
AN UNSUPERVISED LABELING APPROACH FOR HYPERSPECTRAL IMAGE
CLASSIFICATION
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ABSTRACT:

The application of hyperspectral image analysis for land cover classification is mainly executed in presence of manually labeled
data. The ground truth represents the distribution of the actual classes and it is mostly derived from field recorded information.
Its manual generation is ineffective, tedious and very time-consuming. The continuously increasing amount of proprietary and
publicly available datasets makes it imperative to reduce these related costs. In addition, adequately equipped computer systems are
more capable of identifying patterns and neighbourhood relationships than a human operator. Based on these facts, an unsupervised
labeling approach is presented to automatically generate labeled images used during the training of a convolutional neural network
(CNN) classifier. The proposed method begins with the segmentation stage where an adapted version of the simple linear iterative
clustering (SLIC) algorithm for dealing with hyperspectral data is used. Consequently, the Hierarchical Agglomerative Clustering
(HAC) and Fuzzy C-Means (FCM) algorithms are employed to efficiently group similar superpixels considering distances with
respect to each other. The distinct utilization of these clustering techniques defines a complementary stage for overcoming class
overlapping during image generation. Ultimately, a CNN classifier is trained using the computed image to pixel-wise predict classes
on unseen datasets. The labeling results, obtained using two hyperspectral benchmark datasets, indicate that the current approach
is able to detect objects boundaries, automatically assign class labels to the entire dataset and to classify new data with a prediction
certainty of 90%. Additionally, this method is also capable of achieving better classification accuracy and visual correspondence
with reality than the ground truth images.

1. INTRODUCTION

Hyperspectral data consists of a collection of scene radiance
arranged in a spatial-spectral datacube. It conveys much more
spectral information than the RGB color space and other multis-
pectral data, holding pixels as high-dimensional vectors com-
prising measurements from hundreds of adjacent narrowband
channels (Signoroni et al., 2019). This datacube provides
the necessary information to discern a wide range of physical
phenomena, including mineral type, atmospheric temperature
structure, crop health, and cancer cell development (Puschell,
2000). The previous fact determines the multiple applications in
scientific and industrial sectors for this kind of data. Biomedi-
cine, food quality, agriculture, and cultural heritage represent
only a few of these utilization fields (Signoroni et al., 2019).
Within the last decades, hyperspectral imaging systems have
been mainly developed by a range of private enterprises or by
government institutions.
The instruments in the first group enable users to collect sensor
data anywhere at any time. They are built with advanced tech-
nology and own the ability to acquire images with high spatial
and spectral resolution. These sensors are easy to handle and
can be coupled to an Unmanned Aerial Vehicle (UAV) for meas-
uring above small to middle-sized landscapes.
Regarding the government-subsidized missions, they have been
first launched into space at the start of the millennium. Since
then, state-associated institutions have been planning several
hyperspectral imagers. Among the most emblematic European
missions is CHRIS, which was the prime instrument of the
Proba-1 spacecraft launched on the 22 October 2001. This

sensor setup aims to explore the capabilities of imaging spectro-
meters on agile small satellite platforms (ESA, 2020a). Another
representative satellite spectrometer is constituted by the En-
vironmental Mapping and Analysis Program (EnMAP), which
strives to monitor and characterize the earth’s environment on
a global scale. Its start date was last year, and its operational
period is 5 years (DLR, 2018). Furthermore, other missions
such as PRISMA (ESA, 2020b) and the planned HyspIRI (Hy-
perspectral Infrared Imager) (NASA/JPL, 2020) are going to
be fully operational within the upcoming years, providing large
amounts of reliable and up-to-date data of earth’s surface and
their interaction with the atmosphere.
In remote sensing, the analysis of hyperspectral imagery con-
stitutes a powerful instrument for solving the task of land cover
classification. This relevant activity provides the background
information necessary to make informed decisions. The prime
knowledge essential to guarantee crop yields represents an il-
lustration of the mentioned required information. The timely
detection of water-related stresses increases the chances of a
successful crop. These strains are noticeable within variations
in photosynthetic pigments leading to yellowish tint in crops,
which is efficiently captured by spectrometers due to the in-
creased reflectance of red wavelength (Khan et al., 2018).
Due to the relevance of these decisions, it is beneficial to
provide the means to swiftly and automatically generate land
cover information instead of waiting for the preparation of the
ground truth. These days it is possible to adapt the calculations
of the classification process to use Graphics Processing Units
(GPUs) (Wuttke et al., 2018). This adaptation enables more
rapid processing during classification. Hardware resources
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should be tightly coupled with performant algorithms to resolve
the complexity of the classification problem more efficiently.
In this paper, a method for labeling hyperspectral data to clas-
sify unseen datasets through CNNs is proposed. The initial
stage, the segmentation, loosens the rigid structure of the im-
age to encourage class separability and simplify the upcoming
phases. The two-step clustering takes advantage of the class
separability in the data to generate a sharp classification. Fi-
nally, a CNN model is trained to classify new datasets. The
capability of this approach is demonstrated for the task of land
cover classification on two benchmark datasets.

2. RELATED WORK

With the aim of generating an image of classified land cover,
multiple research works have been published within the last few
years. The current section describes scientific research closely
related to each building block of the proposed method.

2.1 Segmentation

The first stage, the segmentation, describes the process of par-
titioning an image into segments or groups to simplify the im-
age representation into more meaningful and easier to analyze
objects (Shapiro, Stockman, 2001). This step is applied to a
hyperspectral datacube. For this task, the work of (Wuttke et
al., 2018) was considered due to the fact that it employs an ad-
apted version of the SLIC algorithm, where the spectral simil-
arity measured by the Euclidean distance has been effectively
replaced by the Spectral Angle Mapper (SAM). The decision
of employing a superpixel-based method is attributed to the
fact that these are among the most successful segmentation ap-
proaches available (Achanta et al., 2012).
In their paper (Achanta et al., 2012), the authors deal with the
necessary characteristics, which an algorithm must accomplish
to be considered functional. They perform an empirical com-
parison between the five state-of-the-art superpixel algorithms
concentrating on their ability to adhere to image boundaries,
speed, memory efficiency, and their impact on segmentation
performance. They found out that the SLIC outperforms the ex-
isting superpixel methods in nearly every respect. The previous
fact constitutes the deciding factor for integrating this algorithm
into the current approach.

2.2 Clustering

The feature space is an important term to consider when clus-
tering hyperspectral data. It is defined as an imaginary room
which limits are determined by the range of the hyperspectral
bands (Puschell, 2000). For the task of hyperspectral cluster-
ing, which aims grouping objects together that are close in this
feature space, several techniques have been successfully ap-
plied. One of them is constituted by the Hierarchical meth-
ods, which have relevancy within a variety of remote sensing
applications (Muñoz-Marı́ et al., 2012). They cluster multi-
dimensional pixels by iteratively grouping them in accordance
with a similarity measure. The grouping is executed bottom-up
by aggregating pixels (Ward, 1963) or top-down through iterat-
ive partitioning (Kashef, Kamel, 2009). The similarity between
samples is determined using a similarity function, which most
commonly uses the Euclidean or cosine distance (Muñoz-Marı́
et al., 2012). After having performed the clustering process, a
description of the input data can be generated as a hierarchical
tree, mostly known as dendrogram, which is subsequently stud-
ied to determine the required partition level.

Another interesting concept exploited in remote sensing is
defined by the Soft Classification (SC) techniques. These are
characterized by the utilization of soft computing paradigms
such as Fuzzy Logic (FL), Artificial Neural Networks (ANN),
and genetic algorithms. Their advantage is the provision of
more flexibility by exploiting tolerance and uncertainty of real
life phenomena (Choodarathnakara et al., 2012). One key
method within this group is represented by the Fuzzy C-Means
(FCM) algorithm. It is characterized by clustering each data
point to some degree specified by a membership grade, which
models the level of uncertainty or Fuzzyness contained within
each individual data point (Bezdek, 1981). This technique is
particularly relevant when dealing with data points, which are
very close to each other in a particular domain (Choodarath-
nakara et al., 2012) .

2.3 Classification

The final step is the classification of hyperspectral imagery.
Most of the currently developed hyperspectral classifiers use
CNNs because, compared with traditional classification meth-
ods, deep-learning-based classifiers have great potential to ob-
tain high classification performance when facing complex in-
puts (Ghamisi et al., 2018).
An interesting work is presented by (Kumar Roy et al., 2019),
where the authors designed a Hybrid Spectral Convolutional
Neural Network (HybridSN) for hyperspectral image classifica-
tion. They perceived that most published works were based on
two dimensional (2D) CNNs even though the classification per-
formance highly depends on both spatial and spectral informa-
tion. Their algorithm is based on a spatial-spectral three dimen-
sional (3D) CNN followed by a spatial 2D CNN. The 3D CNN
eases the joint spatial-spectral feature representation from a pile
of spectral bands while the 2D CNN learns more abstract rep-
resentations at spatial level. This configuration allows hybrid
CNNs to reduce model complexity compared to 3D CNN alone.
Their satisfactory results are compared with the state-of-the-art
handcrafted as well as end-to-end deep learning based methods.
Another work using Deep Learning applied to hyperspectral
analysis is presented by (Hu et al., 2015), where the authors
used deep convolutional neural networks (DCNN) to directly
classify hyperspectral imagery in the spectral domain. Their
work resulted in classification outcomes which can perform bet-
ter than Support Vector Machine (SVM) classifiers.

3. METHODOLOGY

This section describes the followed steps during each phase of
the proposed method. The approach starts with the segmenta-
tion, goes further with the clustering, and lastly, the CNN based
classification takes place.

3.1 Segmentation

This phase takes the hyperspectral datacube and results in a set
of superpixels containing their respective mean spectral signa-
ture. This mean signature is calculated considering each in-
dividual signature of pixels contained in a superpixel. This
phase pursues three purposes: the dissolution of the rigid two-
dimensional image structure, the elimination of redundancies
and the complexity reduction of the upcoming stages. To
achieve these goals, the SLIC algorithm has been used (Achanta
et al., 2012). Taking as input a desired number of approxim-
ately equally-sized superpixels K, it performs a local cluster-
ing of pixels in a five dimensional (5D) space defined by the L,
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a and b values of the CIELAB (Commission Internationale de
l’Eclairage) color space and the spatial coordinates xy on the
image. In order for the algorithm to operate in the 5D space, a
distance measure considering superpixel’s size is introduced. It
enforces color similarity as well as pixel proximity in this 5D
room, ensuring that the expected cluster sizes and their spatial
extent are approximately equal (Achanta et al., 2010). The dis-
tance function together with its components is shown in Equa-
tion 3.

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2 (1)

ds =
√

(xj − xi)2 + (yj − yi)2 (2)

D =

√(
dc
m

)2

+
(
ds
S

)2

(3)

In Equation 3, dc and ds are the Euclidean distances of the
color and spatial components respectively. The values xi, yi
and xj , yj represent two pair of pixel coordinates located within
the search area of the algorithm. The compactness of the result-
ing superpixels is controlled by the value of m.
The presented color distance measure cannot be meaningfully
applied to hyperspectral data because this data contains RGB
space information and many more channels to be considered.
Due to this fact, an adaptation of the color space distance is ne-
cessary (Wuttke et al., 2018). This adoption considers the spec-
tral signature of each pixel of the image to compute the Spectral
Angle (SA) between cluster center and actual pixel. It is writ-
ten as a function of the scalar product and the multiplication of
the L2-norms of the corresponding spectral vectors. Equation 4
depicts the previous formulation.

dsa(a,b) = arccos

(
〈a, b〉
‖a‖2‖b‖2

)
(4)

After obtaining the SA, a replacement in the formulation of the
color distance takes place. For the purpose of segmenting spec-
tral pixels, the adapted signature-based distance is expressed in
Equation 5.

D′ =

√(
dsa
m

)2

+
(
ds
S

)2

(5)

Additionally to this formulation, the value of the used parameter
m has been treated as an adjustable constant which ensures reg-
ular superpixels form and, most importantly, a high capability
of the superpixels to adhere to image boundaries (Achanta et
al., 2012).
After performing the segmentation, a supervised validation pro-
cess takes place. This validation is realized by a visual evalu-
ation of the generated superpixels considering their form, and
how well they adhere to pixel boundaries.

3.2 Clustering

The second phase deals with the methods utilized to group sim-
ilar superpixels, and assign them labels. The upcoming sections
describe in detail the two employed techniques.

3.2.1 Hierarchical At first, the Hierarchical Agglomerat-
ive Clustering (HAC) in its bottom-up version is used. This
method has been selected over the originally proposed bisecting
k-means (BKM) because it does not need the apriori definition
of the desired number of clusters and it works pretty well on
remote sensing data (Muñoz-Marı́ et al., 2012). Additionally, it
possesses fast runtimes for small up to medium-sized datasets
and its implementation is clear to follow. It begins by creating
a clustering multilevel hierarchy out of the superpixels, where
clusters at one level are part of clusters defined at the next level
(MathWorks, 2020b). This agglomeration occurs in the feature
space. For the correct functioning of this method, the three fol-
lowing phases are recognized:

Similarity Measurement This step is in charge of finding the
similarity between every pair of superpixels in the dataset. The
distances between superpixels are computed considering three
different metrics. First, SAM is utilized whose formulation is
based on Equation 4. Afterwards, the Euclidean and the co-
sine distance metrics were evaluated. They have been selected
because they represent frequently used metrics for the classi-
fication of multi- and hyperspectral data (Wuttke, 2018). Their
respective formulations can be seen in Equations 6 and 7.

deu(a,b) =

√√√√ n∑
i=1

(ai − bi)2 (6)

dcos(a,b) = 1− a · b√
(a · a)(b · b)

(7)

In Equation 6, n represents the number of hyperspectral bands.

Linkage This phase groups the superpixels into a binary hier-
archical cluster tree. Pairs of superpixels that are in close prox-
imity are linked using the distance information created during
Similarity Measurement. As superpixels are paired into bin-
ary clusters, the newly formed clusters are grouped into lar-
ger ones until the hierarchical tree is completed (MathWorks,
2020b). Two linkage functions have been used in combination
with the generated similarity. The first is the average linkage
in which, for each pair of clusters, the distance of two clusters
is calculated as the average of the distances of each element
of the cluster with each element of the other cluster. Then,
it merges the clusters together to minimize the maximum dis-
tance between the clusters (Manning et al., 2008). The second
function is the ward linkage in which for each cluster an er-
ror function is defined. This error function is the average Root
Mean Squared (RMS) distance of each data point in a cluster to
cluster’s center of gravity (Ward, 1963).
During this process, the SAM distance was used together with
the average linkage. Moreover, the Euclidean distance used
ward, and the Cosine also employed the average function.

Groupping This step determines where exactly the hierarch-
ical tree will be cut to generate clusters. The branches at the
bottom of the hierarchy have been pruned off and all the super-
pixels below each cut has been assigned to a single cluster. The
branching off has been executed visualizing the marked divi-
sions in the data by using a dendrogram diagram which will be
presented in Chapter 6. The respective clusters boundaries have
been found by observing the vertical separations between each
binary level of the hierarchical tree.
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At this point, the validation of the HAC result is executed.
This process was done by visually comparing the RGB im-
age with the corresponding generated one. The corresponding
ground truth images did not offer a comparison frame for a dir-
ect association. They possess too few labeled samples, and the
labeled forms do not correspond with reality. Additionally, in
the case of the second dataset, the definition of the classes as-
phalt, gravel, bitumen, and bricks are too application-specific,
and their crisp separation using clustering is a challenging topic
of further investigation.

3.2.2 Fuzzy The phenomenon of class overlapping is wide-
spread in practice in different engineering fields, and it repres-
ents one of the toughest problems to solve in classification. It
happens when objects belonging to different classes possess
very similar characteristics. These elements reside in over-
lapping regions within the feature space and are often local-
ized near to class boundaries, which leads to misclassification
(Xiong et al., 2010).
This hurdle represents a well-known challenge when dealing
with remote sensing data. In the present study, both used data-
sets experienced this effect, leading the team to find the best-
fitting answer to solve this problem. The familiy of the Fuzzy
Clustering algorithms has been chosen to deal with this hurdle.
This category was considered because it represents an effect-
ive technique used in remote sensing which incorporates col-
lateral data easily so that similar land cover can be well clas-
sified (Choodarathnakara et al., 2012). The used algorithm is
FCM, which groups data points distributed in a multidimen-
sional space into a specific number of clusters (MathWorks,
2020a).
After applying this method, a validation process was executed.
This validation was realized by a visual inspection considering
a crisp partition of the seeked classes.

3.3 Classification

The current section describes the classification phase involving
the training, validation and prediction tasks of a CNN model.
This stage aims the semantic classification of unseen pixels of
a hyperspectral datacube. For this purpose, an initial CNN ar-
chitecture was realized considering the method developed by
(Hu et al., 2015). The fact that led this study to look upon the
cited work was the idea to treat each spectral pixel as an image.
In their work, the authors remark that each hyperspectral pixel
sample can be handled as a 2D image whose height is equal to
1, as audio inputs are treated in speech recognition. Therefore,
the size of the input layer is 1 × nd, where nd represents the
number of bands. The previous leads to the concept of 1D CNN
(Hu et al., 2015).
The initial CNN architecture has been progresively optimized
considering an iterative adaptation process. During this period,
it is aimed to keep the model as simple as possible. Several
hyperparameters of the model were slightly variated and tested,
executing test runs to evaluate the impact of these changes on
network performance. Furthermore, the developed model was
continually controlled against overfitting, which was determ-
ined by the presence of a validation set during training. The
final developed CNN architecture is shown in Figure 1.
In Figure 1, the parameters n1 to n6 represent the output shape

at each layer and they are specific to each dataset. Their respect-
ive values are presented in Chaper 6.
The upcoming training section reveals the hyperparameters
tuned during this phase. Subsequently, the validation section
describes the employed techniques to ensure verification dur-
ing and after training. Finally, the prediction section describes

Figure 1. Final CNN architecture for both datasets.

the procedure to predict each spectral pixel from the unseen
datacube.

3.3.1 Training The parameters used during model training
were the Categorical Crossentropy loss function, the Adam op-
timizer, a batch size of 128, 30 to 100 epochs, and a learning
rate of 0.001.

3.3.2 Validation The validation has been executed both
during and after the training phase. For this purpose, a valid-
ation and a test split were respectively prepared using the input
datacube.

3.3.3 Prediction This phase involves the class prediction of
each unseen spectral pixel. To define a quality assessment, a
difference image between the labels and the predictions was
computed. This calculation considers the approach developed
by (Wang et al., 2004), which is based on the degradation of
structural image information. This method is based on the
Structural Similarity (SSIM), which is a decimal value between
[−1, 1] used to measure the similarity between two images.
This allows to perceive the discrepancies between each map,
delineating possible deficiencies of the CNN model.

4. DATASETS

This section describes the characteristics of each used dataset.

4.1 Greding

The first benchmark dataset is known as Greding and was ac-
quired by researchers at the Fraunhofer IOSB in July 2014. It
depicts a portion of the central region of the Greding village
in the southwest of Germany. It was collected using an aisaE-
AGLE II airborne sensor. The dataset is composed of 127 bands
covering the electromagnetic spectrum from 390 to 990 nano-
meters. Its extension is of 670×606 pixels, with a spatial resol-
ution of 0.5 meters. The ground truth contains six classes with
127 688 labeled samples (Gross et al., 2019).

4.2 Pavia University

The second data collection is the Pavia University scene, ac-
quired by the German Aerospace Centre (DLR) within the
scope of the HySens project (Mater, 2014). Its geograph-
ical target was the Engineering School of the University of
Pavia in Italy. The used sensor was the ROSIS-03, creating a
datacube composed of 103 spectral bands covering spectrum
values from 430 to 860 nanometers. The image has an exten-
sion of 640 × 340 pixels, in which each of them has a spa-
tial resolution of 1.3 meters. The ground truth data consists of
nine classes with a total of 42 776 labeled samples (Graña et al.,
2020).
The selection of these sets was done considering a suitable class
separability and the respective observation of landscape scenes.
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5. EXPERIMENTAL SETUP

This section explains the experimental runs and the resources
used during each step. The runs are based on each phase de-
scribed in Chapter 3. The run configurations are described as it
follows:

1. Segmentation of the Greding datacube with the consecut-
ive application of the clustering techniques explained in
Chapter 3.2.

2. Using the generated labeled image, the CNN model trains,
and generates a classification map out of the prediction of
unseen data.

3. Making use of the labeled and predicted maps, the differ-
ence image is computed.

4. The same procedure is executed with the Pavia University
datacube.

For the implementation of the segmentation stage, the Python
programming language, in its version 3.6.9, has been used. The
clustering phase uses the MATLAB R2019b and R2020a imple-
mentations of the HAC and FCM algorithms respectively. The
machine learning framework TensorFlow (Abadi et al., 2015)
is used for the CNN based classification step. Ultimately, the
scikit-image (van der Walt et al., 2014) implementation of the
SSIM based algorithm is used to calculate the divergence im-
age. The mentioned software resources were used with an Intel
Core i7-6700 processor and 32-GB RAM.

6. RESULTS AND DISCUSSION

In this section, the description of the outcomes obtained by ap-
plying the current approach is presented. Each upcoming sec-
tion describes the corresponding stage in detail.

6.0.1 Segmentation First, the results obtained for Greding
are described. Subsequently, the description of the segmenta-
tion results for the second dataset takes place.

Greding As a preprocessing action, the dataset have been
normalized in order for the observations to ensure more effi-
ciency during computation. The employed minimum-maximum
normalization is formulated in Equation 8.

X ′ =
X −min(X)

max(X)−min(X)
(8)

In Equation 8, X ′ represents the original dataset after normal-
ization (Grus, 2015). For this dataset, approximately 4% of its
total pixels number was selected as the desired number of su-
perpixels K. This represents an amount of 16 214 superpixels
which provide an optimal oversegmentation level for the up-
coming clustering step. The used primary distance metric was
SAM and the compactness parameter m was determined to be
0.175. A visualization of the segmentation results using two
values of K is seen in Figure 2.

Pavia University For this dataset, the parameter K was set to
8 296 which also represents 4% of its number of pixels. This
value also defined the most adequate oversegmentation quote.
The primary distance metric was also SAM and m = 0.175.
The segmentation results can be perceived in Figure 3.

(a) (b) (c)

Figure 2. Visualization of different segmentation levels for
Greding. (a) shows a section of the RGB image, (b) depicts the
result with 1% and (c) with 4% of the total number of image

pixels.

(a) (b) (c)

Figure 3. Visualization of the Pavia University segmentation. (a)
depicts a RGB image section, (b) illustrates the segmentation
result with 1% and (c) with 4% of the total number of pixels.

6.0.2 Clustering During this phase, the described cluster-
ing techniques are extensively used to automatically generate a
labeled image. First, the results obtained for Greding are de-
scribed.

Greding The clustering step begins with Section 3.2.1. First,
the 16 214 superpixels, together with their respective mean
spectrum, are taken as input for the linkage computation. At
this step, the Euclidean distance metric is used because it resul-
ted in being the best performing metric after numerous exper-
imental runs. At the same time, the used linkage function was
ward.
After distance computation, a dendrogram was generated, and
analyzed to determine the optimal value for sectioning the hier-
archical tree. A value of 5.605 was used to divide the mentioned
tree in 6 parts, which corresponds to the total number of targeted
clusters. A visualization after sectioning is shown in Figure 4.

Figure 4. Grouped links during hierarchical tree analysis.

After clusters division at dendrogram level, the next step was to
used the mentioned sectioning value to generate the clusters. A
visualization of the preliminary created classes is seen in Figure
5.
In Figure 5 (b), the class buildings (1 on the colorbar) is com-
posed of well-distinguished buildings and shadows. To be in
accordance with the number of classes contained in the ground
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(a) (b)

Figure 5. Preliminary labeled image for Greding after
hierarchical tree division.

truth, the natural separation of these two elements is not con-
sidered and represents a topic of further investigation. At this
point, the algorithm could not identify buildings still contained
in the streets class (4 on the colorbar). This error is accredited to
the fact that streets and buildings represent high reflectant bod-
ies and the recorded data confirms very similar radiance values.
This problem has been described in Section 3.2.2 and it is re-
solved employing the FCM algorithm.
To observe the overlapping level of the buildings and streets
data, Figure 6 shows the superpixels distribution in feature
space.

(a) (b)

Figure 6. Buildings-streets superpixels in feature space.

Figure 6 shows that a clear separation of the superpixels can-
not be distinguished and they are pretty close to each other. To
compute the FCM clustering, different overlapping levels were
tested to determine the value ensuring a distinct class separa-
tion. The studied overlap range was [1.10− 1.45], where 1.187
was the selected optimal value. This value was chosen after an
experimental iterative process and it is used to classify each su-
perpixel. Another important parameter to consider is the num-
ber of desired clusters. It can be inferred that the input number
of clusters would be 2 (for buildings and streets) but a num-
ber of 4 clusters was required. This quantity yielded the best
results while separating both classes. The results of the fuzzy
classification is shown in Figure 7.

(a) (b)

Figure 7. Buildings-streets superpixels after classification.

Figure 7 shows a representation of the clustered superpixels
where each red point represents an ambiguous or fuzzy super-
pixel. The average maximum membership value (Ave. Max.)
provides a quantitative description of the overlap. The value
0.950 indicates crisp clusters with low overlap level.

The classes were, in a further processing step, merged together
considering only the superpixels that corresponded to buildings
and streets depicted on the original RGB image. It can be said
that this merging phase was executed in a supervised manner.
The next step was the combination of the HAC and FCM res-
ults. The generated labeled image is visualized in Figure 8.

(a) (b)

Figure 8. RGB and labeled image visualization. (a) shows the
Greding scene and (b) the automatically generated image.

In Figure 8, note how some pixels are still identified as streets
even though they in reality belong to the buildings class. This
is attributed to the fact that these pixels are part of superpixels
with maximum membership values below 0.6. This means that
they experienced a more fuzzy classification and can either be-
long to the buildings class or to the streets one. This fuzzyness
in the data points reveals how similar they are in the feature
space so that they can adopt 2 different states.

Pavia University For this dataset, the clustering step follows
the same sequence described with Greding. First, the linkage
computation with 8 296 superpixels was executed. The Euc-
lidean distance metric as well as the ward algorithm were also
employed. The dendrogram inspection resulted in a value of
5.2 as the distance to section the hierarchical tree into 7 parts.
Figure 9 shows a visualization of the grouped links.

Figure 9. Grouped links depicting the number of clusters.

The next step used the separation value for clusters generation.
An illustration of the preliminary created clusters is seen in Fig-
ure 10.
As seen in Figure 10 (b), 7 classes were generated because this
amount represents an optimal level for clustering most of the
classes. It is also seen that there is no distinction between streets
and buildings. This challenge was again solved using FCM. The
unprocessed superpixels are shown in Figure 11.
Figure 11 evidences that there are no built groups that can be
properly identified. To find this separation in the data, different
overlapping levels were also evaluated. The studied range was
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(a) (b)

Figure 10. Preliminary labeled image for Pavia University after
hierarchical tree partition.

(a) (b)

Figure 11. Buildings-streets superpixels in feature space.

[1.10− 1.5], selecting an overlapping value of 1.3. Similarly to
Greding, a number of 4 desired clusters was required to perform
the classification. The results are shown in Figure 12.

(a) (b)

Figure 12. Buildings-streets superpixels after classification.

As seen in Figure 12, an average maximum membership value
of 0.891 indicates low overlap.
After merging corresponding superpixels together, the combin-
ation of the two clustering results took place. The labeled image
is visualized in Figure 13.

6.0.3 Classification Finally, the outcome of the previous
phase is utilized to train the CNN model for predicting labels.
The description of this step also follows the datasets sequence.

Greding The Greding datacube has been taken to generate
the data splits for the learning phase. Three subsets have been
prepared, defined by the training, validation and test splits.
Their data proportion was 50%, 25% and 25% respectively.
After preprocessing, the definition of the n model parameters
takes place. These values were determined after building the
model, and using the summary TensorFlow functionality. The
values for this dataset are: n1 = 127, n2 = 114, n3 = 101,
n4 = 33, n5 = 2 112, and n6 = 6.

(a) (b)

Figure 13. Resulting labeled image. (a) shows the Pavia
University scene and (b) the generated labeled image.

During training, 100 epochs have been sufficient in order for
the model to learn relevant features for the classification. Dur-
ing each epoch, the model used the validation split to continu-
ously evaluate the loss and the accuracy as primary model met-
rics. After having trained, the model learned with an overall ac-
curacy of 90%, an adequate accuracy level for the goals of the
current classification. Additionally, a final divergence factor of
0.011, between training and validation accuracy, determines a
moderate overfitting level.
The processing pipeline continues with the model evaluation.
For that, the test split was used. The result is the model having
a test loss and accuracy of 0.141 and 0.893 respectively. These
obtained metrics evidence how well the model performs on un-
seen data.
Next, the prediction of each pixel contained in the mentioned
test set was executed. For each unseen pixel, the model out-
puted a mean prediction certainty of 90% that each pixel be-
longs to a certain class. To quantify the divergence level
between the labeled and the predicted map, the difference im-
age was computed and it is shown in Figure 14. The SSIM value
was also calculated during this process. A value of 0.982 con-
firms that there is no significant difference between the images
and that they are close to the perfect match represented by a
value of 1.0.
Figure 14 depicts the distribution of each compared pixel
around the scene. The colorbar shows both the regions experi-
encing more discrepancy (intensive red) and the areas having no
difference at all (intensive blue). To rely on a quantitative meas-
ure of quality, a SSIM threshold of 0.9 has been defined. The
quantity of pixels laying under this threshold is 10 465 and the
rest (395 555) represents pixels with larger SSIMs. This means
that more than 95% of the pixels have been correctly classified.

Pavia University Similarly to Greding, three splits with the
same data proportion have been created.
The model’s output parameters possessed the following values:
n1 = 103, n2 = 90, n3 = 77, n4 = 25, n5 = 1 600, and
n6 = 9.
The training phase required 30 epochs for the classifier to learn.
The model learned with an overall accuracy of 82%, a suitable
level for the goals of the classification. A final divergence factor
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Figure 14. Greding difference image.

of 6.3−3, between training and validation accuracy, determines,
to a certain extent, a low overfitting level.
The next step is the model evaluation. The obtained test loss
and accuracy are 0.485 and 0.807 respectively. As these met-
rics evidence, the model do perform well on the test dataset.
During the prediction of each new pixel, the model outcomes
a 82% of certainty that each pixel belongs to its corresponding
class.
The difference image and the SSIM value were correspondingly
computed. The image is presented in Figure 15. The calcu-
lated SSIM of 0.973 confirms that there are no major differences
between the compared images.

Figure 15. Pavia University difference image.

Figure 15 shows the distribution of each pixel around the scene.
The quantitative quality measure is also defined by the threshold
of 0.9. The amount of pixels laying under this limit is 10 539,
and the rest (196 861) have larger SSIMs. The previous evid-
ences that more than 94% of the pixels have been correctly clas-
sified.

7. CONCLUSION

The main goal of the presented study was the creation of an un-
supervised method to automatically label hyperspectral pixels
with the aim of using them as labels for CNN classification.
The method combines well-established computer vision tech-
niques such as segmentation, clustering and deep learning to
materialize a processing pipeline for land cover classification.
The segmentation stage outcomed an adequate number of spec-
tral superpixels which was crucial for the computation perform-
ance of the upcoming steps. The HAC step could properly infer
the hierarchy contained within the superpixels and outputted
well-separated land cover classes where boundaries were un-
ambiguous. Within this clustering frame, FCM was in charge
of making the distinction between very similar classes living in
the feature space. It outputted satisfactory classification results
considering the well-known difficulty of separating overlapping
classes. At this point, it is indispensabel to further investig-
ate this problem making use of alternative approaches such as
ANNs (Choodarathnakara et al., 2012). At the final stage, the
CNN was in charge of learning hyperspectral features to be re-
usable and able to classify unseen datasets with a high level of
accuracy.
In conclusion, the current approach successfully combined
three different machine learning techniques into one al-
gorithmic processing chain to efficiently automate the compu-
tation of a land cover classification. This approach removed the
labelling costs, investing the gained time in activities requiring
valuable human intervention such as class overlapping problem
solving or CNN optimization. This method was also well-suited
to recognize similarity patterns between objects better than the
human eye could do. Finally, its modular nature and flexib-
ility provides the chance of integrating other methods into it,
adapting each stage to specific needs. An illustration would be
the usage of ANNs within the clustering stage without the need
of modifying the other phases. Similarly, in the classification
stage, the classifier could be easily changed by a different al-
gorithm, for instance, by a SVM. Cost reduction, proficiency,
and versatility are the traits of the presented study.
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Süsstrunk, S., 2012. SLIC Superpixels Compared to State-
of-the-Art Superpixel Methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(11), 2274-2282.

Bezdek, J., 1981. Pattern Recognition with Fuzzy Objective
Function Algorithms. Plenum Press.

Choodarathnakara, A., Ashok, T., Shivaprakash, K., Patil, C.,
2012. Soft Classification Techniques for RS Data. IJCSET,
2(11), 1468-1471.

DLR, 2018. Enmap. https://www.enmap.org/.

ESA, 2020a. Chris. https://earth.esa.int/web/guest/missions/esa-
operational-eo-missions/proba/instruments/chris.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-407-2020 | © Authors 2020. CC BY 4.0 License.

 
414



ESA, 2020b. Prisma (hyperspectral precursor and application
mission). https://directory.eoportal.org/web/eoportal/satellite-
missions/.

Ghamisi, P., Maggiori, E., Li, S., Souza, R., Tarabalka, Y.,
Moser, G., De Giorgi, A., Fang, L., Chen, Y., Chi, M., Serpico,
S., Benediktsson, J., 2018. New Frontiers in Spectral-Spatial
Hyperspectral Image Classification. IEEE Geoscience and Re-
mote Sensing Magazine.

Graña, M., Veganzons, M., Ayerdi, B., 2020. Hyperspectral re-
mote sensing scenes. http://www.ehu.eus/ccwintco/index.php.

Gross, W., Tuia, D., Soergel, U., Middelmann, W., 2019. Non-
linear feature normalization for hyperspectral domain adapta-
tion and mitigation of nonlinear effects. IEEE Transactions on
Geoscience and Remote Sensing, 57(8), 5975–5990.

Grus, J., 2015. Data Science from Scratch. O’Reilly.

Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015. Deep Con-
volutional Neural Networks for Hyperspectral Image Classific-
ation. Journal of Sensors, 2015(258619), 12.

Kashef, R., Kamel, M., 2009. Enhanced bisecting k-means
clustering using intermediate cooperation. Pattern Recognition,
42(11), 22572569.

Khan, M., Khan, H., Yousaf, A., Khurshid, K., Abbas, A., 2018.
Modern Trends in HyperspectralImage Analysis: A Review.
IEEE Access.

Kumar Roy, S., Krishna, G., Dubey, S., Chaudhuri, B., 2019.
HybridSN: Exploring 3D-2D CNN FeatureHierarchy for Hy-
perspectral Image Classification. IEEE Geoscience and Remote
Sensing Letters.

Manning, C., Raghavan, P., Schütze, H., 2008. Introduction to
Information Retrieval. Cambridge University Press. Chapter 17.
Hierarchical clustering.

Mater, J., 2014. The hysens project. https://www.hysens.eu/.

MathWorks, 2020a. Fuzzy clustering.
https://de.mathworks.com/help/fuzzy/fuzzy-clustering.html.

MathWorks, 2020b. Introduction to hierarchical clus-
tering. https://de.mathworks.com/help/stats/hierarchical-
clustering.html.

Muñoz-Marı́, J., Tuia, D., Camps-Valls, G., 2012. Semisuper-
vised Classification of Remote Sensing Images With Active
Queries. IEEE Transactions on Geoscience and Remote Sens-
ing, 50(10).

NASA/JPL, 2020. Hyspiri mission study. ht-
tps://hyspiri.jpl.nasa.gov/.

Puschell, J., 2000. Hyperspectral imagers for current and fu-
ture missions. Proceedings SPIE 4041, Visual Information Pro-
cessing IX.

Shapiro, L., Stockman, G., 2001. Computer Vision. Prentice
Hall.

Signoroni, A., Savardi, M., Baronio, A., Benini, S., 2019. Deep
Learning Meets Hyperspectral Image Analysis: A Multidiscip-
linary Review. Journal of Imaging.

van der Walt, S., Schönberger, J. L., Nunez-Iglesias,
J., Boulogne, F., Warner, J. D., Yager, N., Gouillart,
E., Yu, T., the scikit-image contributors, 2014. scikit-
image: image processing in Python. PeerJ, 2, e453. ht-
tps://doi.org/10.7717/peerj.453.

Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E., 2004. Image
Quality Assessment: From Error Visibility to Structural Simil-
arity. IEEE Transactions on Image Processing.

Ward, J., 1963. Hierarchical grouping to optimize an object-
ive function. Journal of the American Statistical Association,
58(301), 236244.

Wuttke, S., 2018. Aktives Lernen mit Segmentierung und Clus-
terbildung zur bildbasierten Klassifikation der Landbedeckung.
PhD thesis, Technische Universität München.

Wuttke, S., Middelmann, W., Stilla, U., 2018. Improving the
Efficiency of Land Cover Classification by Combining Seg-
mentation, Hierarchical Clustering, and Active Learning. IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing.

Xiong, H., Wu, J., Liu, L., 2010. Classification with Class Over-
lapping: A Systematic Study. International Conference on E-
Business Intelligence.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-407-2020 | © Authors 2020. CC BY 4.0 License.

 
415




