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ABSTRACT:

Nowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the sub-
sequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classifica-
tion tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original
data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images re-
mains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative
in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on au-
toencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted
on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our
approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.

1. INTRODUCTION

According to Ghamisi et al. (2017b), recent advances in hy-
perspectral imaging acquisition provides rich and boundless
spectral and spatial information. Subsequent hyperspectral im-
age analysis can be used for different Remote Sensing applica-
tions, for example, Earth’s observation, monitor environmental
changes, forest management, precision agriculture, urban plan-
ning, up to disease detection, among many others. Most such
applications base their final processes on well-known classific-
ation or segmentation schemes (Ghamisi et al., 2017a; Su et al.,
2017; Benediktsson et al., 2015), or just profit of such increas-
ing spectral resolution to improve pattern recognition processes
(Ghamisi et al., 2017b).

However, several factors in hyperspectral image analysis, such
as their high dimensionality, data complexity, mixing pixels,
to name a few, make this type of data naturally non-linear and
complex, posing challenges to effectively process and analyze
hyperspectral image data. In this sense, a major challenge that
hyperspectral imaging scientific community has to overcome
relies on adequately handling the enormous spectral dimen-
sionality associated with hyperspectral images (Ghamisi et al.,
2017b; Thilagavathi et al., 2018). Such characteristic exposes
an increasing need for computational power along with dimin-
ished loss of essential characteristics in the data (Su et al., 2017;
Sellami et al., 2018). To circumvent these issues, the use of di-
mensionality reduction techniques has shown to be a good al-
ternative in the analysis of hyperspectral images.

In this regard, there exist a plethora of methods devoted to
describing hyperspectral imaging data into lower-dimensional
spaces, either thought a feature selection (Zhang et al., 2015) or,
most commonly, via feature extraction processes. Among the
latter, there is a special interest of developing methods based on
supervised learning and semi-supervised learning, such as the
Principal Component Analysis and its variants (Harsanyi et al.,
1994; Zang et al., 2012; Jia et al., 2013; Su et al., 2017; Sellami
et al., 2018; Xu et al., 2018).

Nevertheless, thus far, there exists the necessity of improving
such processes, preserving the nature of the data, maximiz-
ing the independence among the new features, and recently re-
taining the neighborhood relationships among the image pixels
(Huang et al., 2019b). Most recently, the emergence of deep
learning technologies has allowed sophisticated approaches for
performing such dimensionality reduction tasks (Arati et al.,
2019; Huang et al., 2019a). For example, Chen et al. (2014)
employed Autoencoders, whereas Liu et al. (2018) used Re-
current Neural Networks for hyperspectral image classifica-
tion tasks. In a similar path, Wang et al. (2019) developed
a semi-supervised learning method for clustering, which im-
proves class-separability among the latent features via Ortho-
gonal Autoencoders in general classification tasks, however, to
the best of our knowledge, Wang’s method was never used in
the hyperspectral image analysis thus far.

In this work, we propose a novel semi-supervised approach
to reduce the spectral dimensionality of hyperspectral images.
Our method, called Hyperspectral Orthogonal Autoencoders
(HOAE), extends the work developed by Wang et al. (2019) on
autoencoders to ensure orthogonality among the features com-
pounding the new lower-dimensional space from hyperspectral
image data. To assess our approach, first, we used it to re-
duce the spectral dimensionality of hyperspectral images cor-
responding to the Pavia University, Kennedy Space Center, and
Botswana public hyperspectral datasets. Next, the outcomes
served as input for performing a classification process via a
Support Vector Machine (SVM) algorithm. Then, the classi-
fication results were compared to the classification benchmarks
reported in Ghamisi et al. (2017a), using a Principal Compon-
ent Analysis (PCA) and conventional Autoencoders (AE) for
the corresponding dimensionality reduction step over the three
datasets.

The rest of the paper is organized as follows. The next sec-
tion presents the considerations for implementing our method
with Autoencoders. Section 3 provides information regarding
the experimental procedure adopted to assess the performance
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of our method. Section 4 exposes the analysis performed over
the experimental results. Finally, Section 5 finishes the paper
presenting our final remarks and future works.

2. HYPERSPECTRAL DIMENSIONALITY
REDUCTION VIA ORTHOGONAL
AUTOENCODERS

In this section we describe our dimensionality reduction tech-
nique for hyperspectral images via autoencoders. Unlike typ-
ical neural network-based approaches, our method, called Hy-
perspectral Orthogonal Autoencoders (HOAE), learns to pro-
ject hyperspectral image data onto an orthogonal space of lower
dimensions, which improves subsequent hyperspectral image
classification schemes.

Conventional Autoencoders are neural networks architectures
composed of an encoding stage, followed by a decoding stage,
which aim is to recreate given input patterns. In essence, an Au-
toencoder is built upon a visible input layer of d neurons, one
hidden layer of h neurons, and an output layer of d neurons,
as depicted in Figure 1. Thus, given an input pattern x € R,
representing a pixel within an hyperspectral image, the Autoen-
coder reconstructs it by first mapping x into a latent represent-
ation z € R" via the decoder f (-), then mapping z to a very
close estimate of the original input data X € R? through the de-
coder g (-). Formally, both the encoder and decoder are defined
in equations 1 and 2, respectively, where Wy, o, and by rep-
resent the weights, activation function and bias associated with
the encoder, and W, o4, and b, denote the weights, activation
function and bias for the decoder, respectively.

f(x)=0;(Wsxx+by)=2z )

g(z) =04(Wy xz+bg) =X (@)

Generally, the weights W, and Wy, as well as the biases
vectors by and by, are estimated using the Backpropagation
algorithm, which aims to minimize the reconstruction error
L (-) between the input pattern x and its reconstructed estimate
X, according to Equation 3, where ||-|| represents the Euclidean
norm operator.

L (x,%) = [lx — x| 3)

During Autoencoder’s training process, the network enforces
the learning of a compressed representation z of the input pat-
tern x in a latent space Z. However, estimating the network’s
parameters via the minimization of the reconstruction error

Wi, by X

|
©-© e © ©

E
CECEICES

Figure 1. Single layer Autoencoder.

L (-) does not guarantee that the features in the latent space are
orthogonal to each other, which might provide a better class-
discriminability. Thus, in order to ensure orthogonality among
the components in the latent space, we added a regularization
term into the reconstruction error L (-), similar to Wang et al.
(2019). Formally, the orthogonal reconstruction error L’ (+) can
be defined as:

2
L'(x,%) = |x — %2 + A sz—IH @

where, I is the identity matrix, z” denotes the transpose of the
compressed representation z, and A is a penalization parameter.
It is worth noticing that a zero value in the penalization para-
meter leads to a conventional Autoencoder.

3. EXPERIMENTAL SETTINGS

We validated our orthogonal dimensionality reduction proposal
in the context of hyperspectral image classification. Thus, we
compared the classification performances from a Support Vec-
tor Machine (SVM) classifier using the features provided by
our method (HOAE), the Principal Component Analysis (PCA),
and the conventional Autoencoder (AE), when executed on
three hyperspectral images datasets.

Next, we provide information about the datasets, the HOAE im-
plementation details, and the experimental procedure adopted
to conduct our experiments.

3.1 Datasets Descriptions

The datasets used in our study are among the most challenging
datasets for hyperspectral image classification tasks as they con-
tain a mixture of different land cover and land used character-
istics.

e The Pavia University Dataset (PaviaU) is a hyperspec-
tral image of the Pavia’s University Engineering School
acquired by the Reflective Optics Spectrographic Imaging
System (ROSIS-3) during a flight campaign over Pavia,
in the north of Italy. The dataset consists of 103 spectral
bands spread in the spectrum of 0.43 ym and 0.86 pm.
Each spectral band has a 610x610 image resolution and a
spatial resolution of 1.3 m per pixel, containing land use
information, such as asphalt, meadow, gravel, tree, metal
sheets, bare soil, bitumen, brick, and shadows.

e The Kennedy Space Center Dataset (KSC) is a hyperspec-
tral image containing several vegetation sites. The data-
set was acquired by the NASA AVIRIS (Airborne Vis-
ible/Infrared Imaging Spectrometer) instrument over the
Kennedy Space Center in Florida, USA. The KSC data-
set comprises 176 data channels with a spectrum cover-
age ranging from 400 nm to 2500 nm. The data chan-
nels have 512x614 image resolution with 18 m spatial
resolution per pixel. For classification purposes, the KSC
dataset registers 13 classes representing various land cover
types, such as scrubs, cabbage palm, slash pine, hardwood
swamp, graminoid marsh, mudflats, water, among others.

e The Botswana Dataset (Botswana) is a hyperspectral im-
age of various land cover types, acquired by the Hyperion
sensor embedded on the NASA Earth Observing 1 (EO-
1) satellite over the Okavango Delta, in Botswana. The
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dataset is a collection of 145 spectral images covering a
portion of the spectrum ranging from 400 nm to 2500 nm.
The images are 1476 x256 image resolution and 30 m spa-
tial resolution per pixel, containing information of 14 land
cover types, such as hippo grass, floodplain grasses, ri-
parian, acacia woodlands, water, among others.

Table 1, summarizes the distribution of the number of samples
per class within each of the three datasets.

3.2 HOAE Implementation Details

We implemented our dimensionality reduction approach for hy-
perspectral images in Keras 2.3.1 and Python 3.7.6 program-
ming language. Moreover, we constructed the HOAE with a
single hidden layer and tied weights to simplify the network
training.

On the training stage, we adopted the min-max normalization
strategy to mitigate the effects of large input values to the net-
work and randomly shuffled the training data on each epoch.
The HOAE was configured to use the hyperbolic tangent activ-
ation function and the Glorot and Bengio’s algorithm for weight
initialization at the encoder layer.

As for the optimizer, the network was set to use the RMSprop
algorithm with a learning rate equal to 0.001 and the moving av-
erage value of 0.9 for faster convergence. Finally, we included
the early stopping criteria to obtain the best performing model
in reconstructing the input patterns.

3.3 Experimental Design

We evaluated our HOAE dimensionality reduction algorithm in
a hyperspectral image classification context. The main idea is
to assess the impact of our technique, considered as a feature
extractor, within a classification process using a Support Vector
Machine (SVM) as the classifier. To further validate our pro-
posal, we included the Principal Component Analysis (PCA)
and a standard Autoencoder with tied weights (AE) as features
extractors in the classification procedure.

For the execution of our experiments, we divided the hy-
perspectral datasets into training, validation, and testing sets.

Moreover, we adopted a uniform class distribution strategy to
build the training and validation sets, so the classes received
an equal amount of training and validation samples, respect-
ively. Explicitly, the number of training samples per class cor-
responded to 65% of the samples in the minority class, whereas
the validation samples corresponded to 15%. The remaining
samples were used to construct the testing set. Notice that the
validation set was provided to the HOAE and AE methodolo-
gies to evaluate the reconstruction error on networks’ training
to obtain the best models.

Finally, we compared the classification performances based on
the overall classification accuracy, producer’s accuracy, and the
average accuracy over the PaviaU, KSC, and Botswana hyper-
spectral datasets. To maintain an uniform evaluation across the
datasets, we set the PCA, AE and HOAE to provide reduced
spaces of 1, 2, 4, 8, 16, 32, and 64 features. We also include the
penalization parameter A in our analysis by setting its value to
0.001, 0.01, and O.1.

4. RESULTS AND EXPERIMENTAL ANALYSIS

In this section, we analyze the results obtained from the execu-
tion of the experiments described in Section 3.3, regarding the
use of the HOAE as an alternative technique to reduce the di-
mensionality of the spectral input space in hyperspectral image
classification tasks.

Table 2 presents the classification performances based on the
overall accuracy over the testing sets of the SVM classifier in
combination with the different versions of feature extraction
techniques for the Pavia University (PaviaU), Kennedy Space
Center (KSC), and Botswana hyperspectral datasets. The fea-
ture extraction techniques correspond to the Principal Compon-
ent Analysis (PCA), Autoencoder (AE), and our Hyperspectral
Orthogonal Autoencoder (HOAE) configured to reduce the ori-
ginal spectral space to seven features spaces of 1, 2, 4, 8, 16,
32, and 64 dimensions. The table also gathers the classification
performances obtained from the use of the HOAE with three
different penalization values (), namely, 0.001, 0.01, and 0.1.

In general, the results in Table 2 indicate that our method con-
tributed to class-discriminability, as it produced steady and re-

Pavia University Kennedy Space Center Botswana

Class Samples Class Samples Class Samples

Asphalt 6631 Scrub 761 Water 270

Meadows 18649 Willow Swamp 243 Hippo Grass 101

Gravel 2099 Cabbage Palm Hammock 256 Floodplain Grasses 1 251

Trees 3064 Cabbage Palm/Oak Hammock 252 Floodplain Grasses 2 215

Metal sheets 1345 Slash Pine 161 Reeds 269

Bare Soil 5029 Oak/Broadleaf Hammock 229 Riparian 269

Bitumen 1330 Hardwood Swamp 105 Firescar 259

Self-Blocking Bricks 3682 Graminoid Marsh 431 Island Interior 203

Shadows 947 Spartina Marsh 520 Acacia Woodlands 314

Cattail Marsh 404 Acacia Shrublands 248

Salt Marsh 419 Acacia Grasslands 305

Mud Flats 503 Short Mopane 181

Water 927 Mixed Mopane 268

Exposed Soils 95

Table 1. Class distribution samples corresponding to the hyperspectral datasets: Pavia University, Kennedy Space Center, and
Botswana.
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Feature Number of dimensions in the reduced spaces
Dataset A
Extractor 1 2 4 8 16 32 64
PCA — 0.411 | 0.600 | 0.611 | 0.620 | 0.591 | 0.531 | 0.520
AE — 0.076 | 0.337 | 0.490 | 0.638 | 0.598 | 0.615 | 0.588
PaviaU HOAE 0.001 | 0.372 | 0.478 | 0.514 | 0.721 | 0.611 | 0.701 | 0.659
HOAE 0.010 | 0.259 | 0.359 | 0.584 | 0.649 | 0.652 | 0.715 | 0.657
HOAE 0.100 | 0.391 | 0.423 | 0.512 | 0.526 | 0.720 | 0.704 | 0.650
PCA — 0.264 | 0.346 | 0.364 | 0.308 | 0.349 | 0.349 | 0.350
AE — 0.277 | 0.287 | 0.292 | 0.451 | 0.452 | 0.293 | 0.291
KSC HOAE 0.001 | 0.443 | 0.435 | 0.543 | 0.559 | 0.564 | 0.569 | 0.574
HOAE 0.010 | 0.441 | 0.473 | 0.546 | 0.560 | 0.564 | 0.572 | 0.572
HOAE 0.100 | 0.400 | 0.489 | 0.533 | 0.543 | 0.549 | 0.550 | 0.554
PCA — 0.354 | 0.717 | 0.772 | 0.747 | 0.692 | 0.667 | 0.656
AE — 0.244 | 0.450 | 0.788 | 0.788 | 0.748 | 0.714 | 0.712
Botswana HOAE 0.001 | 0.299 | 0.627 | 0.823 | 0.789 | 0.781 | 0.792 | 0.803
HOAE 0.010 | 0.369 | 0.430 | 0.780 | 0.780 | 0.771 | 0.829 | 0.806
HOAE 0.100 | 0.379 | 0.559 | 0.761 | 0.776 | 0.795 | 0.827 | 0.830

Table 2. Overall accuracy classification performances for the Support Vector Machine classifier in combination with the Principal
Component Analysis (PCA), Autoencoder (AE), and Hyperspectral Orthogonal Autoencoder (HOAE) feature extraction techniques.
The results correspond to a different number of dimensions in the reduced space and penalization parameter ().

markably better classification performances compared to the
PCA and AE techniques. Moreover, the results show that the
HOAE method mostly ranked first and second (strong and light
gray cells, respectively) across the different features spaces of
1,2,4,8, 16, 32, and 64 dimensions on the three hyperspectral
datasets.

Except for a few cases, the results also reveal that unlike the
PCA and AE techniques, the classification performances asso-
ciated with the HOAE tend to improve as the number of dimen-
sions in the reduced spaces increased, scoring the best global
performances after the eighth dimension, as represented by the
values in black bold from Table 2.

Despite the good results of our proposal, it is not possible to
establish any specific behavior regarding the values of the pen-
alization parameter () for classification, which represents an
opening roadway to investigate.

On the following, we present a classifier’s performance analysis
focused on the producer’s and average accuracies for the Pavia
University hyperspectral dataset. We expect to describe such
analysis for the Kennedy Space Center and Botswana datasets
in the near future.

Table 3 presents the producer’s accuracies, along with the aver-
age accuracies and overall accuracies of the best performing
classification models on the testing sets regarding the Pavia
University hyperspectral datasets. The classification models
correspond to the combination of the SVM classifier with
the PCA, OE, and HOAE feature extractors techniques that
achieved the best overall accuracies across their different para-
meter configurations, as presented in Table 2.

The results in Table 3 reveal that in the PaviaU hyperspectral
dataset, our method (HOAE) produced class-discriminability
features that led to superior classification results on the Mead-
ows and Gravel classes, and conduced to comparable classific-
ation results on the Asphalt, Tree, Metal sheets and Shadows
classes. The table also shows that despite the superior perform-
ances regarding the overall accuracy, the SVM classifier work-
ing upon the HOAE obtained an inferior average accuracy score

in contrast to the SVM classifiers based on the PCA and AE
features extractions techniques.

Class PCA AE | HOAE
Asphalt 0.605 | 0.586 | 0.526
Meadows 0.495 | 0.565 | 0.854
Gravel 0.304 | 0.327 | 0.577
Trees 0.968 | 0.951 | 0.904
Metal Sheets 0.997 | 0.997 | 0.995
Bare Soil 0.802 | 0.720 | 0.422
Bitumen 0.934 | 0.916 | 0.706
Self-Blocking Bricks | 0.833 | 0.793 | 0.591
Shadows 1.000 | 1.000 | 1.000
Average Accuracy 0.771 | 0.762 | 0.730
Overall Accuracy 0.620 | 0.638 | 0.721

Table 3. Summary of the producer, average, and overall
accuracies over the Pavia University hyperspectral dataset
produced by the SVM classifier working on a reduced feature
space of 8 dimensions provided by the PCA, AE, and HOAE
(with a A equal to 0.001) feature extraction schemes.

Figure 2 presents the false color composition (a), the ground
truth (b) and class predictions for the testing sets from Pavia
University hyperspectral dataset regarding the best performing
models corresponding to the reduced feature space of eight di-
mensions, as can be inferred from Table 2, which involved the
use of the PCA (c), AE (d), and HOAE (e) methods. It is worth
mentioning that the pixels associated with the missing values
causing the salt and pepper effect in the ground truth image
correspond to the data used to train the models.

A visual inspection of such images give and insight that our
method (HOAE) provide promising class-discriminability at-
tributes to obtain better classifications in comparison to the
PCA and AE based models. Nevertheless, the three methods
seem to be affected by the reflective characteristics, which are
similar, between the Gravel and Self-blocking Bricks classes,
as the SVM returned mixed responses for such classes. Finally,
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despite the reasonably good predictions, the Bare soil class rep-
resents a challenge to overcome, as the classifier got confused
with Meadows and Self-blocking Bricks classes.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a novel dimensionality reduc-
tion algorithm for hyperspectral images based on an Autoen-
coder, called Hyperspectral Orthogonal Autoencoders (HOAE).
In contrast to typical Autoencoders, our approach enabled
the learning of orthogonal features in some lower-dimensional
space by adding an orthogonal constrain within the loss func-
tion.

B T e

Our experiments conducted on the Pavia University, Kennedy
Space Center, and Botswana hyperspectral datasets confirm that
the orthogonal features, provided by our method, contributed
to better classification rates in comparison with the standard
Principal Component Analysis and the typical Autoencoder
methods.

Despite the remarkably good classification performances
originated from the use of our method, as related works, we
envisage its adaption to complex neural network architectures,
such as the Convolutional Autoencoders, to further improve
our results.

| DN N e |

Asphalt Meadows Gravel Trees

Metal Sheets

Bare Soil Bitumen Self-Blocking Bricks Shadows

Figure 2. Class representation for the Pavia University hyperspectral dataset: (a)False color composition, (b) Ground truth and
classification maps corresponding to the combination of the SVM classifier with the (b) PCA, (c) AE, and (d) HOAE dimensionality
reduction techniques.
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