot of time which is not available in a crisis situation. Recent
advantages in image classification and object detection on im-
ages using Convolutional Neural Networks (CNN) allow first
approaches to automate this monotonous task; (Quinn et al.,
2018) and (Ghorbanzadeh et al., 2018). A Faster R-CNN of-
fers a state-of-the-art CNN architecture for object detection to
eventually develop a Dwelling Detection Workflow. To do so, a
complete machine learning workflow was created, following a
framework of preparing input data, defining the expected output
data and building a core network which constructs the intrinsic
and natural relationship of the input-output pair (Zhang et al.,
2016).

The workflow consists of three main steps. In the first step,
we use satellite images, which are annotated by hand to prepare
ground truth training data consisting of a train- and a validation-
set. We train a Faster R-CNN with those sets. In the last step,
the trained Faster R-CNN analyzes a new satellite image of a
camp. The classifier outputs a dwelling count and a people es-
timate, a confidence value concerning the Faster R-CNN ana-
lysis, and the processed input satellite image with found dwell-
ings marked.

2.2 Faster R-CNN Training

The input data in the described Dwelling Detection workflow is
VHR satellite imagery of refugee camps, identified at present
by a human being, taken from Google Earth (Google Inc.) due
to the lack of freely available satellite data. On those, the dwell-
ings forming a camp have to be found by an object detection
algorithm like Faster R-CNN and marked with a bounding box.

A Faster R-CNN is trained using supervised learning. The
ground truth data required to train the network consists of
bounding boxes around each dwelling. Further, the size of the
input images needs to be small enough to be efficiently handled
by a Faster R-CNN. Therefore, the input satellite image is split
up into 300 pixel x 300 pixel tiles. For speeding up the annota-
tion process, we developed a workflow building up on a seeded
region growing algorithm (Adams, Bischof, 1994). Each dwell-
ing needs to be point-annotated by a human; then each annota-
tion is used by the region growing algorithm as a seed to estim-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-233-2020 | © Authors 2020. CC BY 4.0 License.

 
234



(a) Image trained on

(b) New image used for validation

Figure 2. Example of one image (a) trained on and used in validation sets v orig and the new image (b) used in the validation sets
v new. Both images show the refugee camp Juba in South Sudan

ate the extent of one dwelling. The results of the region grow-
ing algorithm are then filtered to eliminate bad regions. Around
each region, a bounding box is defined and stored in the MS
COCO-annotation format (Lin et al., 2014).

We used satellite images of nine different refugee camps to
create training sets. The images have a huge variation in the
landscape surrounding the camps, the organization form of the
camps, the size of the camps and the quality of the images
caused by the recording distance of the satellite and the satel-
lites optical sensors. On each image, annotations on tiles of
the upper 50 % of the input image are added to a training set,
annotations on tiles on the lower 50 % of the input image are
added to a validation set.

For implementation and training of the Faster R-CNN, we used

an open source implementation (Girshick et al., 2018). A Faster
R-CNN consists of a pre-trained backbone network for feature
extraction, a Regional Proposal Network (RPN) for generating
object proposals and a classification network outputting bound-
ing boxes around found objects as well as a class vector for
each bounding box. As a backbone, we used ResNet50 (He
et al., 2016). We trained the initial network on one GPU for
36,000 iterations (epochs).

2.3 Test and Validation Workflow

We tested our workflow on various configurations using differ-
ent parameters to get a better knowledge about the strengths and
limitations of the developed classifier. Therefore, we trained
various Faster R-CNNs using different configurations. We eval-
uated the resulting Faster R-CNNs on several validation sets.
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Four parameters were varied during the tests. The first para-
meter were the input satellite images that were analysed by the
networks. The second parameter concerned the configuration
of the training data annotation workflow, for both training and
validation. The third parameter was the training time of the
trained networks. Finally, the colour-representation of the im-
ages trained with and the images that were analysed was varied
using greyscale- and colour-images.

Conf Training On Annotations On Train Time
n cc 36k Colour Colour 36,000 Iter.
n gc 27k Grey Colour 27,000 Iter.
n gc 36k Grey Colour 36,000 Iter.
n gg 27k Grey Grey 27,000 Iter.
n gg 36k Grey Grey 36,000 Iter.

Table 1. Training configurations of the networks tested

In total, we trained five Faster R-CNNs. The parameters varied
were the colour-representation of the training set, the config-
urations of the annotation creation workflow with annotations
made on colour- or greyscale-images, and the training time for
each network (see Table 1). Network n cc 36k, the initial net-
work, was trained for 36,000 iterations on colour-images with
annotations made on colour images. Two networks (n gc 27k
& n gc 36k) were trained on greyscale-images with annotations
made on colour-images with a training time of 27,000 or 36,000
iterations, respectively. Further, two networks (n gg 27k &
n gg 36k) were trained on greyscale-images with annotations
made on greyscale-images with a training time of 27,000 or
36,000 iterations, respectively.

To validate the results of the different networks, we created in
total six validation sets ordered in two sets of each three val-
idation sets (see Table 2). The first set (v orig) contains valid-
ation sets based on the images the networks were trained on.
They were created during the regular training data annotation
workflow. For the validation sets of the second set (v new), we
annotated new satellite images that the networks have not seen
before. These images show the same camps as the initial images
but were shot at different times and environmental conditions. It
has to be noted, that only some parts of the new satellite images
have been annotated, resulting in fewer but exemplary tiles per
image added to a validation set. In average around 200 dwell-
ings were annotated per camp. The three validation sets in one
set differ again in the colour-representation of the images con-
tained and the colour-representation on which the annotations
were made on (see Figure 3).

Conf Type Images Annotations On
v orig cc

Trained On
Colour Colour

v orig gc Grey Colour
v orig gg Grey Grey
v new cc

Not Seen
Colour Colour

v new gc Grey Colour
v new gg Grey Grey

Table 2. Configurations for the Validation Sets the different
networks were trained on

We tested each Faster R-CNN on each Validation Set. For each
test, Average Precision (AP) and Average Recall (AR) were cal-
culated. Average Precision “summarises the shape of the pre-
cision/recall curve” where “recall is defined as the proportion
of all positive examples ranked above a given rank” and preci-
sion is “the proportion of all examples above that rank which
are from the positive class” (Everingham et al., 2010). AP and
AR were calculated using the MS COCO detection evaluation

metric, where “AP and AR are averaged over multiple Inter-
section over Union (IoU) values” and “AP is averaged over all
categories”. Further “AR is the maximum recall given a fixed
number of detections per image, averaged over categories and
IoUs” (COCO Consortium, 2015). For AR, the COCO-metric
ARmax=100 was used. Further, the F1 score, which is the
harmonic mean of Precision and Recall was calculated. F1 is
defined as (Chinchor, 1992):

F1 =
(β2 + 1.0) ∗ P ∗R

β2 ∗ P +R
(1)

where P = Precision
R = Recall
β = Weight for Precision

We set β = 1 for the following tests to weight Average and
Precision equally.

2.4 Dwelling Detection Workflow

To analyse a satellite image using the trained Faster R-CNN, a
copy of the input image, which is cut in various 300 pixel x 300
pixel tiles to handle its size, is made. Each tile is analysed sep-
arately. Found objects are accepted as a dwelling if their class
security for being a dwelling is higher than a defined threshold.
This threshold for a found object being accepted as a dwelling
was set to a class security of 0.85, following (Ghorbanzadeh et
al., 2018).

The Dwelling Detection workflow has two outputs: The first
output is a copy of the input satellite image with all found dwell-
ings marked with a bounding box. The second output consists
of the number of found dwellings and the estimated number of
inhabitants in a camp. The number of inhabitants is estimated
with regard to the size of the found bounding boxes. To be flex-
ible to changing spatial resolutions on images made by different
satellites, the estimation algorithm has to be independent of this
information. We achieve this by assigning a fixed number of in-
habitants to the smallest and the largest dwelling found by the
Faster R-CNN. For the dwellings with sizes between those an-
chor points, the number of inhabitants in a tent is interpolated
linearly.

From our HUMAN+ project partner Johanniter Austria we got
the information, that in organized camps around ten people live
in a standard tent when the camp is a transit camp while in a
permanent camp around six people live in a tent. To encom-
pass these information and to further acknowledge differenti-
ating numbers of inhabitants in tents in unorganized camps we
set the number of inhabitants for the smallest dwelling found on
an image to three and the number of inhabitants for the largest
found dwelling on an image to twelve.

Further, a confidence metric indicating the certainty of the net-
work about the results of the analysis is calculated. The metric
is the ratio of the number of found objects Ocls ≥ 0.85 with a
class security higher or equal than 0.85 divided by the number
of objects Ocls ≥ 0.5 with a class security higher or equal than
0.5.

3. RESULTS

A complete dwelling detection machine learning workflow was
implemented, tested and validated. In section 3.1, we present
the results of the tests and validations described in 2.3. In sec-
tion 3.2, we discuss the machine learning and dwelling detec-
tion results. This section is cited from (Wickert et al., 2020).
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Figure 3. Workflow for creating the validation sets used for testing

3.1 Test and Validation Results

Table 3 shows the performance of the networks on images they
were trained on. Table 4 shows the performance on images that
the networks have not seen before. Looking at the results, vari-
ous observations and from these, assumptions about the per-
formance of a dwelling detection classifier can be made. From
the assumptions, we formulate hypotheses about the training
process and the performance of a Faster R-CNN when used for
dwelling detection. From these hypotheses, we derived con-
crete Dos and Don’ts for building a deep learning Dwelling De-
tection classifier.

Looking at Table 3, the most obvious and expectable observa-
tion is that the best results for one validation set are obtained
by the networks trained on training data created with the same
configuration. Network n cc 36k yields the best results for val-
idation set v orig cc, network n gc 27k and n gc 36k yield the
best results for validation set v orig gc and network n gg 27k
and n gg 36k yield the best results for validation set v orig gg.
This just shows the fundamental functionality of deep neural
networks, that when training a deep neural network, it learns a
representation of the input data (LeCun et al., 2015).

Besides the obvious, two observations can be made. The first
observation is that networks trained on colour images achieve
a higher maximum precision while networks trained on grey-
scale images achieve a better generalization over different val-
idation sets. Looking at Table 3, the highest average preci-
sion achieved is 68,2% on validation set v orig cc by network
n cc 36k, which was trained on colour images. This is a 3%
better AP-value than for network n gc 36k, which was trained
using the same annotations but on greyscale images, on its nat-
ive validation set v orig gc. This is further exemplified when
looking at the F1 score of network n cc 36k on validation set
v orig cc, which is also around 3% higher than that of network
n gc 36k on validation set v orig gc. We conclude, that colour
enables learning more detailed features while training. On the
other hand, looking at validation results for unknown images
(v new) in Table 4, the networks trained on greyscale-images
(networks n g) achieve better results than network n cc 36k
trained on colour images, which has the lowest F1 score on each
validation set. This indicates that networks trained on grey-
scale images learn a more general representation of the input
training data and therefore generalize better on unknown input
data. A possible explanation for that behaviour could be found
in (Geirhos et al., 2019): The authors show in experiments that

CNNs tend to learn textures of objects instead of object shapes.
Making textures more abstract by using greyscale images could
force the networks to focus learning on object shapes instead of
object textures, boosting generalization.

The second significant observation is that training networks
longer does not improve performance and can lead to overfit-
ting (Srivastava et al., 2014) fast. An exemplary case is network
n gg 36k in Table 3. It outperforms its shorter trained version
network n gg 27k only on validation set v orig gg, the valida-
tion set build using the same configurations as the training data
used to train networks n gg 27k and n gg 36k. On v orig gg,
the F1-score of network n gg 27k is significantly lower than
that of network n gg 36k. On validation set v orig gc, both
networks have the same performance, both in AP and AR and
in validation set v orig cc, the validation set with data the most
different from the the networks training data, network n gg 27k
slightly outperforms network n gg 36k. The better general-
ization properties of shorter trained networks can be further
validated looking at the results in Table 4: Network n gc 27k
and n gg 27k yield better results with continuously higher F1-
scores on every validation set than their longer trained versions
Networks n gc 36k and n gg 36k.

Concerning the quality and the differences between the annota-
tion methods, we made only observations and we could not
draw conclusions. Concerning annotations made on greyscale
images, it can be noted that in Table 3, the networks trained
using these annotations (n gg 27k and n gg 36k) achieve a sig-
nificantly lower maximum AP and AR on their original valid-
ation set v orig gg than the networks trained using annotations
made on colour images. Still, when looking at those networks
unfamiliar validation sets v orig cc and v orig gc, they achieve
better results as Networks n cc 36k, n gc 27k & n gc 36k on
their unfamiliar validation set v orig gg, with an AP around
10% higher and an AR around 15% higher. For generaliza-
tion still, the colour representation of the training data seems to
be of higher importance than the annotation method. In Table
4, network n cc 36k achieves the worst results in all categories
(except in AR at validation set v new cc) while the networks
trained using greyscale training data have continuously similar
results which are better than those of network n cc 36k. An-
other interesting observation concerning annotations made on
greyscale images is, that all networks achieve better results on
validation set v new gg, containing annotations made on grey-
scale images than on validation set v new gc with annotations
made on colour-images.
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Validation Set v orig cc v orig gc v orig gg
Metric AP AR F1 AP AR F1 AP AR F1
Network
n cc 36k 68,2% 72,0% 70,0% 55,9% 61,1% 58,4% 27,6% 35,0% 30,9%
n gc 27k 57,9% 63,4% 60,5% 60,9% 65,8% 63,3% 23,7% 30,4% 26,6%
n gc 36k 61,6% 66,2% 63,8% 65,2% 69,1% 67,1% 23,6% 30,9% 26,8%
n gg 27k 36,0% 48,2% 41,2% 35,4% 47,7% 40,6% 42,6% 48,1% 45,2%
n gg 36k 35,5% 47,8% 40,7% 35,5% 47,9% 40,8% 46,2% 50,6% 48,3%

Table 3. Validation Results on the images trained on

Validation Set v new cc v new gc v new gg
Metric AP AR F1 AP AR F1 AP AR F1
Network
n cc 36k 6,6% 13,0% 8,8% 5,3% 11,7% 7,3% 9,2% 14,9% 11,4%
n gc 27k 8,4% 12,8% 10,1% 8,8% 13,3% 10,6% 10,1% 14,4% 11,9%
n gc 36k 8,2% 12,5% 9,9% 8,3% 12,8% 10,1% 9,8% 13,7% 11,4%
n gg 27k 7,9% 13,9% 10,1% 8,4% 14,6% 10,7% 11,1% 17,2% 13,5%
n gg 36k 7,3% 12,7% 9,3% 7,7% 13,4% 9,8% 9,7% 15,4% 11,9%

Table 4. Validation Results on unknown images

3.2 Dwelling Detection Results

We tested and trained the Dwelling Detection Workflow using
the initial Faster R-CNN (network n cc 36k) on nine satellite
images of refugee camps with different sizes, from different
parts of the earth, on different landforms and with varying im-
age quality.

To estimate the number of inhabitants in a camp we used the
workflow and parameters described in Section 2.4, which is in-
dependent of the spatial resolution of the input satellite image
and therefore works without image-specific configurations.

To evaluate the estimate numbers, real-world numbers of inhab-
itants for each camp, measured at around the time the satellite
image was shot, were researched in newspaper articles. It has
to be noted that these numbers are not official numbers and are
therefore fuzzy. Further, the estimations are based on no con-
crete knowledge of an individual camp. Therefore, the absolute
numbers calculated by our Dwelling Detection workflow can-
not be assumed as the real numbers, but function as an early
warning system, stating an order of magnitude of the number of
inhabitants.

Consequences from the result of the workflow have to be taken
in accordance to the computed confidence metric and the visual
output of the network. The confidence metric makes a statement
about how well the Faster R-CNN could work with the input
image. A low confidence means that there were many objects
the network did not discard in the first place, but the network is
also not sure about the objects being a dwelling. In that case, we
recommend humanitarian operators to gather more information
from different sources concerning the camp and the surrounding
area. A higher confidence indicates that humanitarian operators
can include the order of magnitude of displaced peoples in their
medium-term planning.

4. DISCUSSION

In section 4.1, we discuss the operability of the general Dwell-
ing Detection workflow citing (Wickert et al., 2020). From the
networks behaviour in the tests and validation, we derive re-
commendations concerning the development of Dwelling De-
tection classifiers in section 4.2. In section 4.3, we give a critical
assessment of the developed techniques concerning the usage in
real humanitarian operations, following (Wickert et al., 2020).

4.1 Dwelling Detection Workflow

We developed the dwelling detection workflow with the goal of
fast applicability. This goal was reached successfully by using
open software and data, speeding up the slow and cumbersome
process of ground-truth generation and annotation and build-
ing convenient workarounds when information about the data
was missing. Nevertheless, there are tradeoffs between accur-
acy and applicability:

The seeded region growing algorithm used for speeding up an-
notating ground truth data can be improved using modern image
segmentation algorithms (Zhu et al., 2016). A more accurate
ground truth segmentation would also allow switching the deep
learning architecture from a Faster R-CNN to a Mask R-CNN
(He et al., 2017). Mask R-CNN builds up on the Faster R-CNN
architecture and allows image segmentation on top of object
detection in images. Further accuracy can be achieved by using
georeferenced satellite imagery where the spatial resolution of
a pixel is known. Combining a pixel-based image segmenta-
tion with the spatial resolution of a satellite image would allow
calculating the actual size of a dwelling.

4.2 Faster R-CNN behaviour

From the tests and their results, we can extract some recom-
mendations for training a deep learning dwelling detection clas-
sifier. Most importantly, we recommend having a high vari-
ance in training data with different types of camps and land-
scapes and satellite data with differing image quality, spatial
resolution and environmental conditions. Especially in Dwell-
ing Detection, the problem of camp types is emerging. Wild
camps as well as organized camps need to be analysed with the
same quality by a classifier, besides them having highly differ-
ing characteristics. A balance between planned and unplanned
camps in the training set is essential. The more variance is con-
tained in the training set, the more variant and adaptive the clas-
sifier can be.

When having a diverse training set, it is beneficial using
colour- and greyscale-images. As shown in section 3.1, grey-
scale images are needed for achieving generalization in a clas-
sifier while the additional information offered by a colour-
representation help building a more precise classifier.

Further, the problem of overfitting has to be tackled. The tests
in Section 3.2 show that overfitting is a real problem that can

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-233-2020 | © Authors 2020. CC BY 4.0 License.

 
238



occur fast. To handle it, several measures can be taken. On
the one hand, a high variance training set comes in handy. As
discussed, it is important to have satellite imagery of different
quality and showing different camps. It is important, even if it
might feel counterintuitive at first, to not only have images of
high but also of low (image) quality in the training set. When
creating a training set, the focus should lie on acquiring many
satellite images of different camps, i.e. on diversity, instead of
annotating as much dwellings as possible on few satellite im-
ages. In this context, it is better to have fewer annotations from
one camp but an overall high number of camps in the train-
ing set than the other way around. When annotated, the training
set can be further enhanced using data augmentation techniques
(Mikołajczyk, Grochowski, 2018). In the last step, while train-
ing a network, the training has to be monitored. Techniques like
early stopping (Yao et al., 2007) should be used.

Concerning the annotation process, we can give no direct re-
commendations. The described annotation process is a trade-
off between precision and fast operability. To clarify which of
these two parameters is more important, the scope and purpose
of a Dwelling Detection deep learning project has to be defined.
When time is critical, the described method offers a great tool
to develop a classifier fast. When time and manpower is not
critical, it can be beneficial to create ground truth annotations
by hand.

4.3 Critical Assessment

Whether accuracy or fast applicability is more important is con-
text dependent. For operators managing one specific camp, res-
ults that are more accurate are essential. For humanitarian op-
erators working on broader migration situations, fast inform-
ation giving insights about the magnitude of the situation are
important. In this context, the presented workflow is a good
enhancement: We presented actual workflow results using the
initial network n cc 36k in September 2019 to migration man-
agement agencies like the Red Cross as part of an interna-
tional exercise carried out in the HUMAN+ project. The ad-
ditional information about people in the refugee camps gener-
ated through Dwelling Detection was appreciated unanimously.
Though those experts wanted to have absolute numbers, this
is not doable due to the uncertainties described in this paper.
The number of people in a refugee camp has to be seen in
context with the confidence value generated. Those numbers
have to combined and merged with other information gathered
in the HUMAN+ project such as the analysis of social media.
Only then, a meaningful picture of the situation is achievable
to help migration management agencies and first responders to
make the right decisions in crisis management and refugees to
be taken care of.

For developing new classifiers, the recommendations in Section
4.2 are in place. The development of the training set should
be handled with care. The introduced fast annotation method
leaves room for research, both concerning its behaviour during
supervised learning and possible enhancements of the algorithm
to increase its precision. When training new networks, the pre-
vention of overfitting for a generalized classifier is crucial.

5. CONCLUSION

We built a machine learning based dwelling detection classi-
fier using modern object detection techniques, a classifier which

yields results almost immediately helpful in humanitarian oper-
ations. An important step for doing so is our training data an-
notation workflow, which is fast and convenient. We tested and
validated the resulting Dwelling Detection workflow, examin-
ing the behavior of the trained Faster R-CNNs and formulating
recommendations for further deep learning Dwelling Detection
projects.

The workflow outputs results in the magnitude of the real num-
bers of inhabitants in a migrant camp. It works on the image
without the need of adjustments by the user, thus generating
rapid and useful information. The generated information are
best combined with other information about the migration situ-
ation from different sources. The visual representation of the
results with bounding boxes drawn on the input image as well
as the calculated confidence factor increase the interpretability
of the results. The results were deemed to be useful by experts
in the field. Further improvements in the various parts of the
workflow are possible. The recommendations drawn from vari-
ous tests can help building better classifiers and hereby provide
better numbers for humanitarian operations in the future.
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