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ABSTRACT: 

 
Extracting land cover information from satellite imagery is of great importance for the task of automated monitoring in various 
remote sensing applications. Deep convolutional neural networks make this task more feasible, but they are limited by the small 
dataset of annotated images. In this paper, we present a fully convolutional networks architecture, FPN-VGG, that combines Feature 
Pyramid Networks and VGG. In order to accomplish the task of land cover classification, we create a land cover dataset of pixel-wise 
annotated images, and employ a transfer learning step and the variant dice loss function to promote the performance of FPN-VGG. 
The results indicate that FPN-VGG shows more competence for land cover classification comparing with other state-of-the-art fully 
convolutional networks. The transfer learning and dice loss function are beneficial to improve the performance of on the small and 
unbalanced dataset. Our best model on the dataset gets an overall accuracy of 82.9%, an average F1 score of 66.0% and an average 
IoU of 52.7%. 
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1. INTRODUCTION 

Many global and regional applications require land cover 
information about Earth’s surface. Extracting land cover from 
satellite imagery is considered as a low cost way and has been 
applied in many fields such as land resource management, 

environmental protection. With the development of remote 
sensing technology, the spatial resolution of satellite images is 
higher and higher, which provides more information for land 
cover classification but also brings great challenges (Tong et al., 
2018). Thus it is very difficult to find an universal method for 
land cover classification from the images covering different 
geographical areas. 
 
The prevalent remote sensing classification methods are mainly 
based on the spectral and spatial features.  These methods 
consist of two sections: feature extraction and feature 

classification.  Firstly, the features are extracted by manually 
designed operators such as scale-invariant feature transform 
(SIFT), histogram of oriented gradients (HOG) et al (Yang, 
Newsam, 2013). Then the features are classified by classifiers 
such as support vector machine (SVM), and conditional random 
field (CRF) et al (Melgani, Bruzzone, 2004, Li et al., 2015). 
However, these methods is hard to classify the images in 
complex conditions. 
 
In recent years, deep learning methods have surpassed 
traditional methods in various computer vision tasks, such as 

object detection, classification. Convolutional Neural Networks 
(CNNs) are the most representative deep learning models, 
which are constructed in deep hierarchical architectures and 
capable of extracting the intrinsic features of data. In 2012, 
Professor Hinton and his student Alex (Krizhevsky et al., 2012) 
won the ILSVR (ImageNet Large Scale Visual Recognition 
Competition) by employing CNNs. After that, the deep learning 
method has been widely used in remote sensing (Zhu et al., 
2017) and other fields. At first, remote sensing scientists 
exploited the deep learning in the scene classification which is a 
more coarse classification method than pixel level (Nogueira et 

al., 2016, Zhong et al., 2016, Tong et al., 2018).  The Fully 
Convolutional Networks (FCN) (Long et al., 2015), which 
replaces the fully connected layers with convolution layers, 
could directly obtain the pixel-wise classification results (Wu et 
al., 2018, Zhang et al., 2018). There are several FCN networks 
such as FCN-8s (Long et al., 2015), Segnet (Badrinarayanan et 
al., 2015) and U-net (Ronneberger et al., 2015).  
 
Although FCNs are the most popular approach to pixel-wise 
classification, they require huge computing resources, as well as 

a large dataset of pixel-wise annotated images, which impedes 
their application in remote sensing. There are very few  pixel-
wise annotated land cover dataset such as ISPRS Benchmark 
dataset. In order to meet our classification from satellite 
imagery, we create a land cover dataset consisting of images 
and manually pixel-wise annotated labels. We design a FCN 
architecture which combines the Feature Pyramid Networks 
(Lin et al., 2017) and VGG (Simonyan, Zisserman, 2015), and 
overcome the limitation of small and unbalanced dataset by 
using a transfer learning step and the variant dice loss function.  
 

2. METHODOLOGY 

2.1 Network architecture 

Feature Pyramid Networks (FPN) is coined to detect objects 
(Lin et al., 2017). FPN builds feature pyramids inside 
convolutional networks which are critical to address multiscale 
problems.  We present a new network architecture named FPN-
VGG (Figure 1) which is modified from FPN and combine the 
VGG network. The VGG network, proposed by the Visual 
Geometry Group from University of Oxford (Simonyan, 
Zisserman, 2015), is used as a feature extractor for FPN.  
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Figure 1. FPN architecture for land cover classification from 
satellite imagery. The decoder part (shown in orange) of FPN 

consists of a feature pyramid with 4 pyramid levels, and each 
pyramid level is up-sampled to generate layers with size of 1/4 
input image size. And then they are assembled and up-sampled 
to generate segmentation mask. 
 
To train a deep learning network, the following problems 
always impede us to obtain the best model: (a) The overfitting 
led by the small training dataset. (b) Slow convergence because 
of random initialization. In order to overcome these two 
problems, we employ a transfer learning strategy by initializing  
the feature extractor of FPN-VGG with a VGG16 pretrained 
model. Transfer learning has been proved a good way to train 

deep neural networks on small dataset (Huh et al., 2016). It has 
been proved that ImageNet pretrained networks could promote 
the performance of classification on remote sensing data 
(Marmanis et al., 2016).  Thus, we transfer the parameters of 
VGG16 model (excluding the top fully connected layers) 
trained on 2012 ImageNet dataset to initialize the encoder part 
of FPN-VGG (Figure 2). 
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Figure 2. FPN-VGG architecture 

 
2.2 Loss function and accuracy assessment 

In multiclass classification task, categorical cross entropy loss 
(L_ categorical_crossentropy) is the most commonly used loss 
function. It is calculated from categorical cross entropy between 
the ground truth (gt) and the prediction (pr).  
 

_ categorical _ crossentropy=-gt log(pr)L        (1) 

 
We have also employed the dice loss (L_dice) to train the FPN-
VGG network. The dice loss is defined as follow, 
 

_ 1L dice F= −                             (2) 

 
Where, 

2
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Where  is a coefficient for precision and recall balance, and it 
is set to 1 in our work. 

 
We also used the sum of L_categorical_crossentropy and L_dice 
as a variant dice loss function. This loss function is named 
L_cce_dice. 
 

_ _ _ categorical _ crossentropy+ _diceL cce dice L L=   (4) 

 
We employ F1 score and IoU (intersection over union), which 
are the most common indexes used to assess the accuracy for 
semantic segmentation (Maggiori et al., 2017), to assess the 
classification accuracy of remote sensing images. For F1, the 
relative contribution of precision and recall are equal. 
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Where, TP denotes true positives, FP denotes false positives, 
FN denotes false negatives. F1 and IoU reach the best value at 1 
and worst score at 0. 
 
For multiclass classification task, we employ mF1 and mIoU to 
assess the accuracy  for remote sensing image classification. 
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3. RESULTS AND DISCUSSION 

In this section, we present a land cover dataset and design 
experiments to analyse the performance of FPN-VGG.  
 
3.1 Dataset and Experiments 

3.1.1 Dataset: We prepare a dataset of land cover 
classification from high resolution satellite images. The dataset 

consists of a set of Digital Orthophoto Maps (DOM) and the 
corresponding annotated labels. The DOM achieved from ZY-3 
satellite consists of the four spectral bands in the visible (VIS: 
red(R), green(G), blue(B)) and in the near infrared (N).  
 
We have extracted 3 images from large DOM as training data 
which are manually annotated with 6 classes (background, low 
vegetation (lowVeg), tree, building, road, water). These classes 
are commonly used in the applications of land cover. These 
images cover 3400 km2 on East Asia with 5.8m ground 
resolution. The images and labels are shown in Figure 3. The 

pixel number of each class is shown in Figure 4. 
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(a) Image I and corresponding label 

 
(b) Image II and corresponding label 

 
(c) Image III and corresponding label 

 
Figure 3. The images and annotated labels in the dataset 

 
 

 
Figure 4. The pixel number of each class in the dataset 

 
It is known that working with large image patches could 
maximize the advantage of CNN (Wu et al., 2018). However, 
the maximum of patch size is limited by the memory of the 
GPU hardware. Thus we have created training data by 

extracting image patches of size 480480. After slicing the 

original images and labels, we split the 480480 patches into a 
training set and a validation set with a ratio of 0.25. In order to 
test the performance of models, a test image has cropped from a 
large DOM and manually annotated it as a reference map 
(Figure 5). The test image is also from ZY-3 satellite on East 

Asia covering 40 km2. 

 

   
 

(a) Test image            (b) Reference map 
Figure 5. The test image and corresponding reference map 

 
3.1.2 Design of experiments: In order to test the 
performance of FPN-VGG on land cover classification task, we 
design the following set of experiments: (a) Training the FPN-

VGG and other state-of-the-art FCN networks, and comparing 
their performances. (b) Training and testing FPN-VGG with 
different input spectral bands. (c) Training FPN-VGG with 
ImageNet pretrained model. (d) Training and testing FPN-VGG 
with dice loss, and comparing the performances of different loss 
function. All above experiments are carried out on the same 
computer with a NVIDIA  GeForce GTX1080TI GPU.  
 
3.2 Comparison with other networks 

The performance and classified maps of FPN-VGG and other 
FCN networks are shown in Table 1 and Figure 6. These 
networks are all trained and tested with input data of RGB 
bands. 
 
From Table 1, the worst result for all models comes in the class 
“road”. And the roads cannot be extracted by Segnet. This 
problem is mainly owed to the fact that proportion of road class 

in training dataset is much smaller than other classes (see Figure 
4). Overshadowed by contiguous trees and buildings might also 
give rise to this problem (see Figure 5(a)). 
 
From the overall performance, the FPN-VGG surpasses the 
other three networks.  The FPN-VGG takes the highest mF1 
(66.0%), mIoU (52.7%) and OA (82.9%), followed by the FCN-
8s. The performances of  Segnet and U-net are worse than FCN-
8s. From Figure 6, the map classified by U-net is more 
fragmented than maps classified by other networks. 
 

  
(a) FCN-8s                              (b) Segnet 
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(c) U-net                            (d) FPN-VGG 

 
Figure 6. The predictions by different networks with input data 

of RGB images 
 
3.3 Performance of FPN-VGG models with different input 

bands 

Being different from natural photos, the satellite images always 
have more than 3 spectral bands containing the visible (RGB) 
and the near infrared (N). Thus, we train the FPN-VGG by 
supplementing the N band. 
 
The accuracy of FPN-VGG models with different input spectral 
bands is listed in Table 2. The performance of  the model with 

NRG input is significantly better than that of model with RGB 
input. Although the OA of model with NRG input is only 1.0% 
higher than that of model with RGB input, the mF1 and mIoU 
are 4.7% and 5.4% higher respectively. This improvement is 
mainly contributed by the improvement of “road” and “water”. 
This indicates that the NRG bands has the advantage for 
extracting road and water. 
 
While the model with 4 bands input has one more band than 
model with NRG input, the performance with 4 bands input is 
slightly lower. This means that more input bands may not obtain 

better performance. We should choose the optimal band 
combination for the specific classification task. 
 
3.4 Transfer learning 

In this section, we initialize the FPN-VGG with ImageNet 
pretrained model and NRG input bands in this section. In Table 

3 we provide the comparative results of ImageNet initialization 
and random initialization. Comparing to the result of random 
initialization,  the FPN-VGG initialized by ImageNet pretrained 
model shows the improvement on all classes except background. 
The mF1 , mIoU and OA are improved by 1.6%, 1.9% and 
1.0% respectively.  This indicates that the ImageNet model is 
beneficial to improve the model with NRG input bands despite 
it is trained on RGB ImageNet dataset.  
 
3.5 Training with dice loss function 

In order to exam the classification ability of FPN-VGG with 
dice loss on unbalanced dataset, we present the results of 
models with different loss function are shown in Table 4.  
 
Comparing to the model with L_categorical_crossentropy,  
although the OA, mF1 and mIoU of model with L_dice is worse, 
the F1 of “background” and “road” is 2.7% and 2.9% higher.  It 

shows that the dice loss could improve the classification ability 

of minority classes. 
 
Furthermore, the model with L_cce_dice has the highest mF1 
(75.9%) and mIoU (63.2%). The best prediction map is shown 
in Figure 7. Comparing to model with 
L_categorical_crossentropy, the mF1 and mIoU of L_cce_dice 
have been improved 3.6% and 3.2%. Especially, the F1s of 
“background”, “building”, “road” and “water” classified by the 
model with L_cce_dice are higher than those of other two 
models. It can be seen that the L_cce_dice is more competent 
for unbalanced multiclass classification than 
L_categorical_crossentropy and L_dice.   

 

  
Figure 7. The best prediction by FPN-VGG model 

 
4. CONCLUSION 

In this paper we present a new deep learning modelling 
framework for land cover classification of high spatial 
resolution satellite imagery. The framework is named FPN-
VGG which is based on feature pyramid networks combining 
with VGG16. The performance of our framework is evaluated 
on a dataset manually annotated. The dataset consists images 
with four spectral bands (Blue, Green, Red and the Near 
infrared) and corresponding labels of 6 classes (background, 

low vegetation, tree, building, road, water). The training dataset 
are extracted from ZY-3 satellite covering on East Asia.   
 
We found that the FPN-VGG could extract more accurate land 
cover map from satellite images than other state-of-the-art fully 
convolutional networks (FCN-8s, Segnet, U-net). The 
experiment results show that inputting with NRG spectral bands 
and initializing by ImageNet model could improve the 
performance of FPN-VGG on small dataset. In addition, the 
model trained with the sum of the categorical cross entropy loss 
and dice loss is more competent for classification on unbalanced 
dataset. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Networks Background LowVeg Tree Building Road Water 
mF1 

(%) 

mIoU 

(%) 

OA 

(%) 

FCN-8s 54.7 74.3 86.5 81.6 22.3 63.1 63.8 50.1 80.9 

Segnet 24.7 72.5 85.3 79.7 0.0 71.2 55.6 44.5 79.4 
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U-net 26.6 73.9 86.3 77.1 21.0 55.6 56.8 43.8 79.2 

FPN-VGG 44.9 77.5 87.6 83.5 31.1 71.6 66.0 52.7 82.9 

Table 1. Performance of different networks with input data of RGB images. The metric for individual class is F1 (%). 
 

Spectral 
bands 

Background LowVeg Tree Building Road Water 
mF1 
(%) 

mIoU 
(%) 

OA 
(%) 

RGB 44.9 77.5 87.6 83.5 31.1 71.6 66.0 52.7 82.9 

NRG 48.5 79.2 88.1 83.1 37.2 88.0 70.7 58.1 83.9 

4 Bands 46.5 77.7 88.2 83.6 34.4 85.3 69.3 56.8 83.5 

Table 2. Performance of FPN-VGG models with different input bands. The metric for individual class is F1 (%). 

 

Initialization 
approach 

Background LowVeg Tree Building Road Water 
mF1 
(%) 

mIoU 
(%) 

OA 
(%) 

Random 48.5 79.2 88.1 83.1 37.2 88.0 70.7 58.1 83.9 

ImageNet 48.0 80.7 88.7 84.4 42.1 89.6 72.3 60.0 84.9 

Table 3. Performance of FPN-VGG models trained with different initialization approaches. The metric for individual class is F1 (%). 
 

Loss function Background LowVeg Tree Building Road Water 
mF1 

(%) 

mIoU 

(%) 

OA 

(%) 

Categorical  
Cross entropy 

48.0 80.7 88.7 84.4 42.1 89.6 72.3 60.0 84.9 

Dice 50.7 74.6 85.5 80.9 45.0 83.6 70.1 56.2 80.8 

Cce_dice 61.6 78.3 87.9 84.7 51.2 91.4 75.9 63.2 84.1 

Table 4. Performance of FPN-VGG models trained with different loss functions. The metric for individual class is F1 (%). 
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