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ABSTRACT: 
 
Nowadays, water has become one of the most important environmental issues for our ecosystem and is facing major challenges 
today. During the COVID-19 pandemic, the world has understood the need for good quality of water for sanitation and hygiene. 
Earth observing satellites plays a critical role in near-real-time detection and monitoring of land and water change and quality. This 
research presents a methodology for modeling and mapping water salinity in high spatial resolution. Data for modeling were 
measured on the five monitoring stations (Ayodhya, Basti, Birdghat, Paliakalan, and Turtipar) along the Ghagraha River Basin in 
India, during the period of 28 years (1985-2013). In this research, Electrical Conductivity (EC) as water salinity parameter modeled 
by means of Landsat 5 satellite imagery. All available Landsat 5 imagery were acquired on the same date as the ground measurement 
data was utilized for the modeling. Modeling was done based on linear, 2nd and 3rd polynomial multiple regression analysis. All 
statistical parameters for accuracy assessment show that 3rd degree polynomial performs better EC prediction capability than 2nd 
degree polynomial and linear regression. The 3rd degree polynomial multiple regression model RMSE, R2, MAE, p-value were 
8.682, 0.993, 6.493, 0.008, respectively. The developed algorithm provides new knowledge that can be widely applied in various 
environmental research mapping and monitoring like water salinity. Also, this method allows rapid detection of water pollution, 
which has an important impact on human health, agriculture, and the environment. 
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1. INTRODUCTION 

Water is a multi-facet, and one of the most vital elements for 
survival on earth has become emerging environmental issues for 
our ecosystem and is facing major challenges today. During the 
COVID-19 pandemic, the world has understood the demand for 
good quality of water for sanitation and hygiene. Earth 
observation satellites play a critical role in near-real-time 
detection and monitoring of vegetation, land, water change, and 
quality. The freshwater systems are continuously facing the 
threat of anthropogenic contaminants due to the direct untreated 
discharge of wastewaters. The water quality of any river system 
is affected by a wide range of natural influences such as 
vegetation cover, climate, topography, soils, and geologic 
structure of a basin (Bartram and Balance, 1996) and 
anthropogenic activities like land use/land cover (LULC) 
change, industrial wastes, domestic wastes, agricultural wastes, 
and atmospheric pollutants (Amin et al. 2014; Singh et al. 2014; 
Gašparović et al. 2018; Pilaš et al. 2019). Therefore, ecosystem 
services knowledge has become the most important issue in 
environmental policymaking and management. The concept of 
ecosystem services has been defined by Daily (1997) as 
ecological functions that sustain life and have been categorized 
into four service types (provisioning, regulating, supporting, 
and cultural). In the wake of drastically changing, LULC and 
climate have intensified the degradation of the aquatic 
environment. Hence, it is likely for ecosystems to be modified 
to the extent that they can no longer render services to support 
life in the near future. Our understanding of the functioning of 
the ecosystem will be challenged and will require a better 

assessment of the supply-demand chain to reduce the potential 
negative tradeoffs and conserve the valuable ecosystem. There 
is an urgent need of present to address the problems of rising 
sediment loads and nutrients delivered to many major river 
basins/water bodies. Modeling approaches are needed because 
they are capable of accurate assessment of the catchment scale, 
particularly in the concentration of water quality where the in-
situ monitoring is not feasible due to either location or 
availability of limited funds. 
 
Investigation of spatio-temporal patterns of water quality 
parameter is crucial to managing water resources (Breitburg et 
al. 2018). The difficultly in monitoring the water quality 
parameters in a remote or non-accessible area in a cost-effective 
manner can be achieved through the applications of 
multispectral and hyperspectral satellite data. In the last few 
decades, the earth observing datasets have been more frequently 
used to collect water quality information, particularly of lakes, 
ponds, and reservoirs (Goetz et al. 2008). The retrieval of water 
quality parameters rely on satellite bandwidth. The water-
leaving radiance lies in the visible band and highly absorptive in 
near-infrared and infrared regions of the spectrum (Govender et 
al. 2007). The multispectral sensors have the capability to 
retrieve water quality parameters as compared to coarse 
bands/panchromatic band (Hestir et al. 2015; Topp et al. 2020). 
Linear Imaging Self Scanning System satellite data was used to 
model electrical conductivity (EC) in the Tawa Reservoir during 
the monsoon and after the monsoon. A simple linear regression 
model was developed to model EC using four bands, and results 
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explain that EC was inversely correlated with shorter 
wavelength bands. Whereas multiple linear regression analysis 
shows slightly better relations as compared to simple linear 
regression (Choubey et al. 1994). Hyperspectral sensors have a 
higher number of spectral bands and widely applied to ascertain 
the water quality of aquatic ecosystems (Govender et al. 2007). 
Abdelmalik (2018) used ASTER data of Qaroun Lake, Egypt, to 
retrieve the water quality parameters. The result show that the 
quadratic regression model has performed best in the case of 
electrical conductivity (R2=0.996) and salinity retrieval (R2 = 
0.985). Visible and near-infrared bands are highly sensitive to 
water salinity (Pegau et al. 1997). Landsat 7 ETM + data was 
used for modeling the water quality parameters (dissolved 
oxygen, turbidity, total hardness, alkalinity, chemical and 
biological oxygen demand) through multiple regression analysis 
of the Ganga river and results suggest that these parameters 
have a good correlation with the spectral radiance of bands. The 
turbidity shows poor correlation with spectral bands due to low 
suspended matter in water (Sharma et al. 2019). The stepwise 
multiple regression analysis among long term dissolved oxygen 
data sets and satellite-derived environmental variables shows a 
significant-good correlation and suggest that the prediction of 
the dissolved oxygen with the aid satellite data is accurate (Kim 
et al. 2020). 
 
This research presents a methodology for modeling and 
mapping water salinity (EC) in high spatial resolution based on 
Landsat 5 imagery. 
 
 

2. MATERIALS AND METHODS 

2.1 Study site and data 

The proposed study is investigating the spatio-temporal water 
salinity (EC variations). The Ghaghara River is a perennial and 
trans-boundary river originates near Lake Mansarovar 
(28.5983°N, 83.9311°E). It has a catchment area 127950 km2; 
the majority of its catchment lies in Nepal (55%) and remaining 
in India (45%). It met with its tributaries Sarda at Brahmaghat 
in India and called as Ghaghara River. It joins the Ganges at 
Dorigang. The other important tributaries of the Ghaghara River 
are the Sarju, Rapti, and Little Gandak. The river has almost the 
heterogeneous topography from source to mouth and having the 
longest distance river in Nepal (~507 km). In the alluvial plains, 
Ghaghara shows the meandering pattern and oxbow lake and 
lateral soil erosion. The dominant land use/land cover pattern is 
the cropland followed by the mixed forest and grassland (Singh 
et al. 2017). The dominant soil is the older alluvium 
(Pleistocene & yellow to brown color) and the newer alluvium 
(Holocene & gray to black color). The average annual rainfall in 
the catchment ranges from 900 to 1400 mm, and 
evapotranspiration in the basin ranges from 1700 to 1950 mm. 
In India, a total of twenty-two and in Nepal five district 
administrative units falling in the river catchment (Mohan 
2018). In India, the population density is high in the river 
catchment, and water is used for irrigation. It brings a huge 
flood during the southwest monsoon; the river also has spiritual 
significance. 
 
For this research, EC/water salinity data was monitored on five 
stations (Ayodhya, Basti, Birdghat, Paliakalan, and Turtipar) 
along the Ghagraha River during the period of 28 years (1985-
2013) (Figure 1). In this research, Electrical Conductivity (EC) 
as a water salinity parameter was tested and correlated with 
Landsat 5 satellite imagery (Figure 2). In India, the water 
quality of rivers is monitored since the late 1950s, and the 

monitoring network is spread all over India, and the water 
quality network of Central Water Commission is incidental to a 
hydrological observation network. The Central Water 
Commission, New Delhi, India, is the agency for monitoring of 
water quality and discharge. The Paliakalan sampling station is 
located at 28.3928°N latitude and 80.5306°E longitude (the 
reference code GGU6016). The site is classified as trend station 
and Gauge, Discharge, Silt, and Water Quality (GDSQ) type of 
station. This station is also used for Hydrological 
Observation/flood forecasting (HO/FF). The trend station shows 
how the monitoring point varies over the period of time due to 
both anthropogenic and geogenic activities (GWQM, 2017). 
The trend station quality is monitored once in a month before 
southwest monsoon (pre-monsoon), and a total of twenty-five 
parameters were determined in general. The twenty-five 
parameters are categorized into General, Nutrients, Demand 
Parameters, Major Ions, Other Inorganic, and Microbiological 
parameters. The long-term monthly water quality data (1984-
2018) was collected from the Central Water Commission. The 
EC is measured through Conductivity Meter and Water 
Analysis Kit. The monitoring agency follows the Bureau of 
Indian Standard (BIS) Methods for Testing Water and 
Wastewater-methods of sampling and testing (physical and 
chemical) (IS:3025). 
 

 

Figure 1. (a) Location of the study area, (b) study area and 

monitoring stations on Ghagraha River basin (Landsat 5 ‘true 

color’ composite (B3–B2–B1) for 2010) 

 
In order to allow a large temporal overlap of satellite data with 
ground truth data, this research is based on clear-sky Landsat 5 
data (Figure 2). The atmospherically pre-corrected surface 
reflectance data were used from the Landsat 5 sensor (USGS 
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Landsat 5 Surface Reflectance Tier 1). Satellite data contains 
seven bands: four visible and near-infrared (VNIR) bands, two 
short-wave infrared (SWIR) of 30-m spatial resolution, and one 
thermal infrared TIR band of 120-m spatial resolution (Table 1). 
Values for all Landsat 5 bands were extracted via Google Earth 
Engine. 
 

Band Wavelength (μm) Description 
B1 0.45 – 0.52 Blue 
B2 0.52 – 0.60 Green 
B3 0.63 – 0.69 Red 
B4 0.77 – 0.90 Near Infrared 
B5 1.55 – 1.75 Shortwave infrared 1 
B6 10.40 – 12.50 Thermal infrared 
B7 2.09 – 2.35 Shortwave infrared 2 

Table 1. Spectral bands of the Landsat 5 imagery (Gašparović et 

al. 2017)  

 

 

Figure 2. Spectral reflectance of Landsat 5 bands and ground 

measured EC for Paliakalan station, India 

 
For further research, all available imagery were acquired on the 
same date as the ground measurement data was used for the 
research. That defined data was prepared and selected for the 
stations (Table 2). The satellite data was used for regression 
analysis. The number of ground-truth measurements, satellite 
measurements, and final measurements used in modeling were 
shown in Table 2. Final measurements represent combined 
ground-truth and satellite measurements acquired on the same 
day. 
 

Station Ground-truth Landsat 5 Final 
Ayodhya 238 175 1 

Basti 421 547 19 
Birdghat 451 201 8 

Paliakalan 452 130 8 
Turtipar 407 209 8 

Total 1969 1262 44 

Table 2. Number of measurements used in this research 

 
2.2 Methods 

Based on the Landsat 5 (B1-B7) time-series and multiple 
regression analysis with ground-truth data from stations were 
used for the modeling of the water salinity. Three types of 

multiple regression analyses were tested: linear, 2nd degree 
polynomial, and 3rd degree polynomial. The developed models 
enable water salinity mapping and monitoring during the entire 
Ghagraha River flow based on the clear-sky Landsat 5 satellite 
imagery collected on the same date as the measurement was 
done on the ground station. For modeling, all bands and various 
spectral indices were used (Gholizadeh et al. 2016; Abdelmalik 
2018, Gašparović et al. 2019). Additionally, in this research, 
three types of Normalized difference water index (NDWI1, 
NDWI2, NDWI3), Enhanced vegetation index (EVI), 
Normalized difference vegetation index (NDVI) and one ratio 
(ratio54) were applied. Calculation of indices mentioned above 
was done based on the following equations (1-6): 
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where B1, B2, B3, B4, B5, B7 are Landsat 5 bands and 
specifications are defined in Table 1. 
 
Accuracy assessment of the regression analysis was performed 
based on various standard statistical parameters: Residual 
standard error (RSE), F-statistic, and p-value. Furthermore, an 
independent accuracy assessment based on the Leave-one-out 
cross-validation (LOOCV) approach was applied. Based on the 
LOOCV approach, Root Mean Square Error (RMSE), 
Coefficient of determination (R2), and Mean Absolute Error 
(MAE) was also calculated. 
 
 

3. RESULTS 

For the purpose of observing the dependence of the modeling 
variables, the correlation matrix of all used variables was 
employed to know the correlation among the studied variables 
(Figure 3). 

 

Figure 3. Correlation matrix of all variables 
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Accuracy assessment of three regression analysis was carried 
out based on the linear, 2nd degree polynomial, and 3rd degree 
polynomial, results are shown in Table 3. All three regressions 
are provided on all 44 final measurements and 14 variables. As 
variables, seven Landsat bands (B1-B7), five spectral indices 
(NDWI1, NDWI2, NDWI3, NDVI, EVI), and one spectral ratio 
(ratio54) were used. The developed regression models enable 
water salinity mapping in high resolution (30 m) and based on 
the remote sensing satellite data. 
 

Statistical parameter Linear Poly 2nd Poly 3rd 
RSE 97.980 80.190 27.320 

F-statistic 1.408 2.120 15.830 
p-value 0.213 0.056 0.008 
RMSE 84.258 52.540 8.682 

R2 0.328 0.738 0.993 
MAE 64.504 39.062 6.493 

Table 3. Statistical parameters for accuracy assessment of three 
multiple regression analysis 

 

 
Figure 4. Statistical visualization of (a) linear, (b) 2nd degree 

polynomial and (c) 3rd degree polynomial type of three multiple 
regression analysis 

 
All statistical parameters (Table 3), as well as statistical 
visualization (Figure 4), show that linear regression performed 
worse prediction capability compared to polynomial 
regressions. The results show that 3rd degree polynomial has the 
best prediction capability as the p-value (<0.05). All statistical 
results also confirmed that 3rd degree polynomial has better EC 
prediction capability than 2nd degree polynomial. The residual 

versus fitted plot shows whether the plot is normal (no change), 
heteroscedasticity (constant variance), and nonlinearity (Figure 
4). The first plot indicates uncorrelated values between residuals 
and the fitted means homoscedastic linear model (Figure 4a). 
The Q-Q plot shows the presence of outliers and inequality 
(Helsel and Hirsch 1992). The 3rd order polynomial shows high 
prediction capability as R2 (0.993) and RMSE (8.682) as 
compared to multiple linear regression and 2nd polynomial 
(Table 3). The normal Q-Q plot does not support normality, and 
the distribution of multiple linear regression shows left-skewed, 
whereas the 2nd polynomial shows a similar trend. The 3rd 
polynomial shows the right-skewed data. 
 
Similar to our previous study (Gudelj et al. 2018; Gašparović et 
al. 2019), water body mapping was done based on the NDWI3 
(Figure 5a). Modeled EC calculated based 3rd degree 
polynomial multiple regression coefficients was calculated for a 
water body and showed in Figure 5b. 
 

 

Figure 5. (a) River body mapped based NDWI3, (b) modeled EC 

based 3rd degree polynomial multiple regression analysis for 

Paliakalan station surroundings, India 

 
 

4. CONCLUSIONS 

Regarding that water has become one of the most important 
environmental issues for our ecosystem and is facing major 
challenges today, this research presents the methodology for 
modeling EC based on Landsat 5 imagery. This research allows 
water salinity mapping in high spatial resolution. Accuracy 
assessment calculated based on the five stations monitoring 
stations (Ayodhya, Basti, Birdghat, Paliakalan, and Turtipar) 
along the Ghagraha River during the period of 28 years (1985-
2013). All statistical result show that 3rd degree polynomial 
performs better EC prediction capability than 2nd degree 
polynomial and linear regression. The 3rd degree polynomial 
multiple regression model RMSE, R2, MAE, p-value were 
8.682, 0.993, 6.493, 0.008, respectively. The developed 
algorithm provides new knowledge that can be widely applied 
in various environmental research mapping and monitoring like 
water salinity. Also, this method allows the rapid detection of 
water pollution, which has an important impact on human 
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health, agriculture, and the environment. The developed 
algorithm can be applied to many other areas around the Earth 
and based on the other hyperspectral and optical-based satellite 
data, e.g., Sentinel-2, RapidEye, and PlanetScope. 
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