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ABSTRACT:

Automatic extraction of buildings from high-resolution remote sensing imagery is very useful in many applications such as city
management, mapping, urban planning and geographic information updating. Although extensively studied in the past years, due
to the general texture of the building and the complexity of the image background, high-precision building segmentation from
high-resolution sensing image is still a challenging task. Repeated pooling and striding operations used in CNNs reduce feature
resolutions and cause the loss of detail information. In order to solve this problem, we proposed a deep learning model with a spatial
pyramid pooling module based on the LinkNet. The proposed model called P-LinkNet that takes advantage of a spatial pyramid
pooling module to capture and aggregate multi-scale contextual information. We tested it on Inria Building dataset. Experimental
results show that the proposed P-LinkNet is superior to the LinkNet.

1. INTRODUCTION

Automatic extraction of buildings from remote sensing imagery
is used in many applications, including urban planning, navig-
ation, and disaster management [Panboonyuen et al., 2019, Wu
et al., 2018, Li et al., 2018, Liu et al., 2019]. In recent years,
the capability of remote sensing technology has been greatly
improved, which leads to the availability and accessibility of
high-resolution remote sensing images [Hui et al., 2019,Huang
et al., 2016, Guo et al., 2016]. With the use of quality data in
large spatially areas, it is possible to perform accurate image
segmentation targeting the extraction of buildings.

In the past few decades, various methods of extracting fea-
tures from images have been widely developed. In traditional
classical methods, the spatial and texture features of images
are extracted by mathematical descriptors, such as Haar spaces
[Viola, Jones, 2001], Scale-invariant Feature Transform(SIFT)
[Lowe, 2004], Local Binary Patterns(LBP) [Ojala et al., 2002]
and Grey Level Co-occurence Matrix(GLCM) [Gomez et al.,
2012]. Since entering the new world, pixel by pixel prediction
has been introduced on the basis of feature extraction by clas-
sifier such as Support Vector Machines(SVM) [Inglada, 2007],
Adaptive Boosting(AdaBoost) [Aytekin et al., 2013], Random
Forests [Dong et al., 2015], K-Means [Cheng et al., 2013], and
Conditional Random Fields(CRF) [Li et al., 2015]. However,
these methods rely heavily on manual design and implement-
ation, which change as the application domain changes. As a
result, they are prone to introduce biases and poor generaliza-
tion, and are time-consuming and labor-intensive.

Fortunately, alongside advancements in computational capabil-
ities and the availability of large volumes of data, deep learn-
ing is on the rise, especially the convolutional neural net-
work(CNN), bringing us new solutions, as it can automatic-
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ally learn effective classification features. In recent years, with
the development of semantic segmentation technology, build-
ing extraction from high-resolution satellite imagery has been
continuously improved.

In the early studies, the semantic tags were determined inde-
pendently by pixel by pixel by the CNN model based on patch,
which only relied on a small patch around the target pixel to
predict the tags and ignored the internal relationship between
patches. The CNN model based on patch has achieved remark-
able results in the extraction of buildings, but it cannot guar-
antee the spatial continuity and integrity of the building struc-
ture [Lin, Saripalli, 2012, Vakalopoulou et al., 2015]. In addi-
tion, the CNN method based on patch is very time-consuming.

To overcome the problems of patch-based CNNs, Long et al.
proposed the fully convolutional networks(FCNs) [Long et al.,
2015], which have become a mainstream paradigm for semantic
segmentation. FCNs replace the fully connected layers in tradi-
tional CNNs with convolutional layers and upsampling layers,
which are applicable to the segmentation of images of any size.
In the FCN, feature maps with high-level semantics but low res-
olutions are genreated by down-sampling features using mul-
tiple pooling or convolutions with strides [Chen et al., 2018].
Based on the basic FCN8 model, most excellent semantic seg-
mentation networks have been proposed. For example,SegNet
[Badrinarayanan et al., 2017] and U-Net [Ronneberger et al.,
2015] used the encoder-decoder structure to improve the seg-
mentation accuracy and DeepLab [Chen et al., 2015] used the
dilated convolution to enlarge model receptive field. However,
yet there is still much room to exploit necessary information
in complex scenes. To make good use of global image-level
prior for diverse scene understanding, method of [Lazebnik et
al., 2006, Lucchi et al., 2011] extracted flobal context inform-
ation with traditional feature not from deep neural networks.
Similar improvement was mader under object detection frame-
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Figure 1. P-LinkNet architecture. Each gem green rectangular block represents a multi-channel feature map. The left part of the
diagram represents the encoder. P-LinkNet uses ResNet34 as encoder. The right part is the decoder of P-LinkNet, it is set the same as
LinkNet decoder. Compared with LinkNet, P-LinkNet has an additional center part which can enlarge the receptive field and as well
as preserve the detailed information of different scales. Each convolution layer is followed by a ReLU activation except the last
convolution layer which use sigmoid activation.

works [Szegedy et al., 2014].

Although extensively studied in the past years, due to the gen-
eral texture of the building and the complexity of the image
background, high-precision building segmentation from high-
resolution sensing image is still a challenging task. On the one
hand, the satellite images are high-resolution, so the network
should have large receptive field that can cover the whole im-
age. On the other hand, some buildings in the images are small
and with complex shape. In this case, it is of the great signific-
ance to preserve the detailed spatial information. Taking these
factors into account, we proposed a deep learning model called
P-LinkNet, which can properly handle these challenges.

The spatial pyramid pooling structure of the PSPNet [Zhao
et al., 2017] model aim to handle the problems of segement-
ing objects at different spatial scales. The approach is well-
known for achieving robust and efficient performance for dense
semantic labeling. The network structure consists of several
branches of dilated convolution operations to enlarge the recept-
ive field. Spatial pyramid pooling shows better performance at
pixel-level prediction tasks such as scene parsing and semantic
segmentation. However, the PSPNet model only utilizes FCN
based on ResNet as the backbone and lacks up-sampling cap-
abilities. LinkNet [Chaurasia, Culurciello, 2017] is an effecient
semantic segmentation neural network which takes the advant-

age of skip connections, residual blocks and encoder-decoder
architecture. It combines both lower and higher layer to gerner-
ate the final result. At the same the time, it runs fast. Although it
achieves better performance, it has no extraction of multi-scale
contextual features capability.

P-LinkNet makes full use of the advantages of LinkNet and
PSPNet. It uses LinkNet with pretrained encoder as its back-
bone and has a traditional spatial pyramid pooling module in the
center part. By combining the encoder-decoder structure and
the spatial pyramid pooling module, the proposed P-LinkNet
can capture multi-scale features and effectively restore detailed
context information of buildings at all scales.

Transfer learning is a efficient method that can directly im-
prove network performance in most situation, especially when
the training data is limitd. In semantic segmentation field, ini-
tializing encoders with ImageNet pretrained weights has shown
promissing results.

2. METHOD

2.1 Network Architecture

In this section, we introduce each component of our efficient
network P-LinkNet. It combines a U-shaped encoder-decoder
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structure with spatial pyramid pooling. In the following P-
LinkNet is explained in more details.

LinkNet is a typical fully convolutional network which comes
from UNet. The main structure of LinkNet is U-shape. Com-
pared to UNet, in order to reduce the computation, LinkNet
don’t concatate the feature map of encoder and the feature map
of decoder directly, but through a convolutional layer, and then
add directly.

In a deep neural network, the size of its receptive field can re-
flect how much information is used in the context. Using pool-
ing layers could multiply increase the receptive field of feature
points,but may reduce the resolution of center feature maps and
drop spacial information. Global average pooling is a good
model as the global contextual prior, which is commonly used
in image classification [He et al., 2016]. To further reduce con-
text information loss, we propose a hierarchical global prior,
containing information with different scales and varying among
different sub-regions. The proposed model called P-LinkNet
that takes advantage of a spatial pyramid pooling module to
capture and aggregate multi-scale contextual information. As
shown in Figure1.

Spatial pyramid pooling is a useful method to use global in-
formation at four different scales. Through pyramid pooling,
spatial features on four different spatial sacles can be identi-
fied. After encoding by the backbone, the following pyramid
level separates the feature map into different sub-regions and
forms pooled representation for different locations. The output
of different levels in the pyramid pooling modules contains the
feature map with different sizes. To get the weight of global
feature, we use 1x1 convolution layer after each pyramid level
to reduce dimension of context representation to 1/N of the ori-
ginal one if the level size of pyramid is N. Then we upsample
the low-dimension feature maps to get the same size as the input
feature map by bilinear interpolation. Finally, we concatenate
the different levels of features and the input feature map. Note
that eh number and size of pyramid levels can be adjusted. As
shown in Figure2.

To explain our structure, P-LinkNet provides an effective global
contextual prior-level scene parsing. The pyramid pooling
module can collect levels of information, more representative
than global pooling [?]. In end-to-end learning, the global
pyramid pooling module and the local LinkNet feature can be
optimized simultaneously.

The number of pyramid levels and size of each level can be
modified, which are related to the size of feature map that is fed
into the pyramid pooling layer. This structure extracts different
subregions through pooling kernels of different sizes. Thus, the
multi-stage kernels should keep in a reasonable gap. Our pyr-
amid pooling module is four-level one with size of 1x1, 2x2,
3x3, 6x6 respectively. By our four-level pyramid, the pooling
kernel cover the whole, half of, and small portions the feature
map, thereby gets the contextual information. Note that the
number and the size of pyramid levels can be modified, which
according to the size of the feature map fed into the pyramid
pooling layer.

2.2 Pretrained Encoder and Decoder

Transfer learning is a useful method that can directly improve
network performance in most situation and reduce the compu-
tation. In the training period, we found that transfer learning

Figure 2. An illustration of the spatial pyramid pooling module
structure with four pooling scales in P-LinkNet.

can accelerate our model convergence and make it have better
performance without extra cost.

Deep pre-trained networks lead to good performance. How-
ever, increasing depth of the network layer may bring additional
optimization difficulty. ResNet solves the problem with skip
connection in each block. Latter layers of deep ResNet [He
et al., 2016] mainly learn residues based on previous ones. P-
LinkNet uses ResNet34 pre-trained on ImageNet [Deng et al.,
2009] dataset as its encoder, which shows high precision and
runs fast.

ResNet34 is originally designed for classification task on mid-
resolution images of size 256x256. But in our experiment, the
task is to segment buildings, which is usually to resize 512x512.
After encoding, the feature map size is 1/32 of the input image.
Then we use the pyramid pooling module to obtain context in-
formation. The decoder of P-LinkNet remains the same size
as the original LinkNet, which has been proven effective. The
decoder part uses transposed convolution layers to upsampling,
restoring the resolution of feature map from 16x16 to 512x512.
We used batch normalization between each transposed convo-
lution layers and which is followed by ReLU non-linearity.

2.3 Loss Function

Cross-entropy loss(CE) is the most commonly used loss func-
tion in semantic segmentation tasks. For binary classification,
CE loss function can be described as:

CE(p,y) =
{

− log(p) i f y = 1
− log(1− p) otherwise.

where y∈ {0,1} is the ground truth label and p ∈[0,1] is the
prediction result. For notational convenience, here we define
the probability pt as:

pt =

{
p i f y = 1

1− p otherwise

Then we can get the loss function of CE as: CE(pt) =
− log(pt).
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For the task of segmentation, IoU is usually used to measure the
performance of any segmentation approach. As a result, there
exists a lot of its surrogates, and the goal is to minimize the gap
between the actual IoU value and its differentiable approxim-
ation. Dice loss is proposed in view of the small foreground
proportion, which is essentially to measure the overlap between
two samples as:

LDice = 1−2|A∩B|/(|A|+ |B|).

where A is the foreground of target while B is the foreground
of prediction.In our task, the error ground truth labels instead
of the category imablance are the most serious impact that con-
strains the effectiveness of the model training. In order to avoid
the network convergence, we choose Dice loss + BCE loss as
our loss function.

3. EXPERIMENTS

3.1 Dataset

In this paper, we ecaluate the proposed P-LinkNet on Inrial
Building dadataset [Maggiori et al., 2017], which inclueds 180
images with public labels and 180 images without public labels.
For quantitative analysis, we only use the former in this paper,
which was cropped to over 10000 training pictures and more
than 2000 test pictures. There are five dissimilar urban settle-
ments (Austin, Chicago, Kitsap County, Western Tyrol and Vi-
enna) with 36 images respectively, ranging form densely pop-
ulated areas to alpine towns. The dataset is formulated as a
binary segmentation problem, in which buildings are labeled
as foreground and other objects are labeled as background. As
shown in Figure3.

(a) image (b) label

Figure 3. Examples of Inria dataset. (a) Original image. (b)
Mask label.

3.2 Implementation Details

The whole experimental process is shown in the Figure 4. To
avoid overfitting, we did data augmentation in ambitious way,
including horizontal flip, vertical flip, transformation during the
training period. The dataset is formulated as a binary segmenta-
tion problem, in which buildings are labeled as foreground and
other objects are labeled as background. We did not do any aug-
mentation in test time and used 0.5 as our prediction to generate
binary outputs.

For our best model, we choose SGD as our optimizer. The ori-
ginal learning rate was set 0.01, and we adjust learning rate
by MultiStepLR. During the course of experiments, we notice

Figure 4. The schematic workflow of this study.

that appropriately large "cropsize" can yield good performance
and "batchsize" in the batch normalization layer is of good per-
formance. Due to limited physical memory on GPU cards, the
batch size during training phase we fixed as 16. It took about
30 epochs for our network to converge.

3.3 Results

We propose to use spatial pyramid pooling to acquire multi-
scale features, which can improve the extraction accuracy of
buildings. The model aggregates the spatial context information
form the low convolutional layers and multi-scale features to al-
leviate the problem of spatial information loss. For evaluation,
both pixel-wise(Pixel Acc.) and intersection over union(IoU)
are used. We found our model is better than LinkNet34.
LinkNet34 had pretrained encoder which made the network has
good performance. But the IoU of our model is 84.48 while
the LinkNet34 is 84.26. And the precision of our model is
91.50 while the LinkNet34 is 91.04. Figure 5 shows some of
the experimental results. By adding spatial pyramid pooling,
P-LinkNet can obtain larger receptive field and multi-scale in-
formation at the same time, and thus alleviated the global infro-
mation loss occurred in LinkNet34.

(a) image (b) label (c) P-LinkNet (d) LinkNet

Figure 5. Examples of building extraction results produced by
two models on Inria dataset. (a) Original image. (b) Mask label.
(c) prediction maps from P-LinkNet. (d) prediction maps from
LinkNet.
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4. CONCLUSION

In recent years, deep learning, especially convolutional neural
networks, have been widely applied in computer vision and se-
mantic segementation. However, automatic building extraction
from high-resolution remote sensing imagery is still a challen-
ging task due to a large variety of appearing patterns and its
spatial scale. To address this issues, we have proposed a se-
mantic segmentation model called P-LinkNet based on LinkNet
for high resolution satellite imagery. By multi-scale pooling in
the center part, P-LinkNet can get better performance in build-
ing extraction, which demonstrating that eht encoder-decoder
and spatial pyramid pooling module are two powerful tools that
need to be merged to take effect for builing segmentation.

Although our model has achived satisfactory result, P-LinkNet
still has some problems in boundary accuracy, we plan to im-
prove by introducing edge attention module and modifying the
loss function to improve the extraction accuracy in the future.
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