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ABSTRACT: 

 

A novel classification technique based on definition of unique spectral relations (such as slopes among spectral bands) for all land 

cover types named (SSF Significant Spectral Features) is presented in the article. 

A large slopes combination between spectral band pairs is calculated and spectral characterizations that emphasizes the best spectral 

land cover separation is sought. Increasing in dimensionality of spectral representations is balanced by the simplicity of calculations. 

The technique has been examined on data acquired by a flown hyperspectral scanner (AISA). The spectral data was narrowed into the 

equivalent 8 world-view2 channels. The research area was in the city of “Hadera”, Israel, which included 10 land cover types in an 

urban area, open area and road infrastructure. The comparison between the developed SSF technique and common techniques such as: 

SVM (Support Vector Machine) and ML (Maximum Likelihood) has shown a clear advantage over ML technique, while produced 

similar results as SVM. The poorest results of using SSF technique was achieved in an herbaceous area (70%). However, the simplicity 

of the method, the well-defined parameters it produces for interpreting the results, makes it intuitive over using techniques such as 

SVM, which is considered as a not explicit classifier. 

 

 

1. INTRODUCTION 

Technological advances in the field of visual sensors increased 

the availability of multi or hyper spectral information in a 

growing number of bands while continuing to decrease the band 

width. The advanced capabilities in visual acquisition sensors is 

main engine of mapping processes relying on multiband 

imageries, which enable extracting and characterizing objects 

features, while maintaining high levels of precision and accuracy.  

Increasing the volume of information had brought to new 

challenges and requires the development of appropriate 

algorithms. However, using all acquired information does not 

necessarily contribute to the improvement of image classification 

in pixel level or extracting image objects. Aside the need to 

choose best representative image bands, the spectral reflectance 

values are affected by the acquisition configuration and by the 

environmental conditions existed such as: flux density effect, 

topography, scene illumination and atmospheric behaviour. 

Being subjected to those unknown parameters enhances the 

difficulties in identifying land cover, and generally increases 

spectral confusion. Therefore, identification of significant 

spectral properties in land cover types is needed. Furthermore, 

the most common classification methods are statistical, and do 

not differentiate the information elements that contribute best to 

the spectral uniqueness increasing of land cover types. In cases 

of low relative spectral variance between types of land covers, an 

efficient separation will not be achieved.  

Scientific literature divides the supervised classification 

capability into two main categories: (1) Parametric (explicit) 

statistical capabilities such as Maximum likelihood estimator, 

which calculate statistical parameters (average and co-variance) 

that describe each material group; (2) Non parametric (non-

explicit) statistical capabilities such as Support Vector machine 

(SVM) that searches for hyperplane (in the dimensionality of the 
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spectral bands) that geometrically separates two material groups. 

Mostly, SVM is considered to reach high accuracies and 

reliabilities classification results in comparison to another 

classifiers. However, SVM classifier acts as a "black box" that its 

use does not contribute the understanding of the spectral feature 

relations (Auria and Moro, 2008). Moreover, both methods 

require a large set of verified training sample, that is not always 

available or is not reliable enough (Rasti et al, 2020). 

In this research, we developed the SSF Spectral Significant 

Features classification method, that seeks and enhances the most 

unique features in different land covers signatures by: a) 

Increasing inner dimensionality with displaying the signatures in 

slopes domain based on first derivative calculation between each 

pair of spectral bands; b) Usage of Sum Of Differences algorithm 

to detect the bands which contribute most to increase spectral 

uniqueness compared to all other signatures. 

Our assumption is, that combining the abovementioned with 

dynamic and iterative decision rules to classify imagery pixels, 

will produce high rates of precision and accuracy in classification 

products. Slope domain is adopted from derivative analysis 

(Cimtay, 2017) and multi resolution analysis methodology 

implemented mostly by wavelet transform (Almog et al, 2008). 

Wavelet coefficients are calculated based on the derivative (in 

multiple scales) between two adjacent values in the original 

intensity reflectance signature. Shoshany et al, 2009 compared 

classification results of different land covers based on different 

signatures domain. The original reflectance signatures were 

transformed into wavelet domain, PCA (Principal Component 

Analysis) and SAM (Spectral Angular Mapper). They showed 

that transforming spectral signatures into wavelet domain 

significantly increased the correct assignment rates of signature 

into its correct land cover type. That, due to averaging the 

signature band’s noise level. In this research we examined the 

accuracy and reliability of the proposed method by comparing its 
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performances to the most common classification methods: (1) 

SVM; (2) ML. 

 

2. SPECTRAL RELATIONS FOR IMPROVING 

OBJECTS CLASSIFICATION 

Usage of spectral relations in classification processes leads to 

decreasing of multiplications effects such as flux density on the 

radiometric calibration (as presented in Law and Nichol, 2004 

and Almog et al, 2008). Mostly, it is used in calculation of 

vegetation indices or specific land cover. Scientific literature 

describes the usage of derivative operator as an emphasizer of 

spectral separation between different land cover’s signatures. Fu 

et al, 2006 presented increasing accuracy and reliability rates in 

classification processes using transformation of signatures into 

the derivative domain, by: (1) Increasing the statistical difference 

between spectral signatures by increasing the number of bands; 

(2) Improving spectral separation. Rud et al, 2006 used ratios 

characterizations in specific bands in shrubs signatures that 

emphasized the uniqueness in spectral features and improved 

classification accuracy significantly by transforming the 

reflectance signature into those ratios.  Cimtay, 2017 presented 

increasing differentiation capabilities between same plant 

signatures acquired under different conditions by transforming 

the signatures into derivative domain. Contrarily, using 

derivative domain requires deep understanding of specific 

spectral features and large number of spectral combinations, as 

described by Torrecilla and Piera, 2009 and Sun et al, 2008 

 

3. METHODOLOGY 

The developed methodology is composed of two main stages: (1) 

Transforming the spectral signatures domain into slopes domain 

that emphasizes spectral uniqueness; (2) Detecting unique 

spectral bands (SSF) to achieve better separation between 

different types of land covers. The new spectral domain is less 

sensitive to additional noises and emphasizes uniqueness 

between spectral ratios.  

The methodology has 7 stages, and illustrated in figure 1: 

(a) Definition of typical signature and its statistical parameters 

for each land cover’s type. Land cover types can be achieved 

from several resources such as: spectral measurements, spectral 

libraries, expert knowledge, or previous unsupervised 

classification process. 

(b)  Slope calculation between each band (i) and all other bands 

in the signature (j) for each typical land cover (k). 

 

skq = |
Ri-Rj

λi-λj
|                                 (1) 

 

Where, q – the combination index of the ith and jth spectral 

combination, where i≠j 

 

(c) Calculation of sum of differences between each land cover’s 

signature (k) and other signatures from any slope combination 

(q). 

 

  𝑆𝑂𝐷𝑘𝑞 = 𝛴𝑖=1
𝑚 (𝑆𝑘𝑞 − 𝑆𝑙𝑞)                     (2) 

 

(d) Ordering each combination signature according SODkq from 

higher to lower. 

(e) Choosing the band combination with the maximum SOD for 

each land cover’s signature (determined empirically). 

(f) Transforming the spectral image into slope domain according 

to the only combination that represent unique spectral 

characteristics. 

(g) Assigning each pixel (signature) to its correct land cover’s 

type based on minimum sum of differences at the selected bands 

combination.  

 

The research examined two main aspects: (1) Efficiency in using 

slopes combination rather than reflectance information; (2) 

Efficiency of using SSF technique in comparison to ML and 

SVM.  For this purpose, classification processes based on 3 

classifiers were applied on both reflectance data and spectral 

slopes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. General methodology 

 

4. EXPERIMENTAL CONFIGURATION 

A flown hyperspectral scanner (AISA) was used as multispectral 

source for this research around “Hadera” city in the north of 

Israel. Weather conditions were clear. The AISA image has 156 

spectral bands in the range of 400-2400 nanometers, with band 

width between 9-13 nanometers. The spectral data was narrowed 

into the equivalent 8 world-view2 channels (380, 465, 550, 600, 

655, 710, 840 and 970 nm). Weather conditions were clear. The 

spatial resolution is approximately 1.7·1.7 m2 per pixel.  The 

scene represents a flat topographic area with characterizations of 

urban area and open area containing roads, shrubs, and soil. The 

selected land cover types are asphalt, trees, shrubs, grass, white 

roofs, bright soil, kurkar, concrete, dark soil and red tile roofs. 

Figure 2, presents the scene area and selected ROI (Region of 

Interest) for each land cover, created with ENVI software 

(©Harris ltd). 

Figure 3 presents the average signatures of the 10 land cover’s 

types calculated from the ROI’s. it can be seen from figure 3, that 

the spectral distance between different land cover’s type is low 

(trees and bushes, bright soil and red brick and asphalt and dark 

soil). This would lead to high confusion when assigning each 

signature to its correct land cover’s type.  

 

Define land cover 

layers to be detected 

Increase the inner 

dimensionality of the 

signature. calculate 

slopes between all band 

combinations 

Extract unique bands for 

a specific land cover 

according SOD index 

Represent each 

examined signature 

according to the unique 

bands for each land 

cover  

Use selected bands to 

calculate the distance 

between selected 

signature for each land 

cover 

assign the pixel into its 

correct land cover’s type 
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Figure 2. Scene area and ROI used as training samples  

 

Figure 3. Mean spectral signature for each land cover 

 

5. RESULTS 

5.1 Synthetic experiment 

Synthetic experiments presented in this research showed that 

controlled exposure of spectral library signatures to different 

acquiring effects flaws less the classification product of SSF 

method compared to the statistical method product. We show that 

the decrease of precision and accuracy indexes is slower in the 

SSF product against the statistical method product.  

Next, we exam the classification products of common SVM and 

ML classifiers against the SSF classification product, both in the 

spectral and in slopes domain. The same training and validation 

areas were used to create a fair comparison.      
Examination of classification products shows that SVM method 

got the most accurate results (86%), and the SSF method 

achieved 77%, much better than the ML classification product 

(69%).    

Another comparison was made between the methods products in 

the slopes domain. Unlike the spectral domain results, the SSF 

method presents the highest results (88%), against 85% of SVM 

and 74% of ML. The substantial improvement is an outcome of: 

a) Increasing the number of bands in the slopes signatures that 

contributes to detection of significant features; b) Enlarging the 

range of signatures 'pseudo-reflectance' values, which increases 

the efficiency in defining classification according to supportive 

decision rules.     

In addition to the above, we found that methods, which 

classification is based on the land cover spectral properties, is 

better compared to classification based on statistically calculated 

parameters.      

It was also proven that the SSF classification method produces 

provides more than only efficient results, both general and 

relatively, comparing to common statistical methods. 

Furthermore, it was proven that representing land covers 

signatures based on selected features enhances their spectral 

uniqueness and the separability between them relatively and 

increased the accuracies and reliabilities in classification 

processes. 

 

5.2 field experiments 

Figure 4 illustrate spectral signature after transformed into slope 

domain (note that there are 8·7/2 = 28 combination bands). While 

reflectance intensity varies between 0.03-0.6, the slopes range 

varies between 0.2-4.   
Red band (the 3rd band) has the strongest spectral variance 

between land cover in spectral domain, and the 26th band has the 

strongest variance in the slope domain. The most significant 

difference between the two domains is in the information content 

reflected in the variance representation. Most of spectral 

signature (excluding vegetation signatures) are characterized by 

large range of adjacent bands with low spectral variance. The 

signatures in slope domain show significant fluctuations 

excluding asphalt, dark soil and concrete. Spectral signatures 

show apparently significant spectral separation. Slope domain 

indicates of some combinations that has no separation in 

comparison to unique combinations. 26th combination indicates 

of a well separation between grass and all other land covers, 14th 

combination indicates a well separation of red roofs and 1st 

combination of white roofs.  

SOD graphs (Figure 5) show an increasing expression of 

variability between bands that increase the separation between 

land covers. It can be seen, for example, that first (SOD) band 

indicates of a good separation between concrete to dark soil and 

asphalt, but a bad separation between soil and asphalt. However, 

other bands such as 6,12 and 17 indicate of a good separation 

between asphalt and dark soil. It is also can be seen that the 

spectral distance between trees and bushes in the SOD graphs 

increased slightly. This is in comparison to the reflectance 

signature of those land covers shown in figure 3.   

 

 
Figure 4. mean spectral signature in slope domain 
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Figure 5. Sum of differences values for each band in slope 

domain for all land cover’s types. 

  
 

 

            upper - SVM, middle – ML, lower – SSF 

 

 
Figure 6. classification results 

 

It can be seen in figure 6, that classification of land covers is 

affected directly by their reflectance variance. Transforming the 

reflectance information into band’s ratios (slope combinations) 

should reduce the high variance and enabled a better separation 

between land cover’s types.  Our hypothesis was that using slope 

domain would lead to a better accuracy and reliability in land 

cover classification, in comparison to the usages of reflectance 

values implemented by each classifier (SVM, ML and SSF).  We 

also examined the accuracy and reliability of SSF classifier in 

comparison to the other. Figure 6 depicts material classified maps 

achieved by 3 classifiers (ML, SVM and SSF) implemented on 

the slopes domain. It can be seen in figure 6, that dark soil was 

confused with asphalt in ML classification but not in SVM or 

SSF one. Bright soil and red brick were also confused when 

implemented on ML classifier. However, it seems that trees and 

bushes were not confused using all 3 classifiers. 

Table 1 presents a comparison between the 3 classifiers 

implemented both on reflectance and slopes domains. 

 

 

Table 1. mean accuracy of classification process of 3 classifiers 

based on spectral and slopes data  

 

The classification results based on SSF and SVM appeared to be 

similar, while the classification results based on ML was much 

poorer. It is seen that ML classifier scored in 8 out of 10 land 

cover’s types better results when was implemented on slopes 

domain in comparison to the reflectance domain. However, 

kurkar and bushes classification based on ML slope domain 

decreased significantly in comparison to the reflectance domain 

(from 92% to 20% and from 84% to 48% correspondingly). Dark 

soil achieved extremely poor results in ML classifier in both 

reflectance and slope domains (36% and 45% correspondingly). 

It can be seen in figure 5, that in SOD domain the dark soil 

signature is similar to concrete, despite that only in first band the 

separation between them is higher. 
 In Total, it is seen that using SVM classifier comparing to ML 

classifier achieves higher accuracies. Moreover, SVM classifier 

scored similarly in both domains with slight advantage to the 

slope domain over the reflectance one. Note that both concrete 

and dark soil achieved relatively low results exactly as bushes in 

both reflectance and slope domain using SVM classifier. This is 

due to the SVM classifier characteristics, which searches for a 

well separating boundary between each pair of land cover’s type. 

Both reflectance and slope domains scored similarly when were 

classified by SSF classifier. As expected, concrete scored better 

when was implemented on reflectance domain. it turned out that 

for concrete, a unique ratio between any band’s combination in 

slope domain could not be founded to increase the spectral 

distance. On the other side, Asphalt scored significantly better 

results (increased from 35% to 99%) when was implemented on 

slopes domain, due to spectral distance increasing after the 

signature was transformed into slope domain. 

When comparing SVM to SSF, it is seen that trees, grass, white 

roofs and kurkar using SVM classifier is better than using SSF. 

For bushes, bright soil, concrete and dark soil the trend is 

oppositely. Red roofs and white roofs scored similarly when 

implemented on both classifiers. 

Understanding the characteristics of each classifier aside 

understanding the characteristic of each domain can be used as 

associated rules in classification processes. From table 1, it can 

be studied that for achieving high accuracy results in classifying 

concrete it is better to use SSF classifier in reflectance domain. 

However, for distinguishing between bushes and trees it is better 

ML SPEC ML SLOPE SVM SPEC SVM SLOPE SSF SPEC SSF SLOPE

ASPHALT 98.08 100.00 100.00 100.00 35.77 99.62

TREES 62.50 90.63 95.31 98.96 88.02 89.58

BUSHES 84.65 48.25 67.54 62.72 76.75 73.68

GRASS 66.67 68.63 81.37 83.33 66.67 65.69

WHITE_ROOFS 23.73 90.96 87.57 91.53 84.75 83.62

BRIGHT_SOIL 79.76 92.15 80.36 87.61 67.67 97.89

KURKAR 92.86 20.71 92.86 98.57 89.29 91.43

CONCRETE 53.33 82.67 64.00 60.00 90.67 69.33

DARK_SOIL 36.30 45.93 86.91 71.36 90.37 87.65

RED_ROOF 93.72 100.00 98.74 100.00 96.23 93.31
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to use ML classifier in reflectance domain. For classifying white 

roofs use SVM classifier in slope domain and for bright soil use 

SSF classifier in slope domain. 

 

6. SUMMARY 

Using relative reflectance data such as the slope feature 

emphasizes spectral characterisations and reduces acquisition 

conditions effects. Classifying pixels using statistical classifier 

(such as Maximum Likelihood) based on the relative reflectance 

(slopes) improved the total accuracy and reliability rates. In this 

research we developed a new classifier named Significant 

Spectral Features, which achieved similar classification results in 

comparison to SVM classifier. While SVM is considered as a not 

explicit classifier, SSF is an explicit classifier and is easy to use 

for feature extraction processes.  

Remote sensing mapping has developed significantly in recent 

years. Increasing the number of spectral images and spectral band 

enabled producing more spatial databases and spatial 

comprehension in large scales. Better understanding of 

classification processes by improving spectral feature extraction 

as was shown in this article would lead to much accurate products 

in many fields and enable a better utilization of spatial sources. 
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