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ABSTRACT 

Dimensionality reduction of hyperspectral images plays a vital role in remote sensing data analysis. The rapid advances in 

hyperspectral remote sensing has brought in a lot of opportunities to researchers to come up with advanced algorithms to analyse 

such voluminous data to better explore earth surface features. Modern machine learning algorithms can be applied to explore the 

underlying structure of high dimensional hyperspectral data and reduce the redundant information through feature extraction 

techniques.  Limited studies have been carried out on dimensionality reduction for mineral exploration. The current study mainly 

focuses on the application of autoencoders for dimensionality reduction and provides a qualitative (visual) analysis of the obtained 

representations. The performance of autoencoders are investigated on Cuprite scene. Coranking matrix is used as evaluation criteria. 

From the obtained results it is evident that, deep autoencoders provide better results compared to single layer autoencoders. An 

increase in the number of hidden layers provides a better embedding. The neighborhood size K ≥ 40 of deep autoencoders provides a 

better transformation compared to autoencoders which shows an improved embedding only after K ≥ 80. 

1. INTRODUCTION

Recent advances in sensor technology has led to an increased 

availability of hyperspectral data with sufficiently high spectral 

and spatial resolutions. Each pixel contains a detailed 

representation of various materials on ground in the form of 

reflectance curve based on its absorption features in different 

portions of the electromagnetic spectrum. This detailed spectral 

information increases the possibility of more accurately 

discriminating materials of interest (Chutia, et al., 2015). The 

burst of informative content conveyed by hyperspectral data 

permits an improved understanding of different land coverage 

on earth surface. In spite of that, it introduces a series of 

challenges that needs to be addressed, such as the computational 

complexity and resources required to process such voluminous 

data. The main difficulty in analysing such high-dimensional 

data sets is that the number of observations required to estimate 

functions at a certain level of accuracy grows exponentially 

with the dimension. This problem, often referred to as the curse 

of dimensionality, has led to various techniques that attempts to 

reduce the dimensionality of the original hyperspectral data 

(Daniela, 2014). 

Although, the hyperspectral data are both voluminous and 

multidimensional, nowadays with the availability of advanced 

computing systems that possess high speed processors and 

enormous storage power, data volume is no longer a constraint. 

The problem lies in the data redundancy that needs to be 

removed to obtain the bands that convey maximum information.  
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Much of the data does not add to the inherent information 

content for a particular application, even though it often helps in 

discovering that information; it contains redundancies. The data 

recorded by hyperspectral sensors often have substantial overlap 

of information content over the bands of data recorded for a 

given pixel. But not all of the data is required for a particular 

application. Therefore, dimensionality reduction plays a vital 

role in hyperspectral data analysis.  

The high-dimensional nature of hyperspectral imagery imposes 

certain challenges to perform classification and conventional 

algorithms do not adapt well. When there is a limited number of 

reference samples to train a classification system, as the number 

of dimensions increases, the accuracy of the classification tends 

to drop. This is because the reliable estimation of statistical 

class parameters becomes more and more difficult as 

dimensionality increases (Hughes, 1968). In designing 

classifiers, the goal is to improve the accuracy of predictions. A 

vast number of classification techniques for hyperspectral 

imagery have been presented in the literature, which share the 

goal of attenuating the Hughes effect and accurately identifying 

the classes. The kernel methods such as Support Vector 

Machines (SVMs) have become very popular for hyperspectral 

image analysis, proving to be extremely well suited to classify 

high dimensional data when a limited number of training 

samples are available (Valls, 2005). To further boost up 

classification accuracies, ensemble classification systems have 

been investigated for hyperspectral image classification. These 

approaches combine multiple learning algorithms to improve 

the predictive accuracy. The use of Random Forest framework 

was investigated for classification of hyperspectral data (Ham et 

al., 2005). Aiming to classify high-dimensional data, we have to 

take into account that the Hughes phenomenon might have a 

negative impact on the classification results. To address this 

general issue regarding the classification of high-dimensional 
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data, it has been proposed to introduce techniques for 

dimensionality reduction (Sumithra et al., 2015). 

 

Dimensionality reduction can also be used to visualize the 

interiors of deep neural networks where the high dimensionality 

comes from the large number of weights used in a neural 

network and convergence can be visualized by means of DR 

(Han et al., 2017). The difficulty in applying these techniques is 

that each method is designed to maintain certain aspects of the 

original data and therefore may be appropriate for one task and 

inappropriate for another. Most of the methods also have 

parameters to tune and follow different assumptions. The 

quality of the outcome may strongly depend on their tuning, 

which adds additional complexity to the process. Choosing an 

inadequate method may imply that much of the underlying 

structure remains undiscovered. Depending on the chosen 

parameters, even a single method can lead to vastly diverse 

results. Moreover, many nonlinear techniques do not arrive at a 

unique solution due to random aspects of the algorithm. Instead, 

they can produce different results in every run, corresponding to 

different local optima of the objective.    

 

In this paper, systematic analysis of autoencoders and deep 

autoencoders for dimensionality reduction of hyperspectral data 

is carried out. Autoencoders provide an unsupervised 

methodology for generating meaningful latent representations of 

original data. Such approaches can be utilized in two ways. 

First, the generated latent representations of the data can be 

exploited for further analysis. Second, the architectures can be 

deployed on other heterogeneous data sets. This can be 

extremely helpful especially for mineral exploration, since there 

is no ground truth available for better analysis. Also, the 

obtained results can be used as valuable input for further in-

depth analysis of the concerned data. Though various 

techniques have been proposed in the past, the real challenge is 

to select an appropriate algorithm for the task at hand. Limited 

studies have been carried out for dimensionality reduction of 

hyperspectral data for mineral exploration. Hence the main 

objective of the current study is to verify the suitability of 

neural network based approaches on hyperspectral data.  

 

2. DIMENSIONALITY REDUCTION METHODS 

 

Dimensionality reduction is the transformation of high-

dimensional data into a meaningful representation of reduced 

dimensionality. Ideally, the reduced representation should have 

a dimensionality that corresponds to the intrinsic dimensionality 

of the data. The intrinsic dimensionality of data is the minimum 

number of parameters needed to account for the observed 

properties of the data (Fukanaga, 1990). Dimensionality 

reduction is important in many domains, since it mitigates the 

curse of dimensionality and other undesired properties of high-

dimensional spaces (Jimmenez, 1997). As a result, 

dimensionality reduction aids classification, visualization, and 

compression of high-dimensional data.  

 

Dimensionality reduction techniques can be classified into two 

types namely feature extraction and band selection. 

Traditionally, dimensionality reduction was performed using 

popular linear techniques such as Principal Components 

Analysis (PCA) (Pearson, 1901), factor analysis (Spearman, 

1904), and classical scaling (Turk, 1991). However, these linear 

techniques cannot adequately handle complex nonlinear 

relationships inherent in the data. In the past few years, a large 

number of nonlinear techniques for dimensionality reduction 

have been proposed to overcome the insufficiencies of 

traditional linear techniques. Also, many algorithms were 

developed to perform embedding for manifold based datasets 

namely, Isomap (Tenenbaum et al., 2000), Local Linear 

Embedding (LLE) (Roweis and Saul, 2000), Laplacian 

Eigenmaps (Belkin and Niyogi, 2003), Local Tangent Space 

Alignment (LTSA) (Zhang and Zha, 2004), Hessian Eigenmaps 

(Donoho and Grimes, 2004), Diffusion Maps (Coifman and 

Lafon, 2006) and Semi definite Embedding (SDE) (Weinberger 

and Saul, 2006).This group of algorithms attempts to effectively 

generate a subspace, resulting in a model which maximizes the 

distance between  different classes. 

 

Band selection aims to select a subset of bands from the original 

spectral bands that can well represent the actual data. The 

simplest suboptimal search strategy employs sequential forward 

selection and sequential backward selection techniques (Webb 

et al., 2011) which achieves the best subset of features based on 

adding a set of prefixed features to the current one. Also, with 

rapid evolvement in the field of soft computing, genetic 

algorithms have also received considerable attention for feature 

selection (Zhang, et al., 2012). 

 

Recently, many deep learning approaches have been proposed 

for analysing hyperspectral data (Wei et al., 2015). Typically, 

they rely on extracting prominent features using deep 

convolutional neural networks for analysis and classification. 

However, these methods refer to supervised learning, and 

require many labelled observations in order to perform well. In 

contrast, unsupervised approaches learn representations by 

identifying patterns in the data and extracting meaningful 

knowledge while overcoming data complexities. Particular 

variants of deep learning networks, referred to as autoencoders, 

have demonstrated good performance for unsupervised 

representation learning (Bengio et al., 2013). The advantage of 

unsupervised learning is that there is no need to specify classes 

or a target variable for the data under observation.. Instead the 

chosen algorithm arranges the input data. For example, arranged 

into clusters or into a lower dimensional representation. In 

contrast to a supervised problem, there is no natural way to 

directly measure the quality of any output or to compare two 

methods by an objective measure like modeling efficiency or 

classification error. 

 

Autoencoders learn a compressed representation of the input 

data by reconstructing it on the output of the network (Suvash et 

al., 2015). This compressed representation captures the structure 

of the data and therefore allows for more accurate analysis 

(Belkin and Niyogi, 2003). Autoencoders have been deployed 

on a variety of tasks across different data types such as 

dimensionality reduction, data denoising, compression, and data 

generation. Hence in this context, autoencoders can be utilised 

effectively for dimensionality reduction of hyperspectral data. 

 

 

3. NEURAL NETWORK BASED DIMENSIONALITY 

REDUCTION 

 

In the past few years, neural network based approaches for 

classifying hyperspectral data received a lot of attention 

(Merenyi, 2005). Neural network models have an advantage 

over statistical methods in that they are distribution free and 

thus no prior knowledge about the statistical distribution of 

classes is needed. In a neural network, a set of weighted sums 

and nonlinearities describe the function that classifies the input 

features. The training procedure involves finding the 

appropriate weights, which is done iteratively. 
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3.1 Autoencoders: Generally, an autoencoder consists of two 

networks, an encoder and a decoder, which broadly perform the 

following tasks:  
Encoder: Maps the high dimensional input data into a latent 

variable embedding which has lower dimensions than the input.  

Decoder: Attempts to reconstruct the input data from the 

embedding.  

An autoencoder neural network is an unsupervised machine 

learning algorithm that applies back propagation, setting the 

target values to be equal to the inputs. A simple autoencoder 

will have single hidden layer between the input and output. 

Autoencoders can represent both linear and non-linear 

transformation in encoding. The network is trained to minimize 

the mean squared error between the input and the output of the 

network. In order to allow the autoencoder to learn a nonlinear 

mapping between the high dimensional and low dimensional 

data representation, sigmoid activation functions are used. 

 

The main challenge when designing an autoencoder is its 

sensitivity to the input data. Several variants have been 

proposed since autoencoders were first introduced. These 

variants mainly aim to address shortcomings such as improved 

generalization and modification to sequence input models. 

Some significant examples include the denoising, sparse and 

variational autoencoders. 

 

3.2 Deep autoencoders: A deep autoencoder will have multiple 

hidden layers. An increase in the number of hidden layers 

permits the network to be used to solve complex problems. But 

as the number of hidden layers are increased, the errors 

propagated back to the earlier layers are drastically reduced. 

This means that the weights in hidden layers close to the output 

layer are updated normally, whereas weights in hidden layers 

close to the input layer are updated minimally or not at all. 

Generally, this problem prevented the training of very deep 

neural networks and was referred to as the vanishing gradient 

problem. This problem can be reduced considerably by the 

process of pre-training (Diehao Kong et al., 2019).  Features 

learned by pre-training a deep autoencoder structure produce 

spectral features that outperform conventional feature extraction 

methods. 

 

 

4. EXPERIMENT AND RESULTS 

 

In this section, a qualitative and comparative analysis of 

autoencoders and deep autoencoders for dimensionality 

reduction of hyperspectral data has been carried out. 

 

4.1 Dataset: To demonstrate the role of autoencoders in the 

dimensionality reduction of hyperspectral data, a detailed 

analysis is carried out on the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) hyperspectral data. AVIRIS, flown by 

NASA/Jet Propulsion Laboratory (JPL) is a 224-channel 

imaging spectrometer with approximately 10 nm spectral 

resolution covering the 0.4 –2.5 μm spectral range. (Kruse et al., 

2003). The 0.4 to 2.5 μm spectral range provides abundant 

information about many important earth surface minerals. The 

AVIRIS data used in the study was captured from Earth 

Resource-2 aircraft on August 8, 2011, at Cuprite, Nevada, 

USA. 

 

4.2 Quality measures: It is often too hard for researchers to 

judge the quality of the resulting embedding by visual 

inspection. Also, it cannot be compared against ground truth 

due to high dimensional nature of data. Therefore, formal 

measures play a vital role in judging the quality of a given data 

embedding. Several quality measures have been proposed in the 

past to serve the purpose (Lee et al., 2009). A quality measure 

based on coranking matrix is used to evaluate the performance 

of autoencoders on hyperspectral data (Leuks et al., 2011).  

 

The coranking matrix is a way to capture the changes in ordinal 

distance. The column wise distances in a distance matrix are 

replaced by their ranks. The comparison of the ranks in the high 

and low dimensional spaces is carried out in a systematic way. 

In a perfect dimensionality reduction, the matrix will only have 

non zero entries in the diagonal, if most of the non-zero entries 

are in the lower triangle, then the process of dimensionality 

reduction collapsed far away points onto each other; if most of 

the non-zero entries are in the upper triangle, then it is 

understood that close points are torn apart. 

 

Rank errors and concepts such as neighbourhood intrusions and 

extrusions can be associated with different blocks of the 

coranking matrix. The model is pre-trained using stacked 

denoising autoencoders. They are designed using a greedy layer 

wise strategy. Pre-training is based on the assumption that it is 

easier to train a shallow network instead of a deep network, 

which also reduces generalization error. Deep neural networks 

can easily jump out of local minima with the help of pre-

training (Diehao Kong et al., 2019). 

 

The high dimensional hyperspectral dataset is represented by, Y 

= {y1, y2,……,yN}ϵ RH and low dimensional dataset X = {x1, 

x2,……,xN} ϵ RL. Let δij be the distance from yi to yj in RH and 

dij be the distance from xi to xj in RL. The rank of yj with respect 

to yi in RH is given by, 

 

δij = ǀ{k ǀ δik < δij or ( δik = δij  and 1≤ k < j ≤ N)}ǀ    (1) 

 

Similarly, the rank of xj with respect to xi in low dimensional 

space is, 

 

rij =  ǀ{k ǀdik < dij or ( dik = dij  and 1≤ k < j ≤ N)}ǀ  (2) 

 

The differences Rij= rij – ρij are the rank errors. The coranking 

matrix C is the histogram of all rank errors and is given by,  

 

Ckl = ǀ{(i,j)ǀ ρij = k and rij = l}ǀ                      (3) 

 

Pairs of points which change their rank between the original 

data and its projection are considered as errors. They result in 

non-zero off-diagonal entries in the coranking matrix. A point xj 

with ρij  > rij is called intrusion and ρij  < rij is called extrusion. 

The un-weighted sum of C is expressed as a quality, 

 

  
 


K

k

kl

K

l

NX C
KN

KQ
1 1

1
)(       (4) 

 

where K defines the neighborhood points. 

 

To display the quality of embedding, a curve of QNX (K) is 

plotted for fixed range of K.A single parameter K is replaced by 

the pair (Ks, Kt), where Ks determines the region of interest and 

Kt is the size of tolerated rank errors which results in a new 

quality measure QND (Ks, Kt) (Bassam Mokbel et al., 2013).For 

better visualisation, the quality QND (Ks, Kt) is parameterized by 

two values. Hence, rather than a single curve, the results are 

now represented by a surface. The full quality surface can easily 

be displayed as a colored matrix, (Ks, Kt) is assigned a color 

value according to QND (Ks, Kt). 
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Figure 1 and 2 depicts the quality measure QNX (K) for 

autoencoder and deep autoencoder respectively. Figure 3 and 4 

depicts the quality measure QND (Ks, Kt). As shown in the 

figures 1and 2, the curve steadily rises to the maximum.For 

fixed neighbourhood range K, the value of QNX (K) is almost 

close to 1 beyond K ≥ 80 in autoencoders and K ≥ 40 in deep 

autoencoders. A perfect embedding provides a Q value of 1. 

From this it can be inferred that, the global errors are relatively 

minimum. Figure 3 and 4 provides a better insight through 

visual interpretation, wherein the white portion indicates perfect 

embedding with the quality index value 1. It can be observed 

that, the errors originating in the smaller regions (small Ks) are 

rather small, errors only occurs for Kt < Ks, which implies that 

the absolute size of rank errors increases. 

 

In ideal case, off diagonal entries in a coranking matrix should 

be zero. But, it is not so because of intrusions and extrusions 

induced by rank errors. Autoencoders provides appropriate 

embedding for K ≥ 80 whereas deep autoencoders provides a 

good embedding from K ≥ 40. This is due to the fact that, 

increase in the number of hidden layers allows the network to 

learn more complex features inherent in the data which in turn 

results in a better embedding. 

 

 
 

Figure 1. Plot of QNX (K) versus K for autoencoder 

 

 
 

Figure 2. Plot of QNX (K) versus K for deep autoencoder 

 

 

 

 
 

Figure 3. QND quality measure for autoencoder 

 

 
 

Figure 4. QND quality measure for deep autoencoder 

 

In summary, experimental evaluation is used to verify that the 

neural network based approaches produce valid representations 

and can be applied for dimensionality reduction of hyperspectral 

data. Also, visual inspection of the learned representations of 

the whole data set are also obtained from autoencoders and deep 

autoencoders. The obtained results clearly reveal that 

autoencoders based approaches are really capable of 

reconstructing the original data from latent space representation. 

 

 

 

5. CONCLUSIONS 

 

Dimensionality reduction techniques play a significant role in 

hyperspectral data analysis. In particular for mineral exploration 

limited studies have been carried out to overcome the problem 

of curse of dimensionality. Although there are many new 

methods to reduce dimensionality, their assessment and 

comparison still remains open. In this study, application of 

autoencoders for dimensionality reduction of hyperspectral data 

is investigated and evaluated under coranking framework. The 

studied approaches have several distinguishing properties. First, 

they are able to produce representations that capture the 

intrinsic relationships between the data variables and therefore 

allow for more accurate analysis. Second, they are capable of 
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reducing the dimensionality of the input data without much loss 

of quality or performance. Consequently, from the results 

obtained it can be concluded that, nonlinear techniques 

outperform the traditional linear techniques. In particular, deep 

autoencoders with three hidden layers perform well compared to 

simple autoencoders. For a fixed neighbourhood range, deep 

autoencoders provides better transformation beyond K ≥ 40 and 

autoencoders as well beyond K ≥ 80. Hence autoencoders can 

be considered as a better choice for dimensionality reduction of 

hyperspectral data since it does not require labelled data for 

training. On the other hand, increase in the number of hidden 

layers adds to the computational complexity and reduces the 

generalisation capability of the network. Restricted Boltzman 

machine can be further included in training deep autoencoders 

to further improve the quality of embedding.  
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