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ABSTRACT 

Subsurface agriculture tile lines can greatly impact plant phenotypic characteristics through spatial variation of soil 
moisture, plant nutrient, and plant rooting depth. Therefore, location of subsurface tile lines plays a critical role in 
supporting the above ground plant phentoyping and needs to be considered in plant phenotyping analysis. Unnamed 
Aerial Systems (UAS) imagery together with deep learning methods can develop strong relations between the 
vegetation spectra and soil parameters. 
Here, we consider the capability of deep convolutional neural networks (CNN) to evaluate crop quality based on 
biomass production derived from soil moisture differences by using UAS-based multispectral imagery over soybean 
breeding fields. Results are still being evaluated, with particular attention to the temporal and spatial resolution of the 
data required to apply our approach. 

 
1. INTRODUCTION 

Recent advances in sensor technology have created 
great opportunities for UAS (Unnamed Aerial 
Systems) as a low-cost platform to derive high 
throughput and precise quantitative phenotyping 
datasets (Araus et al., 2018). Regarding precision 
farming, UAS have the ability to efficiently capture 
high spectral, temporal and spatial resolution data 
(Holman et al., 2016). These is the greatest advantages 
on contrast with satellite or airborne platforms where 
the temporal resolution can not be adjusted so easy and 
the spatial resolution is bigger. In terms of 
multispectral LiDAR (Light Detection and Ranging), 
the lower cost of the photogrammetry plays the key 
factor as well as the lighter weight of the sensor to be 
onboard. Another vital characteristic in the suitability 
of close-range remote sensing for vegetation analysis 
consisting on non-destructive and non-invasive 
procedures, providing similar accuracy to destructive 
field methods (Herrero-Huerta et al., 2018).  
UAS and powerful image analysis algorithms allow 
plant breeders to measure phenotypic variability; thus, 
soil properties can be estimated with effective image 
pre-processing. One significant property is the soil 
moisture, that is clearly affected by subsurface tile 
lines (tile drainage pipes). These tile lines are 
extensively installed in agriculture fields of the 
Midwestern U.S. to remove excessive surface water 
and are made of clay, concrete or plastic pipes. Tile 
drainage also facilitate early access to the farmland for 
conducting timely field operations. 
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Deep learning methods perform more advanced 
statistical techniques to phenotyping qualitative states 
than establishing regression algorithms of using 
vegetation index for this purpose (Gholizadeh and 
Rahman, 2015). This means that they have the 
representational capacity to learn complex models of 
plant phenotypes (Ubbens and Stavess, 2017). 
However, the robustness depends on the quantity and 
quality of the training data. Of the deep learning 
algorithms, CNN is often employed to find patterns 
and where the input data covers local connectedness; 
such as spatially local features in images (Ubbens and 
Stavess, 2017). 
Thereby, the goal of this study is to generate an 
approach to assess the crop quality measured by 
biomass production derived from soil moisture 
variations based on the tile line location in the field 
from UAS imagery by CNN. 

2. MATERIALS AND METHODS 

The equipment used for the data acquisition is listed 
below:  

 A four narrowband passive sensor: Parrot 
Sequoia Multispectral sensor with the 
incorporated Sunshine sensor to 
radiometrically calibrate the images. The 
camera specifications are defined in Table 1. 
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Table 1. Technical specifications of the 
Parrot Sequoia sensor. 

Parameter Value 
Spectral range 350-2500 nm 
Shooting time 0.1 s 
Spectral resolution 1 nm 
Field of view 25º 

 
The filter wavelengths are particularly 
adjusted for the evaluation of the specific 
behavior of the vegetation, avoiding areas of 
atmospheric absorption. Table 2 shows the 
channel specifications. 

Table 2. Channel specifications of the Parrot 
Sequoia sensor. 

Channel Band  
[nm] 

Bandwidth 
[nm] 

1 Green 550 40 
2 Red 660 40 
3 Red-edge 735 10 

4 Near 
infrared 790 40 

 
 A GNSS device, Leica 1200; it contains a 

RTK dual frequency receiver, a geodetic GPS 
L2C and a double dual-frequency antenna 
with L2C. By this device, the Ground Control 
Points (GCP) are geo-referenced. 

 A general purpose GER 1500 
spectroradiometer to acquire spectral 
measurements of the calibration targets. The 
main technical specifications of the 
spectroradiometer are shown in Table 3. 

Table 3. Technical specifications of the 
FieldSpec 3 ADS Spectroradiometer. 

Parameter Value 
Spectral range 350-2500 nm 
Shooting time 0.1 s 
Spectral resolution 1 nm 
Field of view 25º 

 The senseFly eBee, designed as a fixed wing 
UAS for application in precision agriculture 
with incorporated GPS, IMU and 
magnetometer. It has a weight of 700 g and a 
payload of 150 g. The multispectral camera is 
controlled by the senseFly eBee autopilot 
during the flight (Figure 1). 

AGB samples were destructively conducted the day 
after the UAS flight, by cutting soybean stems from 
1m of row length in each of two neighboring rows per 
plot, roughly 2 cm above the ground surface. These 
samples were processed in a drying oven at 60.0 °C 
until weights stabilized, weighed and pondered by 
plot.  

 

Figure 1. UAS platform: senseFly eBee 

The ground truth data of the location of the tile lines 
was performed by (Rahmani et Schulze, 2020). Aerial 
imagery was used to manually locate tile lines based 
on the spectral differences of wet and dry soil: soil 
over tile lines dries faster than in between tiles; this 
causes a higher reflectance in visible and near infrared 
regions of the electromagnetic spectrum. Next, the tile 
probe method was carried out to conduct ground 
validation of the mapped tile lines. Since the diameter 
of the pipes are 10 cm, the ground was probed every 7 
cm. After sensing the identification of the tile lines, 
locations were recorded with real time kinematic GPS. 
On average, tile lines were predicted within ±1.23 m 
spatial accuracy (Rahmani et Schulze, 2020). 
As a methodology for the photogrammetric 
processing, the Pix4Dmapper software package 
(Pix4D SA, Lausanne, Switzerland) was employed, 
obtained georeferenced and calibrated orthomosaics 
per band. Next, a deep learning image analysis was 
carried out by Convolutional Neural Networks using 
Tensor Flow and Learn Tool library, coded in Python. 
CNN architecture is designed by layers with discrete 
trainable parameter settings. The output of each layer 
was passed through some non-linear activations such 
as Sigmoid or Relu functions. Finally, it outputs a 
score that represents the semantic class label of the 
input data (Namin et al., 2018). 
In our application, we fed the CNN with pixel values 
per band of multispectral imagery, weighted by the 
Euclidean distance to the underground tiles. The 
‘label’ data used to train the network is the biomass 
measured per plot, directly related with the crop 
quality. The testing rate is 20%. The goal is to quantify 
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the crop quality affected by soil moisture differences 
based on the tile line location within the study field. 

3. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The experiment was performed at the Agronomy 
Center for Research and Education (ACRE) during 
2018 growing season in West-Lafayette (Indiana, 
USA). The study area has an extension of 282.4*109.5 
m2 consisting on 900 plots with 6 rows each. The flight 
was performed via autonomous flying mode on July 

23rd (DAP 61), with a 75% overlap and an altitude of 
65 m. 6 GCPs were measured with GNSS, using 
RTKNAVI software (Tajasu, 2009). The tiles in the 
study site are of concert type. Figure 1 shows the study 
field with tile lines overlaid in red.  
The multispectral data captured is illustrated in Figure 
2. These maps are correctly georeferenced with the 
GCP measurements and the calibrated reflectance 
values (%) are checked against field targets measured 
with the spectroradiometer (Herrero-Huerta et al., 
2019).  
 

Figure 2. Study field with tile lines overlap in red. 

Figure 3. Spectral maps in reflectance (%) by band (DL (500047.3, 4480849.5); UR (500364.0, 4480968.0); EPSG 
32616): green (a), red (b), red edge (c) and near infrared (d). 

 

One issue to overcame is that deep learning models are 
susceptible to overfitting in the case of small datasets 

or large datasets with an insufficient level of variation 
(Krizheysky et al., 2012). 
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Figure 4 represents the model loss and figure 5 the 
scatter plots of the predicted against the measured 
biomass per plot (g/m2). The correlation coefficient by 
a linear is 0.46. 

Figure 4. Model loss. 

 
 

Figure 5. Scatter plots of the predicted against the 
measured biomass per plot (g/m2). 

 
To robustly analysis the model, different statistic 
metrics were calculated, such as the coefficient of 
determination (R2), the root mean square error 
(RMSE), the relative RMSE (RRMSE), the average 
systematic error (ASE) and the mean percent standard 
error (MPSE). These metrics were subtracted as 
follow: 

= ( )                (1) 

= 100                   (2) 

= 100 ( )         (3) = 100 |( ) |      (4) 

 
where xr

i is the roughness of the ith plot, xAGB
i is 

the measured AGB within the ith plot,  is the 
mean of the measured AGB, and n is the number 
of plots in the testing dataset. 
Table 4 shows reached error metrics. At this point, 
results are still being evaluated with particular 
attention to the temporal and spatial resolution of the 
data required to apply our approach. 

4. OUTLOOK 

In this study, we generate an approach to model the 
biomass considering the soil moisture differences 
from UAS-based multispectral imagery over soybean 
breeding fields by Convolutional Neural Networks. It 
gives a significant indication that soil moisture needs 
to be considered in crop genetic analysis. At the same 
time, the potential of UAS in phenotyping analysis is 
clearly proven, specifically the power of high spatial, 
temporal and spectral imagery as low-cost and reliable 
data. 
Additionally, more comprehensive studies are 
necessary, including studies at different dates during 
the growing season for soybean. A comparison among 
different species of crop and quantifying how the tile 
lines affect the biomass production will be address as 
a future work. 
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Table 1. Validation statistics of regression models for predicted AGB versus actual AGB (significance at 
0.05 level (2-tailed)). The best model is highlighted in boldface. 

Model  R2 RMSE 
(g/m2) 

RRMSE 
(%) 

ASE 
(%) 

MPSE 
(%) 

Linear 
Power 
Exponential 
Polynomial 
Logarithmic 

y=2640.2x-2900.2 
y=222.5x24.5 

y=3E-07E16.2x 

y=2700x2-1984x-215.4 
y=2900.4ln(x)+198.6 

0.46 
0.39 
0.41 
0.44 
0.36 

28.2 
32.6 
32.6 
29.4 
33.2 

16.7 
25.7 
24.1 
19.7 
26.7 

5.9 
1.8 
-1.6 
9.5 
10.1 

 
12.7 
16.7 
15.3 
14.4 
16.4 
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