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ABSTRACT: 
 
In this paper, a supervised manifold-learning method is proposed for PolSAR feature extraction and classification. Based on the 
tensor algebra, the proposed method characterizes each pixel with a local neighbourhood centered at it, thereby combining the 
spatial and polarimetric information within the image. The inherent spatial information is beneficial to alleviate the influence of 
speckle noise and improve the stability of the extracted features. In addition, the label information of training samples is utilized in 
feature extraction, therefore the discriminability of different classes can be well preserved. The tensor discriminative locality 
alignment (TDLA) method is applied to find the multilinear transformation from the original feature space to the low-dimensional 
feature space. Based on the extracted features in the low-dimensional space, the SVM classifier is applied to achieve the final 
classification result. A real PolSAR data set acquired over San Francisco is adopted for performance evaluation. The experimental 
results show that the proposed method can not only improve the classification accuracy, but also alleviate the influence of speckle 
noise. In addition, the spatial details can be well preserved, demonstrating the superior performance of the proposed method. 
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1. INTRODUCTION 

Polarimetric synthetic aperture radar (PolSAR) can obtain much 
more information about the land covers and targets than single 
polarized SAR systems (Lee, Pottier, 2009), thus it is 
increasingly used in various remote sensing applications, such 
as change detection, urban planning, biomass estimation, etc. 
Among them, land use/land cover (LULC) classification is of 
the key importance, and many supervised and unsupervised 
classification methods have been developed (Wang et al., 2016, 
Yu et al., 2012). Feature extraction and classification 
techniques are the two essential elements which determine the 
result. Thereinto, feature extraction plays a significant role 
since that some suitable features can achieve accurate 
classification results, even if only a simple classifier is applied; 
in contrast, it could be quite difficult to get a satisfactory result 
without elaborately extracted features, even though using a 
complex and advanced classifier. 
 
In the past few decades, many polarimetric features which 
reveal specific scattering mechanisms have been obtained, 
including H/A/alpha (Cloude, Pottier, 1997), Freeman-Durden 
(Freeman, Durden, 1998), Yamaguchi (Yamaguchi et al., 2011), 
Neumann, Huynen, etc. However, a single feature or feature set 
may cause misclassifications in cases where different land 
covers possess the similar scattering mechanism and where the 
same class of land cover incur different scattering mechanisms. 
For example, the buildings not aligned orthogonal to radar line 
of sight (namely oriented buildings) also cause cross-polarized 
scattering, which is mainly generated by vegetation (Xiang et 
al., 2015). Therefore, these two land covers cannot be well 
separated if the features obtained by a single polarimetric 
decomposition method are employed. Recently, some new 
decomposition methods can overcome this problem to some 
extent, however, the orthometric and oriented buildings are 

usually assigned to only one class in the classification map. In 
fact, it is also necessary and meaningful to separate these two 
kinds of buildings for urban planning or other applications. In 
order to achieve more detailed and accurate LULC 
classification, various polarimetric features are needed, which 
can reflect the characteristics of the land covers from different 
perspectives. 
 
It is shown that PolSAR classification can be improved by 
combining multiple features together. However, various 
features have information redundancies, which may impact the 
performance of the classifier. In addition, simple combination 
of the features can greatly increase the computation complexity. 
Therefore, it is necessary to reduce the redundancy among 
various features and preserve the discriminative information at 
the same time. Generally, there are two ways for dimension 
reduction, i.e., feature selection and feature extraction. This 
paper investigates feature extraction by transforming the 
original feature space to a lower dimensional subspace, with 
most of the salient information preserved. In this field, there are 
many linear and nonlinear techniques, including principal 
component analysis (PCA) (Licciardi et al., 2014), independent 
component analysis (ICA) (Yamada et al., 2012), linear 
discriminated analysis (LDA) , locally linear embedding (LLE) 
(Roweis, Saul, 2000), isometric feature mapping (ISOMAP) 
(Balasubramanian, Schwartz, 2002), Laplacian eigenmaps (LEs) 
(Belkin, Niyogi, 2003), t-distributed stochastic neighbor 
embedding (tSNE) etc., which have been successfully applied 
in PolSAR feature extraction. However, these methods deal 
with each pixel independently, and the spatial relationship 
among neighboring pixels is neglected. 
  
In recent years, tensor which can represent high-order data is 
drawing increasing attention, and has been applied in 
hyperspectral image analysis, computer vision, and so on (Ai et 
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al., 2013, Renard, Bourennane, 2009, Lu et al., 2011). Based on 
multilinear algebra, many tensor subspace learning algorithms 
have been developed and applied in dimension reduction (Yan 
et al., 2007, Xu et al., 2008). For example, using the original 
feature tensor of PolSAR data, the tensor decomposition 
techniques have been incorporated with ICA for feature 
extraction (Tao et al., 2015). However, the proposed tensor-
based feature extraction is an unsupervised procedure. In fact, 
the discriminative information from the given training samples 
should also be considered, so that the distance between the 
extracted feature set of different land covers can be maximized, 
leading to more accurate classification results. 
 
To make the best of the information of training samples while 
extracting the intrinsic features, this paper proposes a 
supervised manifold-learning algorithm for PolSAR feature 
extraction and classification. The tensor discriminative locality 
alignment (TDLA) method is introduced to extract the low-
dimensional features that are embedded in the high-dimensional 
feature space (Zhang et al., 2013). Based on a wide range of 
informative polarimetric features, the tensor representation of 
each pixel is constructed by combining itself and its 
surrounding neighbors. The tensor structure can help to better 
characterize the features of an individual pixel, and it is also 
beneficial to alleviate the influence of speckle noise. In the 
TDLA method, the discriminative information from the given 
training samples is considered, therefore the separability of 
different classes can be improved in the low-dimensional 
feature space. 
 
The remainder of this paper is organized as follows. Section 2 
introduces the fundamentals of the TDLA algorithm, and then 
presents the proposed PolSAR feature extraction and 
classification method. In Section 3, the experimental results are 
provided to validate the effectiveness of the proposed method. 
Section 4 concludes this paper. 
 

2. THE PROPOSED METHOD 

2.1 Tensor discriminative locality alignment algorithm 

The TDLA algorithm can find a multilinear transformation 

from the original high-order feature space 1 2    ML L LX R  to 

the reduced feature space 1 2     Md d dX R  (Zhang et al., 2013). 
The formula can be expressed as 
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iU R ( 1,2, , i M , i id L ) are a set of 

projection matrices. T i iX U  means the mode-i product of 

tensor X  and matrix iU . In the following, we consider the 

second-order tensor 1 2 L LX R  for simplicity. 
 
The input data of the TDLA algorithm is a set of training 
samples ( 1,2, , ) iX i N  and their labels  ( 1,2, , ) i iy y C , 

where N  is the number of training samples and C  is the class 
number. For each sample iX , we divide the other 1N  

samples into two groups by their class labels: the samples of the 
same class and the samples belonging to others. Then, we sort 
the samples in each group based on their Euclidean distances to 

iX . The 1n  nearest samples of the group “same class” and the 

2n  nearest samples of the group “different classes” are selected 

to build a patch of iX  
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where 1 2 n n n , iS  means the samples in the same class, and 

iD  the samples in the different classes. For each ( )iPatch X , 

the corresponding representation in the reduced feature space is 
denoted by 
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In the reduced feature space, in order to preserve the 
discriminability of different classes, TDLA suggests that the 
distances between 

iX  and 
iS  should be as small as possible, 

while the distances between 
iX  and 

iD  should be as large as 

possible. On this basis, the following optimizations upon 
iX  

can be constructed. 
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Formula (4) and (5) can be combined together as 
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where   is a weighting factor. By setting  
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Formula (6) can be simplified as 
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If we define 
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Then the final representation of the patch optimization can be 
denoted by 
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where ( ) ( )

 
i iP g P hX X  means the operation of tensor contraction. 

The whole alignment of TDLA is obtained by summing over 
the patch optimizations of all the training samples. For each 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-345-2020 | © Authors 2020. CC BY 4.0 License.

 
346



 

sample, the local patch provided by (2) is unique in order, here 
we unite the samples in each patch to a unified system by 
assuming that the 1n  samples in (2) are selected from the 
training samples 
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The unification can be achieved by using a selection matrix 

(1 )  N n
iE R  defined by 
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Where  1, , , i nF i i i  denotes the set of global indices of 

samples in ( )iPatch X . Then, the sum of all the patch 

optimizations described in (10) can be written as 
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The full optimization (13) aims to obtain an optimal subspace 
from the original high-order feature space. By putting (1) into 
(13) and imposing the constraints that T i iU U I , the solution 

of iU  can be derived as 

 
 

T

Targ min tr( ( ) )
k k

k k
U U I

U F k U  (15) 

    T T T
, 1 2 2 1 2 2

1 1

(1)=
 

    
N N

g h g h
g h

F Mat X U Mat X U  (16) 

    T T T
, 2 1 1 2 1 1

1 1

(2)=
 

    
N N

g h g h
g h

F Mat X U Mat X U  (17) 

 
The solution of (15) is acquired by combining the eigenvectors 
associated with the smallest kd  eigenvalues of matrix ( )F k . 

Then an alternating optimization procedure is applied to obtain 

1U  and 2U . 

 
2.2 Tensor modeling of PolSAR data 

The PolSAR data is usually represented by the covariance 
matrix after multilook processing, on the basis of the complex 
scattering matrix. The covariance matrix C  is Hermitian and 
only contains six independent elements: three real diagonal and 
three complex off-diagonal elements. The covariance matrix 
itself can only provide limited information if it is directly 
utilized for land cover classification. Therefore, many 
polarimetric decomposition methods have been investigated to 
provide an interpretation of the covariance matrix as the 
combination of canonical scattering mechanisms. Table 1 lists 
the polarimetric features extracted using different 
decomposition methods. In addition, 9 elements obtained from 
the covariance matrix are also included. Then, the land covers 
can be well characterized by altogether 48 informative 
polarimetric features. 
 
Based on the polarimetric features, it is straightforward to 
represent each pixel by a 48-dimensional vector, which is then  

Method Polarimetric feature 

Elements of 
Covariance 
matrix (9)

C11 C22 C33 

C12_modulus C12_phase C13_phase 

C13_modulus C23_modulus C23_phase 

Cloude (3) Cloude_C11 Cloude_C22 Cloude_C33 

Freeman (3) Freeman_Odd Freeman_Dbl Freeman_Vol 

VanZyl(3) VanZy_Odd VanZy_Dbl VanZy_Vol 

Krogager(3) Krogager_Ks Krogager_Kd Krogager_Kh 

Yamaguchi 
(4) 

Yamaguchi_Odd Yamaguchi_Dbl Yamaguchi_Vol

Yamaguchi_Hlx   

H/A/Alpha 
(6) 

Entropy Alpha Anisotropy 

Lambda1 Lambda2 Lambda3 

Huynen(3) Huynen_C11 Huynen_C22 Huynen_C33 

An&Yang 
(4) 

An_Yang_Odd An_Yang_Dbl An_Yang_Vol

An_Yang_Hlx   

Zhang (5) 
Zhang_Odd Zhang _Dbl Zhang _Vol 

Zhang_Hlx Zhang_Wire  

Xiang (5) 
Xiang_Odd Xiang_Dbl Xiang_Vol 

Xiang _ Hlx Xiang_Cros  

Table 1. Polarimetric features obtained using different methods 

 
processed and classified independently, without considering the 
spatial constraints. In this paper, by introducing the tensor 
algebra for feature representation, each pixel is characterized by 
combining the spatial and polarimetric information. Specifically, 
each pixel is described using the neighborhood centered at the 
pixel. Figure 1 shows the structures of different neighborhood. 
 

 
Figure 1. The structures of different neighborhoods 

 
For each pixel, suppose its feature vetor is  Lx R  (L=48). By 
combing x  and the feature vetors of its local neighbors, the 
feature representation can be constructed as 
 
 ( 1)

1 2[ , , , , ]    L k
kX x x x x R   (18) 

 
where ( 1,2, ) ix i k  is the feature vetor of a neighbor pixel. 

The feature matrix is actually a second-order tensor, in which 
one mode correponds to the polarimetric dimension and the 
other mode denotes the spatial dimension. Since that the pixels 
within a local neighborhood are likely from the same land cover, 
the polarimetric-spatial representation helps to alleviate the 
effect of speckle noise, and to better preserve the spatial 
information. 
 
2.3 TDLA-based PolSAR feature extraction 

Based on the second-order feature tensor of all the training 
samples, the TDLA algorithm is applied to find two projections 

1U  and 2U  for feature extraction. 1 1
1

 L dU R  reduces the 

feature dimension in the polarimetric mode, and 2 2
2

 L dU R  

reduces the feature dimension in the spatial mode. Then, we can 
obtain the feature in the reduced space for each pixel in the 
PolSAR image. 
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Using the extracted features, the SVM classifier is applied to 
get the final classification result.  
 

3. EXPERIMENTAL RESULTS 

In this section, a real PolSAR data set is used to evaluate the 
performance of the proposed method. In addition, the classical 
PCA method and an unsupervised manifold learning algorithm, 
i.e., tSNE are also employed for comparison. In the proposed 
method, the neighborhood in Figure 1(b) is utilized, then the 
spatial dimension 2L  equals to 9. In the reduced feature space, 

1d  and 2d  are set as 3 and 1, respectively. The numbers 1n  

and 2n , which determine the patch size, are set as 5. We fix the 

weighting factor   at 2. 
 
3.1 Data set description 

This paper adopts a fully polarimetric data set acquired with 
Radarsat-2 system on 11 November 2009. The data set has a 
spatial resolution of 8 m, and a size of 1500╳1400 pixels. The 
study area is located in San Francisco, USA, which has 
coverage of different kinds of land covers, including sea, 
vegetation, and buildings. Figure 2(a) shows the Pauli RGB 
image of this area. In addition, it can be seen that the building 
areas can be further divided into low density urban, high 
density urban, and oriented building, according to the 
backscatter responses, block size and orientation angles. In 
Figure 2(a), the vegetation can be confused with the oriented 
buildings due to the scattering similarity. Figure 2(b) presents 
the ground truth of the image. For each class, 100 pixels are 
randomly selected for training, and the others in the labelled 
areas are used as the testing set. 
 

(a) (b) 

Water Vegetation Low density
urban

High density
urban

Oriented
buildings

 
Figure 2. San Francisco data set. (a) Pauli RGB image. (b) The 

ground truth. 

 
3.2 Feature distribution in the reduced space 

Figure 3 shows the scatterplots of the extracted features 
obtained using different methods. Figure 3(a) corresponds to 3 
original features, i.e., C11, C22, and C33 in the covariance 
matrix. It can be seen that the scatters of different classes are 
totally in a mess. Figure 3(b) shows the scatterplots of the 
principal components extracted by PCA. We can find that there 
is an obvious gap between the red plots (water) and the others. 
However, the components of the other four classes are very 
close in the feature space, and much correlation exists among 

them, making the following classification a difficult task. tSNE 
method is a nonlinear feature extraction technique. The 
scatterplots of the extracted features are shown in Figure 3(c). It 
can be seen that the separability of different classes is improved 
to some extent. However, some samples are mixed together. 
Using the proposed method, the scatterplots of the extracted 
features are shown in Figure 3(d). By comparison, the features 
of different classes are more discriminable, and the samples of 
each class are better clustered. This is mainly because that, the 
discriminability information of different classes is utilized in 
feature extraction. The optimization procedure insures that the 
distances within the same class are minimized, and the 
distances between different classes are maximized. 
 
3.3 Classification result 

Based on the extracted features, the final classification result 
can be easily obtained, and Figure 4 gives the results using 
different methods. From the whole perspective, we can see that 
the main areas are correctly classified by all the three methods. 
However, there are many misclassifications in Figure 4(a) and 
(b). For example, in Figure 4(a), a part of the oriented buildings 
are classified as high density urban. This phenomenon is 
eliminated in Figure 4(b), however, many pixels are 
misclassified as oriented buildings, especially in vegetation and 
low density urban areas. By contrast, the proposed method 
generates the best classification result, with quite a small part of 
misclassified areas, as shown in Figure 4(c). 
 
In addition, from Figure 4(a) and (b), we can observe a large 
amount of noises in the classification result, even in the ocean 
areas. In PCA and tSNE methods, the feature extraction 
procedure are implemented based on the polarimetric features 
of a single pixel, therefore it can be easily affected by the 
speckle noise. Whereas the proposed method represents each 
pixel with a polarimetric-spatial feature tensor, and the spatial 
information can be utilized during feature extraction. The 
polarimetric-spatial representation is beneficial to alleviate the 
effect of speckle noise, and to improve the stability of the 
extracted features. The classification result in Figure 4(c) is 
visually smooth, and the shape details can be well preserved. 
Taking the area in the red ellipse as an example, we can hardly 
observe the spatial details of the coastline in Figure 4(a) and (b). 
However, the coastline and the port shapes are very obvious in 
Figure 4(c), demonstrating the effectiveness of the proposed 
method. 
 
Table 2 presents the accuracy statistics of different methods. 
The accuracy is calculated by performing 100 independent 
classification experiments. For each experiment, a fixed number 
of samples are randomly selected for training, and the other 
labelled samples are used for testing. From table 2 we can find 
that the proposed method achieves an accuracy improvement of 
3.4% than tSNE. 
 

Method PCA tSNE 
Proposed 
Method

Sea 0.993 0.991 0.998 

Vegetation 0.825 0.834 0.876 

Low density urban 0.859 0.876 0.921 

High density urban 0.893 0.905 0.887 

Oriented buildings 0.726 0.893 0.912 

Overall accuracy 0.856 0.886 0.920 

Table 2. Classification accuracy of different methods 
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(c)

(b)

(a)

(d)

 

Figure 3. Scatterplots of the extracted features using different methods. (a) The original features C11, C22, and C33. (b) PCA. (c) 
tSNE. (d) The proposed method. 

 
4. CONCLUSION 

This paper proposes a supervised manifold-learning method for 
PolSAR feature extraction and classification. In this method, 
each pixel is represented by a second-order tensor, by 
combining the polarimethic features within a local 
neighborhood. The polarimetric-spatial representation is helpful 
to preserve the spatial information and to alleviate the effect of 
speckle noise. In addition, the discriminability information of 
different classes is utilized during feature extraction. The 
TDLA method is applied to extract the low-dimensional 

features that are embedded in the high-dimensional feature 
space. The experimental results on the Radarsat-2 data set show 
that the proposed method can classify the different land covers 
with high accuracy, with well-preserved spatial details of the 
image. In the future, more efforts will be made to improve the 
extracted features by integrating spatial information. 
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Figure 4. The classification results obtained using different methods. (a) PCA. (b) tSNE. (c) The proposed method. 
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