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ABSTRACT: 

 

Recent advances in cloud-computing technologies and remote sensing data availability foster the development of studies based on the 

analysis of optical and SAR imagery time series. In this paper, we assess the potential of Sentinel-1 imagery time series for grassland 

detection in the northern Brazilian Amazon. We used the Google Earth Engine cloud-computing platform as an alternative to obtain 

and analyse Sentinel-1 imagery, acquired from 2017 to 2018 over the region of Mojuí dos Campos/PA, Brazil. We extracted several 

temporal metrics from the imagery time series and used the Random Forest algorithm to perform the classification. In addition, we 

analysed the time series considering different channels, including the VV and VH polarizations, both separately and in combination, 

and the CR, RGI and NL indices. We could efficiently discriminate areas of grasslands from forest and agricultural crops using either 

VH time features or features extracted from the combination of both VV and VH polarizations. The classification map that resulted 

from the combination of VV and VH data presented the highest accuracy, with an overall accuracy of 95.33% and a 0.93 kappa index. 

Despite simple, the approach adopted in this paper showed potential to differ grasslands from areas of agriculture and forest in the 

northern Brazilian Amazon. 

 

 

1. INTRODUCTION 

The dynamics of deforestation observed in the Brazilian Amazon 

are complex and, for that reason, have motivated several studies 

that investigate land use and land cover (LULC) changes. For 

instance, there are studies that investigate factors that contribute 

to the Amazon deforestation (Barona et al., 2010), the LULC 

change dynamics of deforested areas (Carreiras et al., 2014) and, 

its environmental implications (Farias et al., 2018). Barona et al. 

(2010) indicates agricultural crops and grasslands as the main 

land cover types that occupy the deforested areas of the Brazilian 

Amazon. In fact, the authors suggest that the pasture expansion 

might contribute more to the deforestation of the Brazilian 

Amazon than agricultural activities, such as the soy industry. 

Some reports also support this statement, showing that grasslands 

occupy most of the Brazilian Amazon deforested areas 

(EMBRAPA and INPE, 2011; Veiga et al., 2004; Zero 

Deforestation Working Group - ZDWG., 2017). 

 

The Brazilian Agricultural Research Corporation (EMBRAPA) 

and the Brazilian National Institute for Space Research (INPE) 

released an executive summary in 2011 showing that over sixty 

percent of the areas deforested until 2008, in the Brazilian 

Amazon, shifted to grasslands. In addition, ZDWG (2017) also 

presented, in 2017, that sixty-five percent of the Brazilian 

Amazon deforested areas are used for low-efficiency pastures. 

These aspects highlight the importance of grassland 

sustainability to agricultural activities in the Amazon. Grasslands 

occupy a significant portion of the agricultural area of the 

Brazilian Amazon, contributing to agricultural and livestock 

systems (Navegantes-Alves et al., 2012; Taravat et al., 2019). 

These aspects emphasize the importance of the detection and 

monitoring of grasslands. 

 

                                                                 
*  Corresponding author 
 

In this context, remote sensing techniques are commonly used, 

due to their potential to capture data useful to describe LULC 

changes. However, LULC mapping might be challenging 

because of the limitations associated with the acquisition and 

processing of satellite imagery time series (TS), as the frequent 

cloud cover observed during the rainy season in tropical regions 

reduces the availability of cloud-free imagery from optical 

sensors. In this sense, the use of Synthetic Aperture Radar (SAR) 

technologies represents an alternative to the acquisition of 

satellite imagery over regions that present high cloud frequency. 

SAR sensors provide the opportunity to acquire consistent 

remote sensing data at day and night, without being as much 

affected by cloud and weather conditions as optical sensors. 

 

In addition, the analysis of large volume data require high 

computing power and storage capability (Carrasco et al., 2019), 

which used to represent a common issue. However, the advent of 

cloud-computing infrastructures supports data integration across 

different data centres in scalable and flexible platforms with 

significant computing power. Carrasco et al. (2019) highlight that 

platforms such as Google Earth Engine (GEE) (Gorelick et al., 

2017) foster the development of new methods for LULC 

mapping, once it allows applying complex image processing 

algorithms to large amounts of data. In the context of LULC 

change detection, the analysis of dense satellite imagery TS 

might contribute to the identification of environmental 

disturbances that could pass unnoticed if used short imagery TS. 

In tropical regions, it is possible to observe this effect due to the 

rapid development and recovery of the vegetation (McDowell et 

al., 2015; Shimizu et al., 2019). 

 

The use of cloud-computing platforms has attracted great attention 

of the remote sensing community in the last years, particularly for 
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the detection of LULC changes, based on imagery TS analysis 

(Carrasco et al., 2019; Lee et al., 2018; Mardani et al., 2019; Sidhu 

et al., 2018). In this scenario, the use of these platforms to access 

and process SAR TS has also provided support to studies related to 

the monitoring of tropical forests (Chen et al., 2018, 2017; Shimizu 

et al., 2019). These technologies show potential to contribute to 

several remote sensing researches that require accessing and 

processing SAR imagery TS. 

 

In this study, we address the problem of grassland detection in 

the Brazilian Amazon, based on the analysis of SAR imagery TS. 

We used the GEE platform as an alternative to obtain and analyse 

Sentinel-1 imagery, acquired from 2017 to 2018 over the region 

of Mojuí dos Campos, Pará (PA), Brazil. The algorithm extracts 

several multitemporal features from the TS and uses the Random 

Forest (RF) classifier to identify the patterns that characterize 

grasslands. In the remote sensing-related literature, few studies 

focus on the use of SAR imagery TS to detect grasslands (Taravat 

et al., 2019; Whelen and Siqueira, 2018). This is one of the first 

studies directed to the detection of grasslands in the Brazilian 

Amazon based SAR TS analysis. 

 

2. MATHERIALS AND METHODS 

2.1 Study Site 

The study area of the proposed method is mostly located at Mojuí 

dos Campos municipality, including part of the Belterra 

municipality, both at Pará, Brazil (Fig. 1). The study site comprises 

about 771 km², being mostly composed of agricultural crops, 

pasture areas and native forest. The Köppen climate classification 

(Köppen and Geiger, 1928) defines the study site as a region 

characterized by a tropical monsoon climate (class ‘Am’). The 

annual average temperature in the region tends to vary from 27°C 

to 30°C, with a monthly precipitation of about 184mm during the 

dry season (April to October), and approximately 239mm during 

the wet season (November to March) (Alvares et al., 2013). 

 

 
 

Figure 1. Study Site 

 

2.2 Sentinel-1 Data 

The Sentinel missions, developed by the European Space Agency 

(ESA) under the Copernicus Programme, represent a satellite 

family composed of different sensors, including multi-spectral 

and radar imaging instruments. Each Sentinel mission is 

composed of a constellation of two satellites in order to achieve 

the ESA revisit and coverage requirements (ESA, 2017). 

Sentinel-1 represents a polar-orbiting radar imaging mission that 

provides all-weather and day-and-night data, suitable for both 

land and ocean services (EOS, 2014). 

 

The Sentinel-1 satellites, launched on April 2014 (Sentinel-1A) 

and April 2016 (Sentinel-1B), include sensors that operate at C-

band wavelength, with different acquisition modes, including the 

Interferometric Wide Swath (IW). This acquisition mode is 

suitable for land cover applications with a 5m x 20m resolution 

in range and azimuth, respectively. In this mode, the sensor 

acquires data in dual-polarization, which can be HH+HV or 

VV+VH, with a wide swath of 250 km and a high revisit time (12 

days, considering only one satellite) (ESA, 2013) 

 

The Sentinel-1 imagery TS analysed in this study is composed of 

31 IW scenes, obtained with VV and VH polarizations, from 

September 22nd, 2017, to September 17th, 2018. In addition, we 

only considered S1A descending orbit data, in order to standardize 

the analysed time series. Some pre-processing steps were also 

applied by the GEE platform in order to derive the backscatter 

coefficient (��) in each pixel and to provide direct access to 

orthorectified images. We can describe �� as the normalized 

measure for the intensity of each pixel. The pre-processing steps 

include border and thermal noise removal, radiometric calibration 

and terrain correction (GEE, 2018). In the terrain correction 

procedure, GEE converts data from ground range geometry to �� 

using the 30m-resolution SRTM Digital Elevation Model (DEM) 

(GEE, 2018). The fast and efficient access to pre-processed 

Sentinel-1 SAR imagery, provided by GEE, promotes the 

development of different remote sensing studies. Although the 

backscatter coefficient offers a convenient way to use and process 

SAR data, it does not convey phase information, which is lost 

during ��computation. 

 

2.3 Methodology 

Figure 2 presents an overview of the methodology. First, we 

applied a multitemporal filter developed by Quegan and Yu 

(2001) followed by a 7x7 Frost filter (Frost et al., 1982) to each 

image that composes the pre-processed imagery TS. The 

multitemporal speckle filter assumes that the images of the time 

series are sequentially uncorrelated (Maghsoudi et al., 2012). 

This filter, which results in speckle-reduced images, uses the 

input intensity data and an estimate of the local mean 

backscattering coefficient as entrance data. The multitemporal 

speckle filter follows the following formula: 

 

����, �	 = 〈����, �	〉
�  � ����, �	

〈����, �	〉
�

���
 (1) 

where  ����, �	 = radar intensity of the output image k at pixel 

��, �	 

 〈���, �	〉 = estimate of the local mean backscattering 

coefficient 

 ���, �	 = input intensity data 

 M = number of images 

 〈����, �	〉 = spatial average over the N pixels in a local 

window that surrounds the current ��, �	 position in image � 

 

The Frost filter allows spatially reducing multiplicative noise 

from images, while the multitemporal filter consider and 

minimizes the speckle influence on each pixel of imagery time 

series. The Frost filter is a convolutional filter that works with an 

n-by-n moving kernel that replaces the central pixel by the 

weighted sum of the neighbouring pixels in kernel (Wang et al., 

2012). The Frost filter follows the following formula: 
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� �

 (2) 

 

where  K= normalization constant 

 � = ! "
� #$%%%%& !#$

'$( & 

 � ̅= local mean 

 σ = local variance 

 �% = image coefficient of variation value 

 * = size of the moving kernel  

 |+| = |, - ,�| . |/ - /�| 
 

After these pre-processing procedures, we computed three 

different radar indices, taking into account the information 

provided by both polarizations. These indices are: the VH/VV 

polarization ratio, defined here as cross ratio (CR); a 

normalization ratio (NL) (Lu et al., 2011); and, the Radar Gap 

Index (RGI) and are given by: 

 

01 = 23
22  

 
(3) 

�4 = 22 ∗  23
22 . 23 

 
(4) 

16� = 22 -  23
22 . 23  

 
(5) 

 

At this point, we can separate the imagery dataset into five time 

series, accordingly to the attributes (VV, VH, CR, NL and RGI). 

In this study, we analysed separately each one of these time 

series. In order to do so, we extracted several temporal metrics, 

including minimum, mean, maximum, standard deviation, sum, 

amplitude – defined as the difference between the maximum and 

minimum value – and coefficient of variation. In addition, we 

also performed the classification using metrics extracted from the 

combination of both VV and VH time series. The classification 

method used to classify these temporal metrics was the Random 

Forest (RF) classifier. This classification method generates a 

large number of decision trees, based on the use of different 

subsets of training samples. This algorithm, widely used in the 

remote sensing community over the last decades (Belgiu and 

Drăgu, 2016; Diniz, 2019; Sica et al., 2019), is reported to 

provide high accuracy classification results (Breiman, 2001). In 

this study, we set the classifier to grow 300 trees (ntree) and to 

use the square root of the number of the predictor variables for 

splitting at each tree node (mtry). 

 

The input data required by the RF algorithm include not only the 

temporal metrics but also training samples. We used the 

MapBiomas LULC mappings (MapBiomas, 2018) related to the 

last three years (2016, 2017 and 2018) in order to obtain a sample 

dataset composed only of invariant samples. We adopted a 

stratified sampling strategy to define 500 random points that 

represent the pattern associated with the classes Agriculture, 

Forest and Grassland. For that reason, we considered as sampling 

areas only regions of agriculture, forest and pasture larger than 

50 hectares that presented the same classification in these three 

LULC mappings. We split the sample collection into two 

datasets, considering 60% of the samples for training and 40% 

for testing the classification model. 

 

In order to avoid noises in the classification results, the RF 

classifier was integrated with the majority filter operation, 

considering a 3x3 kernel. This contextual filter can efficiently 

reduce classification noises commonly observed in products 

obtained by pixel-based classification approaches. This method 

employs a moving window over the entire classification map. It 

reclassifies the central pixel of the moving window to the class 

attributed to the majority of the pixels contained in that position 

of the window. In cases where there is not a main class in the 

window, the algorithm maintains the class of the central pixel. 

 

To validate the classification maps generated by the RF classifier 

using the temporal metrics, we used the testing dataset composed of 

invariant samples. We analysed statistics provided by the confusion 

matrix, including the overall accuracy (OA) and the kappa index. In 

addition, we compared the statistics obtained for the classification 

maps resulting from the use of the VV, VH, CR, RGI, NL and 

VV+VH time series. We used the Z-test as an alternative to evaluate 

whether there are significant differences between these products. 

 

3. RESULTS AND DISCUSSION 

Figure 3 illustrates the invariant samples of agriculture, forest and 

grassland (500 per class), considering a false-colour composite 

image that uses the metrics extracted from the VH time series. In 

this figure, we consider the coefficient of variation, minimum and 

amplitude images to compose the Red, Green and Blue (RGB) 

channels, respectively. Note that this false-colour composite 

emphasizes the differences between the analysed classes. In this 

case, green pixels put in evidence areas of forest, with dense 

vegetation cover, while pink and purple pixels indicate areas of 

agriculture and grasslands, respectively. 

 

Figure 4 shows the behaviour of the SAR time series generated 

using these invariant samples. This figure describes the monthly 

mean behaviour of the backscattering, from September 2017 to 

August 2018, regarding the classes agriculture, forest and 

grasslands at different channels. In general, these time series 

 
 

Figure 2. Methodology 
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present similar patterns. All time series, except for the RGI and 

CR channels, present a slight increase of the backscattering until 

December 2017. After that period, they present a decreasing 

pattern. We assume that this behaviour might be a consequence 

of changes in precipitation during the referred periods. On the 

other hand, the RGI and CR time series seem to present a 

reflected pattern. These time series present opposite behaviours 

for the three classes over time. The RGI attribute represents a 

normalized polarization index that theoretically reflects the 

depolarization thru polarizations and emphasizes the difference 

between bare ground and forested areas (Hird et al., 2017), which 

might justify the opposite backscattering pattern observed in this 

period, in comparison to the other channels. 

 

 
 

Figure 4. Composite of the SAR time series describing the 

monthly mean behaviour of the backscattering for the analysed 

classes, at different channels 

 

The class separability depends on the temporal class distribution. 

The ideal channel to use for classification purposes is the one that 

maximizes the class separability. The CR and RGI time series 

present high confusion between the backscattering patterns 

regarding the forest and grasslands classes. On the other hand, 

these time series show high separability between the class 

agriculture and the remaining classes, except on April. 

Although the VV time series presents temporal backscattering 

patterns similar to those observed in the VH and NL channels, 

the VV channel does not present good class separability between 

January 2018 and March 2018. In this period, for the VV channel, 

we can observe a confusion between the backscattering patterns 

regarding areas of agriculture and grasslands. This temporal 

backscattering similarity between these LULC classes might be 

associated with the phenological stages of the agricultural 

cultures observed in the study site. However, extra investigations 

are required to support this hypothesis. 

 

In general, the temporal backscattering patterns observed in the VH 

and NL time series indicate higher separability between grasslands 

and the remaining LULC classes than the other channels considered 

in this study. Fig. 5 presents the overall accuracies and kappa indices 

obtained for the classifications performed using different time series. 

Note that the classification results obtained using the combination of 

the VV and VH temporal features (described as VV+VH), and the 

NL features provided similar results. However, the classification 

performed using VV+VH features provided slightly better results 

than the other classifications. 

 

  
 

Figure 5. Classification accuracies obtained using different 

channels. Rectangles indicates three different groups formed after 

Z-test using the variances of the kappa’s indices 

 

We performed pairwise comparisons between the kappa indices 

and the variances of the classification products using the Z-test, 

in order to verify if there was a significative difference between 

the results. The Z-test showed that the products obtained using 

the VV+VH and NL channels are compatible with the hypothesis 

that there is no significant difference between these products, 

considering a 95% confidence interval. This test also showed that 

the products obtained using the NL, VH and VV channels are 

statistically similar to each other, but slightly different from the 

results regarding the VV+VH classification, with exception to the 

NL classification. Moreover, the RGI and CR channels obtained 

the worst results. The results obtained by these channels were 

statistically similar, and significantly different to the other 

classification results. For that reason, in this section, we focus on 

the results obtained using the VV+VH time series. 

 

Figure 6 illustrates the relative importance of each temporal 

metric estimated during the classification of the VV+VH time 

series. This figure shows that the most important features for this 

classification were the coefficient of variation, at VV and VH 

polarizations, with a relative importance of 20.27% and 19.09%, 

respectively. The standard deviation was the third most important 

feature, at the VV polarization, with a relative importance of 

7.55%. However, the coefficient of variation represents the ratio 

of the standard deviation and the mean. Therefore, the temporal 

metrics related to the standard deviation and the mean might be 

redundant for the classification process. In this sense, a reduction 

of the number of temporal metrics may contribute to the 

classification, with possible improvements to the algorithm’s 

performance and even to the classification accuracy. 

 

 
 

Figure 3. False-colour composite image that uses temporal 

metrics to emphasize the difference between areas of agriculture, 

forest and grasslands, along with the invariant samples 
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Figure 6. Importance of each temporal metric to the RF 

classification using the combined VV and VH features 

 

Figure 7 presents the result of the RF classification of the 

VV+VH time series. In this classification, we considered all the 

temporal metrics aforementioned. In addition, Table 1 presents 

the confusion matrix that describes the performance of this 

classification. The testing dataset used to compute these statistics 

entailed only samples not used for training the classification 

model. This classification presented satisfactory results, with 

overall accuracy (OA) of 95.33% and a kappa index of 

approximately 0.93. The highest producer’s accuracy (PA) 

referred to the Forest class (99%), with a user’s accuracy (UA) of 

96.12%. On the other hand, the Agriculture class obtained the 

highest UA (96.91%), and a PA of 94%. The class Grasslands 

presented both the UA and the PA equal to 93%. 

 

 
 

Figure 7. Classification map obtained using the combined 

VV and VH time series features 

 

 

The class Grasslands presented the highest omission error (7%), 

along with a commission error of 7% as well. In this study, we 

did not separate the different growing stages of pasture areas into 

different classes, which might contribute to the obtainment of 

higher classification errors to the class Grasslands. In addition, 

grasslands present spectral patterns that might be similar to those 

observed in areas of agriculture and forest. It might be possible 

to mitigate these errors with the separation of these patterns into 

a larger number of classes. 

 

 
 

Table 1. Confusion matrix regarding the RF classification 

performed using metrics extracted from the combined VV and 

VH TS (in pixels) 

 

We compared our results with the map provide by the MapBiomas 

project. Figure 8.a illustrates the MapBiomas 2018 reference map, 

while Figure 8.b represents a difference map between our 

classification results (Figure 7) and this reference map. As it shows, 

the major confusions are related to the borders of the ground 

features and to small details provided by optical mapping. 

 

 
Figure 8. (a) MapBiomas 2018 reference map, regarding Forest, 

Grasslands and Agriculture classes. (b) Product of a difference 

operation between our VV+VH classification map and the 

MapBiomas reference map 

Class Forest Grasslands Agriculture Total
Producer's 

Accuracy

Forest 198 2 0 200 99.00%

Grasslands 8 186 6 200 93.00%

Agriculture 0 12 188 200 94.00%

Total 206 200 194 600

User's 

Accuracy
96.12% 93.00% 96.91%

Overall 

Accuracy

Kappa

RF classification - VV+VH features

A
ct

u
a

l 
V

a
lu

es

0.93

95.33%

Predicted Data

a) 

b) 
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To analyse the quality of the results obtained in this study, we also 

compared the aforementioned results with results obtained in similar 

works. Taravat et al. (2019) focused on the development of an 

automatic grassland cutting status detection based on the analysis of 

spatio-temporal Sentinel-1 data, using artificial neural networks. The 

authors obtained classification products with overall accuracy of 

85.71%. These results emphasize the potential of machine learning 

models for grassland cutting status detection with SAR data. Whelen 

and Siqueira (2018) achieved, over North Dakota, an overall 

accuracy of 83.5% for grasslands/pasture mapping using Sentinel-1. 

Similarly, the authors also reported high confusion between 

grasslands and agricultural crops, with focus on wheat crops. These 

results are similar to the results obtained in our study, which also 

presented confusion between grasslands and agricultural areas. 

 

In addition, in Bazzi et al. (2019) Sentinel-1 TS were used to map 

paddy rice in France. Although the referred study focused on 

agricultural mapping, there are similarities to our study, including 

the use of the RF algorithm to perform the classification of 

temporal metrics extracted from the TS. However, in this case, 

the authors used metrics derived from a Gaussian fitting of the 

VV/VH TS. The adjustment of this methodology for grassland 

detection might contribute to the reduction of classification 

confusion observed between areas of grasslands and other 

vegetation types. The results obtained in the referred study 

presented an OA of 96.6%. A better understanding of the 

statistical properties and distribution of the TS data might also 

contribute to the improvement of the TS classification, as well as 

testing different speckle filtering techniques. 

 

4. CONCLUDING REMARKS 

This paper explores a Sentinel-1 imagery time series for the 

classification of grasslands in the northern Brazilian Amazon. We 

extracted temporal metrics from images acquired over the period 

of one year, from September 2017 to September 2018, in order to 

perform a RF classification. The results obtained in this study led 

us to conclude that the analysis of SAR S1A TS can efficiently 

assist the detection of grasslands in the northern Brazilian Amazon. 

We consider that combined VV and VH polarized data are 

necessary to describe the studied phenomena. The use of TS of 

indices that aggregate both VV and VH data (NL, CR and RGI) did 

not result in a significative improvement of the classification, 

except for the NL index. The z-tests showed that there are no 

significative differences between the results obtained using the 

VH+VV data and NL channel. 

 

Future works could also evaluate the potential of using different 

attributes to analyse each part of the period covered by the time 

series in order to perform its classification. By doing so, we could 

create a time series composed of the attributes that best 

discriminate the analysed classes in each season of the analysed 

period and also think in the results operationally for mapping the 

pastures in an automated way.  

 

The results obtained in this study might be complemented with the 

use of ground data in order to provide more accurate analysis of the 

classification results, as well as the integration of optical data. The 

use of ground samples regarding pasture areas with different 

phenological stages could also assist the detection of different 

grassland types. In addition, future works can evaluate the use of 

other classification methods, such as artificial neural network and 

deep learning techniques, to improve the classification performance. 

 

In addition, it could be interesting to compare the classification results 

presented in this paper with results generated without the temporal 

speckle filtering of the TS. The relative calibration of the imagery TS 

based on a reference image could also mitigate seasonality effects. The 

application of segmentation techniques could also contribute to the 

improvement of the classification, due to the complex pixel-based 

variability that exists because of the speckle effect. Although this study 

only used attributes derived from the backscatter coefficient, it should 

be interesting, for future works, the development of methodologies that 

includes attributes derived from the phase information, making the use 

of polarimetric and interferometric attributes possible on the 

discrimination of the LULC classes. 
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