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ABSTRACT: 
Hyperspectral data recorded by future earth observation satellites will have up to hundreds of narrow bands that cover a wide range of 
the electromagnetic spectrum. The spatial resolution (around 30 meters) of such data, however, can impede the integration of the spatial 

domain for a classification due to spectrally mixed pixels and blurred edges in the data. Hence, the ability of performing a meaningful 
classification only relying on spectral information is important. In this study, a model for the spectral classification of hyperspectral 
data is derived by strategically optimizing a convolutional neural network (1D-CNN). The model is pre-trained and optimized on 
imagery of different nuts, beans, peas and dried fruits recorded with the Cubert ButterflEye X2 sensor. Subsequently, airborne 
hyperspectral datasets (Greding, Indian Pines and Pavia University) are used to evaluate the CNN's capability of transfer learning. For 
that, the datasets are classified with the pre-trained weights and, for comparison, with the same model architecture but trained from 
scratch with random weights. The results show substantial differences in classification accuracies (from 71.8% to 99.8% overall 
accuracy) throughout the used datasets, mainly caused by variations in the number of training samples, the spectral separability of the 

classes as well as the existence of mixed pixels for one dataset. For the dataset that is classified least accurately, the greatest 
improvement with pre-training is achieved (difference of 3.3% in overall accuracy compared to the non-pre-trained model). For the 
dataset that is classified with the highest accuracy, no significant transfer learning was observed. 
 
 

1. INTRODUCTION 
 
In recent years, hyperspectral imaging has become an important 

research field (Bioucas-Dias et al., 2013). Dozens to hundreds of 
narrow bands that cover a wide range of the electromagnetic 
spectrum offer new possibilities in a large field of applications, 
such as land cover mapping or material identification 
(Petropoulos et al., 2012; Rast and Painter, 2019). Currently, the 
acquisition of hyperspectral data from space is hampered since 
no imaging spectrometer exists yet that records publicly available 
data. In the near future, however, the launch of a number of 

sensors is planned (Pu, 2017; Rast and Painter, 2019). 
Hyperspectral data from space usually comes with a spatial 
resolution of around 30 meters (Guanter et al., 2015), which may 
lead to mixed pixels and blurred edges in the data. Hence, it can 
be assumed that the usage of the spatial domain for a 
classification is exacerbated for such data. Thus the ability to 
perform a meaningful classification purely relying on spectral 
information becomes important. 
 

Among others, deep learning based classification methods have 
proven to perform well when handling high-dimensional data 
such as hyperspectral imagery. Particularly Convolutional 
Neural Networks (CNNs) achieve superior performance in 
classifying images compared to traditional methods, such as 
Support Vector Machines (Gao et al., 2018). Moreover, CNNs 
are capable of transfer learning from a source task to a related 
target task (Yang et al., 2017).  

 
However, the design of an appropriate CNN is difficult due to a 
large number of tunable parameters. Moreover, the optimal CNN 
is highly dependent on the task to be solved (Baker et al., 2016). 
A number of studies have been conducted that classify 
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hyperspectral data with deep learning methods. Their approaches 
vary in terms of models applied, domains used, or whether 
training is performed in a supervised or unsupervised manner. 

The highest classification accuracies are achieved among the 
studies that performed supervised classification in the spectral-
spatial domain (Makantasis et al., 2015; Santara et al., 2017; Tao 
et al., 2015). Less frequent studies that classified hyperspectral 
data in the spectral domain achieved comparably lower 
accuracies (Hu et al., 2015). 
In this paper, we present our research for extracting spectral 
features from hyperspectral imagery with 1D-CNNs, i.e. a CNN 

that takes a one-dimensional spectrum as input. For that, a large 
amount of hyperspectral data (about 350,000 samples) of various 
object types (nuts, beans, peas and dried fruits) is acquired using 
the Cubert ButterflEye X2 imaging spectrometer. This dataset, 
subsequently termed Cubert dataset, is used to strategically 
optimize a 1D-CNN architecture. Detailed analysis on the 
influence of CNN hyper-parameter tuning is conducted to 
examine the impacts on the overall accuracy (OA) of the 
classification result. The CNN that is pre-trained on the Cubert 

data is then used to evaluate the model’s capability of transfer 
learning on three airborne hyperspectral benchmark datasets. For 
that, the spectra of each dataset are once classified with the pre-
trained model and once with the same model architecture, but 
trained from scratch. 
 
This paper is organized as follows: Section 2 describes the used 
datasets and how they are pre-processed. Moreover, the 

conducted strategy for CNN optimization and transfer learning is 
outlined. In Section 3, results, the order of CNN optimization by 
hyper-parameter tuning is shown and the best-performing model 
is presented. In addition, the classification results for the 
benchmark data are listed with a comparison for the pre-trained 
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versus the non-pre-trained model. Section 4 discusses the results 

delineated in Section 3 with respect to the general findings that 
are made during CNN optimization, the evaluation of the 
classification results and the benefits that are gained by pre-
training. Section 5 concludes the study by summarizing the 
results and providing an outlook for possible future research. 
 
 

2. METHODS 

 
2.1 Datasets 

The Cubert dataset, which is used for optimizing the CNN 
consists of 25 bands in a spectral range that covers the visible to 
the near infrared spectrum (475 – 875 nm) with each band having 

a width of 20 nm1. 15 different object types (classes) are recorded 
and shown in Table 1 together with an overview of the available 
samples.  
 

Class 
Number 

of 
samples 

Class 
Number 

of 
samples 

Almond 26,785 Green Split Pea 11,182 
Blanched Almond 49,228 Hazelnut 17,908 

Blue Raisin 13,158 Kidney Bean 38,776 
Brazil Nut 26,332 Pinto Bean 23,360 

Cashew Nut 26,547 Sultana 12,363 
Common Jack 

Bean 
24,076 Walnut 39,910 

Cranberry 22,430 Yellow Split Pea 10,900 

Goji Berry 7,421   

Table 1. Overview of the used object types for acquiring the 

Cubert dataset.  

These object types are chosen as the available imaging 

spectrometer acquires terrestrial data and therefore, no data about 
land cover can be recorded. It is assumed that the extraction of 
features from the recorded object types is not a vastly different 
application for a CNN than extracting e.g. land cover features 
from airborne data, as the model should learn to interpret the 
same patterns in the data, such as gradients, minima or maxima. 
When selecting the objects, it is considered to also choose object 
types that are similar in color, e.g. blanched almonds and cashew 

nuts. However, the spectra recorded by the hyperspectral sensor 
should ideally not be similar, but this is not known in advance. 
  
In total, 80 single images on six different image scenes are 
acquired.  Figure 1 shows two sample image scenes. From band 
12 to 25, the Cubert data is noisy for an unknown reason. This is 
considered later when evaluating the classification results. 
 

 

Figure 1. Exemplary image scenes of the Cubert dataset  

(band 1, mean wavelength 482.98 nm).  

                                                             
1 According to the brochure: Real-Time-Spectral Imaging: 
Introducing the ButterflEYE X2 (https://sphereoptics.de/wp-
content/uploads/2015/01/S258_flyer.pdf, accessed April 29, 20) 

In addition to the Cubert dataset, three airborne hyperspectral 

benchmark datasets, namely Greding, Indian Pines, and Pavia 
University, are used to evaluate the CNN's ability of transfer 
learning (Gross et al., 2019; Baumgardner et al., 2015; Plaza et 
al., 2006. Table 2 shows details on the all used datasets. 
 
2.2 Data Pre-processing 

The Cubert data comes with a randomly distributed spatial offset 
with maximum four pixels in the different bands. This may be 
caused by inaccuracies in the alignment of the sensor’s grating. 
The offset is removed by shifting all bands by their relative offset 
to match the first band. 
 

 Cubert Greding 
Indian 
Pines 

Pavia 
University 

Sensor 
Cubert 

ButterflEye 
X2 

asiaEagle 

II 
AVIRIS ROSIS-03 

Spectral 
range (nm) 

475 
-875 

390 
- 990 

400 
- 2450 

430 
- 860 

Number  
of bands 

25 127 200 103 

Spatial 
resolution 

(m) 

approx. 
0.0007 

0.5 20 1.3 

Dimension 
(pixels) 

510  
x 255 

670 
 x 606 

145  
x 145 

640  
x 340 

Number of 
classes 

15 6 16 9 

Number of 
samples 

346,921 359,616 10,366 42,776 

Table 2. Overview of the used datasets (Gross et al., 2019; 

Baumgardner et al., 2015; Plaza et al., 2006).  

In addition, all pixels depicting one of the 15 object types are 
labelled with the corresponding class name. This resulted in 
346,921 samples. From the 80 available images, 72 are used for 
training and validation, while the remaining images were used for 
testing the CNN. It is ensured that for both training and 
validation, data of all image scenes are used. In addition, the data 
is shuffled randomly for improving the statistical validity of the 
model (Wan et al., 2018). 

 
The Cubert data is then processed using a min-max-
normalization (Jayalakshmi and Santhakumaran, 2011). The 
benchmark datasets are already pre-processed (Gross et al., 2019; 
Baumgardner et al., 2015; Plaza et al. 2006). Hence, it is not 
necessary to conduct other pre-processing procedures than 
training / validation / test data splitting and the calculation of a 
normalized dataset with the same technique as used for the 

Cubert data. 

 
2.3 CNN Architecture Optimization 

The initial CNN is implemented similar to the model of Hu et al., 

(2015), since this model was designed for a related task, i.e. 
spectral classification of hyperspectral imagery. In addition, the 
CNN architecture of Hu et al., (2015) consists of an assessable 
amount of layers. The idea is that when starting with a basic 
CNN, the influence of changes in architecture can be monitored 
more precisely. 
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The CNN of Hu et al., (2015) consists of five layers in total. The 

first layer is the input layer with the dimensions n1 x 1 since each 
pixel is regarded as a vector of values, while n1 corresponds to 
the number of bands. The subsequent convolutional layer C2 
filters the data with 20 kernels and a hyperbolic tangent function 
(tanh) is applied for activation. The second hidden layer, pooling 
layer P3, applies a max pooling function for downsampling. The 
next layer is a fully-connected layer termed F4, also applying the 
tanh activation function. Last layer of the initial CNN is an output 

layer, which is also fully-connected and classification is 
performed using a soft-max function. 
 
After setting up the initial CNN, its architecture is optimized 
iteratively by applying the following changes to the model: 

 Adapting hyper-parameters of convolutional / pooling / fully-

connected layers, e.g. stride, zero-padding, receptive field, 
pooling / activation functions (Khan et al., 2018) 

 Extending / shrinking of model size, e.g. adding / removing 

layers, adding / removing connections  (Khan et al., 2018) 

 Changing training parameters, e.g. learning rate, loss 

functions, batch size, epochs, weight initialization, training / 
validation data distribution  (Khan et al., 2018) 

 Regularization methods, e.g. dropout, batch normalization 

(Ioffe and Szegedy, 2015; Srivastava et al., 2014) 
 

After each adaptation, the model performs the classification of 
the Cubert data. Then, it is evaluated whether the classification's 
overall accuracy (OA), i.e. the percentage of correctly predicted 

samples, is improved compared to the previous architecture. If 
yes, the adaptation is adopted. Optimizing the CNN architecture 
is stopped after OA becomes stable for a number of optimization 
iterations. The best-performing model is selected with respect to 
OA and over-fitting. 
 
2.4 Transfer Learning 

The CNN that is pre-trained on the Cubert dataset is next used to 
classify the three hyperspectral benchmark datasets (section 2.1).  
For evaluating the pre-trained CNN’s ability of transfer learning, 
the same CNN architecture is built than finally used for the 
Cubert data. The models only differ in their input (number of 

bands) and output (number and type of classes) dimensions as 
this is different for each dataset. 
 
In a CNN, the convolutional layers perform the feature 
extraction, while fully-connected layers are used for 
classification (Hu et al., 2015). For the benchmark datasets, 
different classes than for the Cubert data should be distinguished, 
e.g. trees vs. walnuts. Hence, the fully-connected layers that are 

trained to classify the Cubert data are not assumed to know how 
to classify the benchmark data. For the feature extraction 
performed by the convolutional layers, however, similar tasks 
should be solved for both models, i.e. distinguishing classes 
based on specific spectral features. Thus, it is anticipated that the 
knowledge the classifier gained during pre-training may be 
helpful for detecting features in the spectral signatures of the 
benchmark data. Hence, transfer learning is only conducted for 
the feature extraction, i.e. convolutional layers, while the class 

assignment conducted by fully-connected layers is learned from 
scratch. 
 
Each dataset is classified with and without pre-training the 
convolutional layer to directly examine its influence. This is 
comparable with the approach of Yang et al. (2017).  The weights 
of the CNN are directly applied to datasets with different spectral 
ranges to evaluate the capability of universal feature 

representation using only data from a single hyperspectral sensor. 

3. RESULTS 

 
3.1 Model Optimization 

Starting with a CNN similar to the one of Hu et al. (2015), 
numerous variations in CNN architecture are tested. 28 of 53 

conducted runs that show the most important adaptations 
concerning the improvement of OA are visualized in Figure 2. 
 
Initially, the best-performing pre-processing method for the 
given data is selected. Thereafter, the activation function and the 
weight initialization are tuned together with adaptations on the 
hyper-parameters of the convolutional layer. The learning rate is 
lowered while the number of epochs is increased. As the model 
tends to over-fit, dropout is integrated then. Next step is to work 

on the model size by adding and removing convolutional and 
fully-connected layers. Subsequently, training parameters are 
optimized again and batch normalization is introduced for 
reducing over-fitting. The classification’s accuracy (OA) 
becomes stable at around 77% eventually. Hence, it is presumed 
that the improvability of the OA is limited to a certain extent and 
CNN modification is terminated. 

 

Figure 2. Most important adaptations concerning the 

improvement of model accuracy (OA of the test set). 

3.2 Identification of the Best-Performing CNN 
Architecture 

For selecting the model that proves best for the Cubert dataset, 

the three models that classified the data with the highest OA are 
compared with respect to OA, kappa coefficient, f1-scores and 
over-fitting. An Attempt is made to choose the model that gives 
a tradeoff of all metrics. 
 
Figure 3 shows the CNN that proves best for the Cubert data. It 
consists of an input layer I that takes a vector of 25x1 values as 
input. The following convolutional layer C filters the data with 

40 kernels of size 13x1 and is followed by a batch normalization 
layer BN for reducing its internal covariance shift (Ioffe and 
Szegedy, 2015). Subsequently, the output is flattened to use it as 
input for the two following fully-connected layers FC1 and FC2. 
Dropout (D1, D2) with a rate of 0.4 is applied directly after the 
first two fully-connected layers in order to reduce over-fitting. 
The last layer FC3 performs the actual classification by applying 
a soft-max function on its input. For all other layer activations, 

rectified linear unit (ReLU) activation function is applied and 
ReLU-aware weight initialization is chosen. The learning rate is 
set to 0.0001 and log loss function is applied. The model is 
trained in 280 epochs and with a batch size of 75. Using the 
described model, the Cubert test dataset is classified with an OA 
of 77.1%, a kappa coefficient of 74.6%.  
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Figure 3. Architecture of the proposed CNN for Cubert data 

classification. 

The first other model that performs similar and is a candidate for 
the best-performing CNN has an almost equal architecture, 
except having 300 units for the fully-connected layers and a 
dropout rate of 0.2. This model tends to over-fit and has a 
comparable OA to the selected model. In comparison, the second 
alternative model that performs similar is deeper. It consists of 
four convolutional layers with 80 kernels and six fully-connected 

layers also regulated by batch normalization respectively 
dropout. This model produces a comparable accuracy and little 
over-fitting.  
 
For gaining insight into errors affecting individual classes, f1-
scores for each class of the Cubert dataset are calculated (Table 
3). The average f1-score is 76.3. There is a huge spread in values 
for the f1-score ranging from 51.8 to 91.6 throughout the 

different classes, which reveals that not all classes are predicted 
equally well by the model. For instance, 'Hazelnut' comes with 
the lowest f1-score, while 'Kidney Bean' and 'Common Jack 
Bean' have significantly higher scores than all other classes. 
 

Class F1-score Class F1-Score 

Almond 71.4 Green Split Pea 83.4 

Blanched Almond 82.5 Hazelnut 51.8 
Blue Raisin 80.1 Kidney Bean 91.1 
Brazil Nut 69.3 Pinto Bean 70.4 

Cashew Nut 67.5 Sultana 62.2 
Common Jack 

Bean 
91.6 Walnut 74.2 

Cranberry 82.9 Yellow Split Pea 82.2 
Goji Berry 84.5   

Table 3. F1-scores for the classification results of the Cubert 

dataset with the CNN of Figure 3.  

3.3 Transfer Learning for Benchmark Data Classification 

A direct comparison between the classification performed by the 
pre-trained model and the same CNN trained from scratch is 
conducted for each of the three benchmark datasets. For the 
Greding dataset, the model is trained on 71% of the samples, 21% 
are used for validation and 8% for testing. The Indian Pines data 

is trained on 66% of the samples, on 17% validation is performed 
and 17% are used for testing. In contrast, from the Pavia 
University data, 72% are used for training, 22% for validation 
and 6% for testing the model. Table 4 shows the resulting 
classification metrics that vary substantially between the three 
benchmark datasets.  
 
The classification results of the Greding dataset are similar with 
and without pre-training and achieve an OA of 99.7% and 99.8%, 

respectively. In comparison, the Indian Pines dataset is classified 
with lower accuracies of 68.5% and 71.8%. For this dataset, a 
substantial improvement in all metrics is achieved when using the 
pre-trained weights. In contrast, the samples of the Pavia 
University dataset are predicted with an OA of 91.5% to 92.8%. 
This is a considerably higher OA than achieved for the Indian 

Pines dataset. However, the accuracy improvement with pre-

training is not as high as for the Indian Pines dataset (3.3% in OA 
compared to 1.3%). 
 

 Greding Indian Pines 
Pavia 

University 

 NPT PT NPT PT NPT PT 

Overall 
accuracy 

99.8 99.7 68.5 71.8 91.5 92.8 

Kappa 
coefficient 

99.7 99.7 63.8 67.4 88.8 90.5 

Average f1-
score 

100.0 100.0 68.0 70.0 92.0 93.0 

Table 4. Classification metrics for the three airborne 

hyperspectral datasets. NPT refers to the non-pre-trained 

classification model, while PT denotes the pre-trained CNN. 

The metrics are computed based on the independent test set. 

 
 

4. DISCUSSION 

 
4.1 Findings during Model Optimization 

During the optimization procedure of the CNN for the Cubert 
dataset, a number of findings are made. These are listed and 

discussed subsequently. For viewing the order of parameter 
optimization, refer to Figure 2. 
 
4.1.1 Pre-processing: Min-max-normalization proves to be 
the most suitable pre-processing technique since significant 
accuracy improvement compared to the other techniques is 
achieved. This supports the finding of Pal and Sudeep (2016), 
saying that no pre-processing results in lower accuracies.  

 
4.1.2 Activation Function and Weight Initialization: ReLU 
activation function combined with the ReLU aware scaled 
initialization produces similar results than combining tanh 
activation function with Xavier initialization (Glorot and Bengio, 
2010). This is in accordance with the findings of Kumar (2017). 
 
4.1.3 Convolutional Layer: More kernels for convolutional 
layers can improve model accuracy. However, the more kernels 

are used, the slower the model fits. 40 kernels tend to be the best 
trade-off between accuracy and training time. A kernel size 
between 3 and 7 produces the best results concerning OA. 
 
4.1.4 Pooling Layer: Downsampling is not needed for 
classifying the Cubert dataset as the removal of pooling layers 
leads to an increase in OA of about 2%. As the input samples of 
the Cubert data are not of high dimensionality (25 x 1 bands), it 

is anticipated that for such data, dimensionality reduction with 
pooling layers can eliminate features that are important for 
classification, which could lead to lower accuracies as observed 
in this study. 
 
4.1.5 Fully-Connected Layer: The optimal number of units 
for the Cubert dataset are 400 with two consecutive fully-
connected layers since the best model performance is achieved 

with these parameter settings. 
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4.1.6 Training Parameters: The smaller the learning rate, 

the longer it takes until a CNN converges. Hence, more epochs 
are necessary (Khan et al., 2018). A learning rate of 0.0001 and 
280 epochs tends to be appropriate for the Cubert dataset. 
Expectation loss shows inferior performance than log loss 
function (difference in OA of about 3%).  A maximum batch size 
of 120 is tested (not shown in Figure 2), but 75 performs best, 
also compared to the initial setting of 25. 
 

4.1.7 Model Size / Layer Order: One or two convolutional 
layers are sufficient for successful feature extraction. More 
convolutional layers do not lead to better results. Besides, 
training time is increased substantially when having more than 
two convolutional layers. 
 
A deeper model with four convolutional layers and six fully-
connected layers achieves an OA comparable with more simple 
architectures, but training time is increased significantly. Hence, 

the architecture of Figure 3 is considered appropriate for the 
given data. 
 
4.1.8 Regularization: Introducing batch normalization after 
convolutional layers and dropout (rate 0.4) after fully-connected 
layers is helpful for reducing over-fitting. 
 
4.2 Evaluation of Classification Results 

4.2.1 Cubert Data: Considering the OA of 77.1% together 
with the varying f1-scores and a confusion matrix, the 
classification results are evaluated by also observing spectra of 
each class (Table 3). By that, it is detected that mainly similar 

spectral features and also the noisy data must be responsible for 
most misclassifications (Figure 4).  

 

Figure 4. Noisy data and similar spectra as possible reasons 

leading to misclassification of the Cubert samples. The images 

showing the noisy data are labelled with their band number. The 

x-axis of the spectra graph refers to the band numbers and the y-

axis to the corresponding reflectance values of a pixel.  

                                                             
2 According to an open discussion at the IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS) 2017 

For instance, Hazelnut is frequently confused with Walnut 

(16.3%), while Sultana is often misclassified as Blue Raisin 
(18.8%). With respect to Figure 4 it can be stated that these 
examples show similar spectral features that probably causes 
misclassifications. In case of the classes Hazelnut and Walnut it 
can be said that the spectra are similar mainly in the first 12 
bands. Noise starts from band 12, which may also cause 
misclassifications. Moreover, it is possible that classification 
accuracy could be improved when using data from a sensor with 

a higher spectral resolution. 

It can be summarized that several classes mix up with others, 
which also causes a lowering of classification accuracy. It is 
assumed that this mostly comes from similar spectral features as 
well as the noise present from band 12 of the Cubert data. 
Therefore, it is anticipated that when pre-processing the data with 
respect to noise removal and when having classes with no 
spectral feature overlapping, classification accuracy would rise 
substantially. 

 
4.2.2 Benchmark Data: For the Greding dataset, it is 
assumed that the nearly perfect predictions for this dataset come 
from unique spectral features for all six classes of the Greding 
dataset. Other factors that may affect the classifiers ability to 
reliably distinguish the classes are the comparable low amount of 
classes so that inter-class spectral mixture can be avoided as well 
as the relatively high number of available samples as compared 

to other benchmark datasets. Compared to other, related studies, 
the CNN of this study performed differently for the benchmark 
data. For the Greding dataset, no study was conducted yet that 
used a CNN. A study accomplished by Gross et al. (2019), 
however, achieved lower accuracies (difference around 1 to 3%) 
using a spectral angle mapper (SAM) and support vector 
machines (SVM). 
 

The Indian Pines dataset consists of much less labelled samples 
than the Greding data and a higher number of classes. The spatial 
resolution could cause the ‘mixed-pixel-problem’ and the ground 
truth data is erroneous2. Hence, the Indian Pines data is a complex 
dataset that comes with a number of influences that can affect a 
classifier’s performance. This could explain the vast difference 
in classification accuracy compared to the other datasets. When 
comparing the classification results for the Indian Pines dataset 

to those of related studies, it becomes apparent that the classifiers 
of the other studies performed better. For instance, the model 
proposed by Hu et al. (2015) predicted 90.2% of the samples 
correctly by using a CNN for the spectral domain. However, Hu 
et al. (2015) discarded eight classes that have less than 200 
samples, which explains the significantly higher classification 
accuracy achieved in their study. The classification accuracies of 
Makantasis et al. (2015) are also higher (98.9%) than what is 
achieved in this study. However, Makantasis et al. (2015) did not 

only use the spectral information of the data, but also included 
spatial information of adjacent pixels. 
 

The quality of the predictions the classifier made for the Pavia 
University lies with 92.8% between those of the other two 
datasets. The number of samples and classes also lies between the 

other datasets, which underlines the relationship of a 
classification’s accuracy and the number of training samples 
respectively the number of classes and their spectral uniqueness. 
The spectra of the Pavia University dataset are mostly unique, but 
9.6% - 16.5% of the samples of Asphalt, Bitumen, Gravel and 
Bare Soil are misclassified. Hu et al. (2015) achieved an OA of 
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92.6% when classifying the Pavia University dataset in the 

spectral domain, which is similar to the results of this study. 
Makantasis et al. (2015) achieved 99.6% by considering not only 
the spectral, but also the spatial information of the Pavia 
University dataset.  
 
The vast difference in classification accuracies when using a 
spectral compared to a spectral-spatial classification algorithm 
underlines the importance of conducting more research on 

performing a meaningful classification of hyperspectral data 
based on spectral information. 
 
4.3 Benefits gained by Transfer Learning 

For this study, the CNN that is trained on the large amount of 

Cubert data is used for transfer learning to classify three different 
hyperspectral benchmark datasets: Greding, Indian Pines and 
Pavia University. The benefits that are achieved by pre-training 
are assessed by comparing the difference in classification 
accuracies (OA) when using the model with pre-trained and 
random weights for the convolutional layer.  
 
Classification results for the Greding data are similar with and 

without pre-training (Table 4). However, as the predictions are 
performed with very high accuracy already when not pre-training 
the model, almost no further improvement can be expected. 
Hence, no point can be made about the classifier’s ability of 
transfer learning for this dataset. 
 
As already stated in Section 4.2.2, the Indian Pines dataset is 
complex and comes with a number of influences that can affect a 

classifier’s performance. However, by applying pre-training, a 
substantial improvement of classification accuracy is achieved. 
 
Similar to Indian Pines, also the Pavia University dataset is 
classified with a higher accuracy when using the pre-trained 
convolutional layer for feature extraction. However, the accuracy 
improvement with pre-training is not as high as for the Indian 
Pines dataset. Additionally, the general performance of the 

classifier is higher for the Pavia University data, as a vastly 
higher OA was achieved.  
 
Figure 5 compares the achieved OA with the amount of 
improvement achieved by pre-training for the three benchmark 
datasets. Based on this comparison, it can be stated that there is a 
direct relationship between the achievable accuracy of a 
classification and the improvement that can be gained by pre-
training, i.e. that pre-training is beneficial particularly for 

datasets that are difficult to classify. 
 

 

Figure 5. Comparison of the OA achieved for the classification 

of the three benchmark datasets and the OA improvement 

achieved by using the pre-trained model. 

5. CONCLUSION 

 
In this study, fundamental research in terms of spectral feature 
extraction from hyperspectral data in combination with CNN 
model optimization is conducted based on a transfer learning 
approach. 
 
The experiments show that it is possible to distinguish visually 
similar objects using a CNN for spectral feature extraction. 

However, it is observed that the distinguishability is highly 
dependent on the uniqueness of the spectral features of a class 
since a high variance in accuracies for individual classes is 
noticed. 
 
Moreover, this study has shown that CNN’s are capable of 
transfer learning, as the non-pre-trained model produces less 
accurate results than the same model with pre-training for two of 
three datasets. Further, the results have shown that the poorer the 

classification accuracy for a dataset is, e.g. due to similar spectral 
features of the classes, a low amount of labelled data or the 
‘mixed-pixel problem’, the greater is the benefit that can be 
gained by transfer learning. Since it is presumed that 
classifications suffer from a lower spatial resolution due to the 
‘mixed-pixel problem’ and the existence of blurred edges, it can 
be stated that transfer learning is especially beneficial for such 
data, i.e. the target data of this research (spaceborne data acquired 

by future hyperspectral earth observation satellites). 
 
For future research, it may be useful to conduct experiments with 
other classes for pre-training. When acquiring data in a terrestrial 
setting, more diverse object types could be selected by adding 
objects like metal sheets, asphalt, leaves or soil. By that, more 
diverse spectra would be learned by the classifier, which could 
make transfer learning more effective. Additionally, when using 

another imaging spectrometer that acquires data with a higher 
spectral resolution, i.e. having more bands covering a broader 
range of the electromagnetic spectrum, experiments could be 
conducted with respect to an improvement of the spectral 
separability and transfer learning. Moreover, for considering the 
different spectral ranges throughout the datasets, an appropriate 
model for each benchmark dataset could be designed and pre-
trained with the Cubert data. 
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