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ABSTRACT: 
Monitoring, evaluating and understanding the slopes by Interferometric Synthetic Aperture Rader (InSAR) technology are critical for 
both human economy and natural environment. However, the resolution limitation of existing digital elevation model (DEM) in the 
slope areas causes the DEM phase residues and atmospheric effects promoted, which will influence the interpret accuracy of InSAR 
results. In this study, we propose a novel two-step ESRGAN-based DEM SR method to effectively recover high-resolution DEM from 
the original version. Firstly, we pretrain an ESRGAN with a large number of natural images. Based on it, we transfer the learnt 
knowledge into the DEM problem and fine-tune the DEM SR network. The recovered DEMs are utilized as the reference data to 
improve slope deformation monitoring and enhance the accuracy of InSAR estimation, especially in the mountainous areas with cloudy 
and rainy weather. Experiments indicate that the proposed method can achieve better results than the traditional methods and works in 
phase simulation, which is one of the key step of InSAR deformation monitoring. 
 
 
 

1. INTRODUCTION 

Landslide is an economically harmful and life-threatening hazard 
in many parts of the world, especially in the mountainous areas 
with cloudy and rainy weather (Dai, Lee, & Ngai, 2002; Iverson, 
2000). As a type of microwave remote sensing (RS) technology, 
Interferometric Synthetic Aperture Radar (InSAR) has been 
widely used in landslide monitoring for its characteristic of high 
sensitivity of dynamic changes, high spatial resolution and wide 
coverage (Ma, Lin, Lan, & Chen, 2015). However, slopes often 
occur in areas with steep terrain, where the high-resolution and 
high-accuracy digital elevation models (DEMs) are usually 
confidential. Besides, the complexity of the spatial and temporal 
distribution of atmospheric phases increase the monitoring 
difficulties obviously. Therefore, a large number of DEM phase 
residues are left in the estimated deformation phase. Moreover, 
the phase delay caused by the vertical stratification of atmosphere 
is related to elevation, which will also affect the accuracy of 
repeat track interferometry. Therefore, it is especially useful to 
enhance the DEM quality and further improve the accuracy of 
InSAR slope monitoring.  
Xu extended image SR in the DEM scene by proposing a 
nonlocal-based method (Xu et al., 2015). For the last five years 
or so, interest in the study of deep learning (DL) based single 
image super-resolution (SISR) methods has skyrocketed (Dong, 
Loy, He, & Tang, 2014; Kim, Kwon Lee, & Mu Lee, 2016; Tai, 
Yang, & Liu, 2017). Recent DL-based methods have achieved 
significant improvements both quantitatively and qualitatively. 
Among these methods, the Super-Resolution Generative 
Adversarial Network (SRGAN) pioneeringly augments the 
content loss function with an adversarial loss by training a 
generative adversarial network (Ledig et al., 2016). In order to 
further improve the visual quality, the SRGAN architecture has 
been improved to derive an Enhanced SRGAN (ESRGAN) 

(Wang et al., 2018), which is capable of obtaining more realistic 
and natural textures. 
This study introduces ESRGAN creatively into DEM super-
resolution (SR) to address the problem of generally limited DEM 
resolution in the landslide areas. Section 2 introduces the general 
information of study area. Our DEM SR method and some details 
of network training are illustrated in Section 3. Section 4 analyses 
the effect test experiments and relevant results. Finally, the 
conclusion and future research are discussed. 
 

2. STUDY AREA AND DATASETS 

2.1 Study area 

Lantau Island is located in the southwest of Hong Kong, with a 
total area of about 143 km2, as shown in Figure 1. It is the largest 
outlying island in Hong Kong. Due to the steep surface, there are 
only a small amount of plains on the slope near the sea, and 
human exploiting acts are rare in this region. As a result, the 
original natural state has been nearly completely preserved.   
The main bedrock in Lantau area is volcanic rock and tuff 
seriously weathered to form a deeper eluvium, which is usually 
covered by younger colluvial and alluvial surface materials. The 
oldest rocks are sandstone and siltstone with smaller outcrops. 
Mixed forest of multiple tree species generates at the foot of the 
hillside. In the middle of the slope, there are dense shrubs and 
weeds. The outcrop of bedrock usually appears in the peak or the 
slope of more than 40 degrees. The microclimate in this region is 
mainly subtropical monsoon climate, which is characterized by 
torrid summers with high humidity and chill dry winters. The 
rainfall intensity is great with intensive storms and hurricanes. 
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Figure 1 Top left: Optical image of Lantau Island, Hong Kong Top right: Mean velocity from ALOS-1/PALSAR-1, Lantau Island, 

direction of satellite line of sight 
Bottom: Landslide impact of June 2008 rainstorm in Hong Kong 

 
2.2 Datasets 

2.2.1 Shuttle radar topography mission (SRTM) 
The data of SRTM (Shuttle Radar Topography Mission) is 
mainly spearheaded jointly by the U.S. National Aeronautics and 
Space Administration (NASA) and the U.S. National Geospatial-
Intelligence Agency (NGA). The radar images collected cover an 
area of 119 million km2. According to the resolution, SRTM data 
can be divided into SRTM1 and SRTM3, with the corresponding 
resolutions of 30m and 90m respectively (Jarvis, Reuter, Nelson, 
& Guevara, 2008). The elevation models derived from the SRTM 
data can be download freely and their file format is widely 
supported. SRTM DEM has been one of the most used data in 
geosciences since its release. This study mainly collects SRTM 
DEM data with the resolution of 30m.  
 
2.2.2 Sentinel-1 IW Single Look Complex (SLC) data 
The Sentinel-1 mission (Torres et al., 2012) is funded by the 
funded by the Council of Europe (UC) and designed by the 
European Space Agency (ESA) for the goal of rapidly monitoring 
the environmental conditions and natural disasters around the 
world, comprised of a constellation of two polar-orbiting 
satellites. The Sentinel-1 SAR instrument and short revisit time 
will greatly advance capabilities of user data acquisition and 
provide data routinely and systematically for continuous 

mapping of the Earth. Moreover, SENTINEL data is free of 
charge. The IW SLC product contains one image per sub-swath 
and per polarisation channel, with a total of three or six images. 
Each sub-swath image consists of a series of bursts, where each 
burst was processed as a separate SLC image. 
 

3. METHODOLOGY 

Inspired by the success of ESRGAN in image SR, this study 
introduces ESRGAN creatively into DEM super-resolution (SR) 
reconstruction. Nevertheless, directly utilizing image ESRGAN 
to the case of DEM is uncomplicated in theory but hard in 
practice. Most natural images are of 8-bit sizes, whose grey range 
is usually between 0 and 255, while the range of most DEM 
images exceeds 255 greatly (Xu et al., 2019). Thus, if training an 
ESRGAN for DEM SR directly, we need a considerable amount 
of DEM samples consist of vastly diverse height values. However, 
available high-resolution DEM training samples are insufficient 
at present. In order to address this issue, we proposed a novel 
method that includes two steps (Figure 2), pretraining the 
ESRGAN with abundant high-resolution natural images and fine-
tuning the network with small quantities of SRTM DEM samples, 
detailed in 3.1 and 3.2. 
 
 

 
Figure 2 Pipeline of the proposed method and the ESRGAN for DEM SR 
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3.1 DEM SR network architecture 

The designed DEM super-resolution network is based on the 
ESRGAN, as shown in Figure 2. The network is a GAN-based 
network consist of a feed-forward CNN 𝐺ఏಸ

 as the generator 
network and a discriminator network 𝐷ఏವ

 to discriminate the 
original images and the reconstructed HR images. 
As the optimization objective in generative adversarial nets 
(Goodfellow et al., 2014), the DEM SR network is trained to 
solve the min-max problem: 

min
ఏಸ

max
ఏವ

𝛦
ூ

ಹೃ
~೛೟ೝೌ೔೙ሺ಺ಹೃሻ

ሾ𝑙𝑜𝑔 𝐷ఏವ
ሺ𝐼ுோሻሿ ൅ 𝛦

ூ
ಽೃ

~೛ಸሺ಺ಽೃሻ
ቂ𝑙𝑜𝑔ሺ 1 െ

𝐷ఏವ
ቀ𝐺ఏವ

ሺ𝐼ுோሻቁቃ  

(1) 
The general idea behind is to train a generative model G with the 
optimization goal of deceiving pass a differentiable discriminator 
D that is improved iteratively to distinguish the super-resolved 
DEMs from real DEMs. 

B Residual-in-Residual Dense Blocks (RRDB) with identical 
layout are at the core of  the generator network G, which is 

shown in   
Figure 3 are. The layout is firstly proposed in (Gross & Wilber, 
2016). Specifically, there are two convolutional layers with small 
3×3 kernels and 64 feature maps followed by ParametricReLU 
(He, Zhang, Ren, & Sun, 2015) as the activation function. We 
increase the resolution of the input image with two trained sub-
pixel convolution layers as proposed by Shi et al. [48]. 

As to the architecture of the discriminator network (  
Figure 3), it follows the guidelines summarized by (Radford, 
Metz, & Chintala, 2015). Besides, LeakyReLU activation (𝛼 = 
0.2) is utilized to avoid max-pooling throughout the network. The 
network is consist of 8 convolutional layers with 3×3 filter 
kernels, whose number increases from 64 to 512 gradually 
(Simonyan & Zisserman, 2014). The resulting 512 feature maps 
are followed by two dense layers and a sigmoid function finally 
to obtain a discriminant probability. 
 
3.2 Training method and transfer learning 

Based on the idea of perceptual loss proposed in SRGAN, we set 
the loss for the generator as: 

𝐿ீ ൌ 𝜇𝐿௉௘௥௖௘௣ ൅ 𝜆𝐿ீ ൅ 𝜂𝐿ଵ  
(2) 

Where 𝐿ଵ ൌ 𝔼௫೔
‖𝐺ሺ𝑥௜ሻ െ 𝑦‖ଵ is the content loss that indicates 

the 1-norm distance between reconstructed result 𝐺ሺ𝑥௜ሻ and the 
ground-truth 𝑦 . 𝐿ீ  is the adversarial loss for generator. 
Specifically, 𝐿௉௘௥௖௘௣ is constrained on features before activation. 
And 𝜇, 𝜆, 𝜂 are the coefficients to balance different loss terms. 

The high-resolution DEM samples cannot be acquired easily. If 
we train the DEM SR model from scratch, it may be hard to 
approach the global optimal solution. Inspired by the success of 
transfer learning, we apply the knowledge obtained from the 
natural images to DEM SR, that is, the network will be pretrained 
with the sets comprised by natural grayscale images, and fine-
tuned with limited SRTM DEM data to serve the DEM SR. 
 
3.3 Flowchart of the proposed method 

Algorithm 1 ESRGAN-based DEM SR network 

Input: The low-resolution DEM 𝐼௟ 
Output: The high-resolution DEM 𝐼௛ 

1: Pretrain the enhanced super-resolution generative 
adversarial network using the grayscale natural 
images.

2: Transfer the learnt weights as the initial value for 
DEM SR network. 

3: Fine-tune the model with DEM samples with 
various terrain characteristics. 

4: Produce the recovered high-resolution DEM by 
minimizing the error according to Eq. (1). 

 
The flowchart of the proposed method is listed in Algorithm 1. 
 

4. EXPERIMENT SETUP 

4.1 Training details 

The training process contains two stages. First during the pre-
training phase, we train the network based on the 𝐿ଵ loss. The 
initial value of learning rate is set to 0.0004, and is decayed by 
the factor of 0.5 after 30 epochs. The batch size is set to 32. The 
threshold of flatness is 0.0 and 0.15. Typically, 300 epochs are 
sufficient for ESRGAN training using the mini-batch gradient 
descent method. There are 500 steps in per epoch. 
In the transfer learning phase, we train the generator employing 
the model above as the initialization. The network is trained 
according to the loss function in Equation (2) with 𝜇 ൌ 0.5, 𝜆 ൌ
0.005, 𝜂 ൌ 0.1. 
adjust the initial learning rate to 0.0001. For optimization, we use 
Adam with  𝛽ଵ ൌ 0.9,  𝛽ଶ ൌ 0.999 . We implement the model 
with the TensorFlow framework and train them using the 
NVIDIA GeForce RTX 2080 graphic processing units (GPUs) 
and free GPUs provided by Google Colaboratory. 
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Figure 3 Architecture of Generator and Discriminator network 

Figure 4 Qualitative results of ESRGAN-based DEM SR 
 
 

4.2 Training and testing data 

The pre-designed network is trained with the DIV2K datasets, 
which includes 900 natural image samples. Among them, 800 
images are treated as training sets and left 100 images are used 
for validation. The original high-resolution images are down-
sampled to get low-resolution versions by bicubic algorithm. 
Each sample consists of a high-resolution image and 
corresponding low-resolution one.  
Then for transfer learning, SRTM1 DEM are used as training sets. 
We specially select DEM samples with different terrain 
characteristics and ensure that the number of multiple samples is 
as balanced as possible. The data is of 30-meter resolution and 
the size is 3601×3601. For network training, we divided them 
into overlapped 512×512 patches. It is worth mentioning that we 
amplified the samples with high elevation during patch sampling 
as a result of the lack of this type of samples. 
 

5. EXPERIMENT AND DISCUSSION 

5.1 Comparison with traditional methods 

To verify the effectiveness of the SR algorithm, we compare our 
method with other traditional algorithms (e.g., bicubic, Nearest 
neighbor) in details. It can be observed from Figure 4 that our 
proposed DEM SR network outperforms previous down-
sampling approaches in both sharpness and details. Besides, our 
method also performs better in the restoration of the contours. 
We also conduct experiments to quantitatively evaluate the 
ESRGAN-based method by the evaluation index, such as Peak 
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
(SSIM). 
 

 

 
Figure 5 Quantitative evaluation on the SRTM test set 

 
As Figure 5 shows, the SR results outperforms the traditional 
bicubic method in the indices of PSNR and SSIM overall, but 
inferior slightly in some test images.  
Besides, the absolute difference between the SR result and the 
ground truth of each SRTM DEM test patch is calculated. We 
also obtain the histograms of the difference images. Figure 6 is 
one example of the results, which indicates that the difference 
image is zero-mean-value normal distribution approximately.  
According to the above experiments, we can draw the conclusion 
that the results of the EGRGAN-based method are better than that 
of the traditional up-sampling methods, such as bicubic, nearest-
neighbor, etc. 
 
5.2 Effects on slope deformation monitoring 

The proposed ESRGAN-based DEM SR method was utilized to 
provide detailed, high-resolution (HR) DEMs as the external 
reference data and further improve the robustness of deformation 
monitoring. Based on the HR DEM images down-sampled with 
multi bandwidths, we obtained a series of DEM samples under 
different resolutions and conducted comparative tests to gain the 
DEMs of the optimal resolution afterwards, which were 
introduced to enhance the slope deformation monitoring. The 
improvement of the slope deformation monitoring owing to the 
reconstructed high-resolution DEMs was explored in the 
mountainous Lantau Island area in Hong Kong. Both the 
theoretical evaluation (Bert, 2006) and comparison with in-situ 
data showed that the accuracy of monitoring results which were 
calculated based on the reconstructed DEMs were better than 
results with the original DEMs. 
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Figure 6 The difference image and histogram of the test DEM patch 

 
6. CONCLUSION 

In this study, we propose a ESRGAN-based DEM SR method. 
Based on the information learnt from external natural images and 
the original low-resolution DEM, this method can effectively 
reconstruct a DEM with more details and relatively high-
resolution. Furthermore, we use it in the slope deformation 
monitoring and enhance the accuracy of phase simulation in 
InSAR processing. Meanwhile, our method also achieves a faster 
convergence speed especially when a large collection of high-
resolution DEMs is confidential. The enhanced slope 
deformation detection method can assist the relevant government 
departments to enhance the warning capabilities of landslide 
disaster. To our knowledge, this is the first time to propose an 
ESRGAN-based SR method for the widely used SRTM DEM 
data, which may also benefit the fields of hydrology, 
meteorology, geology and engineering construction.  
However, various issues still need to be addressed. One issue to 
be resolved is applying the method to more potential landslide 
zones. Besides, the mutual supplementation of multi-sources 
information is another considerable way to achieve better DEM 
SR results. And the better match and error control of high-
resolution DEM and Synthetic Aperture Radar (SAR) data will 
also be a key issue in our future work. 
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