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ABSTRACT:

To address the issue of the information redundancy for hyperspectral remote sensing image, this paper presents a novel ensemble
algorithm that merges Random Projection (RP) and Bias-corrected Fuzzy C-means (BCFCM) algorithm. Since RP matrix has the
abilities of preserving information nicely, it can be used to reduce the dimension of the image. To make full advantage of
neighborhood relationship, BCFCM algorithm is improved to segment the low-dimensional image, in which Euclidean distances are
retained to define the similarity between hyperspectral remote sensing image and the low-dimensional image. Finally, BCFCM
algorithm is used to segment the fuzzy membership matrix of the ensemble algorithm. The proposed algorithm is evaluated by real
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral remote sensing images. Segmentation performance is
estimated by kappa coefficient and overall accuracy. Experimental results demonstrate that the proposed algorithm can achieve
higher segmentation accuracy at a lower computational cost than that from conventional algorithms.

1. INTRODUCTION

Due to the consecutive and massive spectral bands information,
it is a large challenge to segment hyperspectral remote sensing
image. For this reason, dimensionality reduction for
hyperspectral remote sensing image has been playing an
increasingly  significant role in hyperspectral image
segmentation (Xia, Chanussot, Du, He, 2017, Li, Prasad, Fowler,
2013, Shabna, Ganesan, 2014).

However, it is difficult to represent the data structure in which
data points are very sparse in high dimension space and has a
problem of curse of dimensionality (Pedram, Chen, Zhu, 2017).
Thereby, dimensionality reduction is an effective way to
segment hyperspectral remote sensing image. There are kinds of
techniques for dimensionality reduction. The most prevalent one
of them is Principal Component Analysis (PCA) algorithm
(Tipping, Bishop, 2010, Vidal, Ma, Sastry, 2012), which needs
to calculate the largest variance direction of data. Nevertheless,
such algorithm has heavy computational burden due to
eigenvalue decomposition and lack in any data structural
guarantee. Inspired by the well-known Johnson-Lindenstrauss
(JL) lemma (Johnson, 1984, Frankl, Machara, 1988, Matousek,
2008), Random Projection (RP) has a great impact on providing
feasible mapping. The Euclidean distances of the data points
between the original high-dimensional space and the low-
dimensional space reduced by RP are approximately preserved
(Achlioptas, 2001, Li, Hastie, Church, 2006, Jeremy, Martin,
2002, Achlioptas, 2003, Bezdek, Ye, Popescu, 2016). Moreover,
RP is more computational tractability for hyperspectral remote
sensing image than the PCA and does not introduce a significant
image distortion (Bingham, Mannila, 2001). However, RP is
extremely unstable, that is, different projections will produce
different segmentation results (Fern, Brodley, 2003, Avogadri,
Valentini, 2009). To this end, Popescu et al. (2015) proposed a
simple algorithm based on RP and Fuzzy C-Means (FCM) for
big data clustering (RPFCM). RP is exploited in the algorithm
to generate multiple subsets into a low-dimensional space from
the original data.

Hyperspectral image segmentation algorithm generally is a
prerequisite for kinds of hyperspectral remote sensing image
classification. At present, one of the commonly used
segmentation algorithms for hyperspectral remote sensing
image is Fuzzy C-Means (FCM) algorithm (Hichri, Ammour,
Alajlan, Bazi, 2014), which is an extension of the classical
clustering algorithm. When it comes to the FCM algorithm,
although it is suitable for segmenting most hyperspectral remote
sensing images within an acceptable accuracy range, it is very
sensitive to noise and cannot accurately identify the boundary of
the area. To improve segmentation accuracy, Xu et al. (1997)
proposed a new and adaptive FCM technique based on
compensating for intensity heterogeneities. However, it is
extremely sensitive to a certain number of salt and pepper
noises (Pham, Prince, 1999). Taking into account the noises and
intensity heterogeneities, Miyamoto et al. (1997) proposed a
novel FCM technique by adding a regularization term in its
objective function that is a coefficient of the regularization to
indicate the fuzziness of the objective function. Still, there are
many misclassified pixels in the algorithm. To solving the above
problems, Ahmed et al. (2002) proposed a novel Bias-Corrected
FCM (BCFCM) algorithm, which modifies the objective
function of the standard FCM algorithm by combining the
centre vector and its immediate neighbourhood vectors. The
BCFCM algorithm is one of the few available methods for
hyperspectral remote sensing image segmentation that naturally
integrates spatial and spectral information.

In this paper, a segmentation ensemble algorithm based on RP
and BCFCM algorithm is proposed. Firstly, RP is used to find
an effective representation of spectral information and data
structure in a low-dimensional space. Secondly, the BCFCM
algorithm is designed to segment the low-dimensional image,
which assigns degrees of membership in several clusters to each
vector. Then, fuzzy clustering algorithm is exploited to segment
the fuzzy membership matrix of the ensemble algorithm. This
algorithm is a new framework and BCFCM uses Euclidean
distance guaranteed by RP algorithm. Finally, the experimental
results show that the proposed algorithm can be effectively
applied to hyperspectral remote sensing image segmentation.
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This paper is organized as follows. In section 2, the proposed
algorithm is described. The experimental results and discussion
is given in section 3. Moreover, section 4 describes conclusions.

2. THE PROPOSED ALGORITHM
2.1 RANDOM PROJECTION

Hyperspectral remote sensing image contains hundreds of bands,
which has the ability to detect more detailed and accurate
surface information. Accordingly, the high-dimensional image
requires longer computing time (Tosun, 2005, Li, Bioucasdias,
Plaza, 2012, Borges, Bioucas-Dias, Marcal, 2011). To solve this
problem, as a dimensionality reduction method, RP can be used
to reduce the dimension of hyperspectral remote sensing image.
Meanwhile, RP will find an efficient the sparse structure of
hyperspectral remote sensing image in a low-dimensional space
and does not dependent on the number of bands of hyperspectral
remote sensing image. Another advantage of RP is that it will
preserve the projecting Euclidean distance according to the JL
lemma. It means that if original data are projected onto a
randomly selected subspace using RP matrix, then the Euclidean
distances of the data points between high-dimensional and low-
dimensional space are approximately preserved. Therefore, RP
can reduce the dimension of hyperspectral remote sensing
image with greatly shorten time cost and without introducing
significant distortions.

Given a hyperspectral remote sensing image X = {x;: i = 1, ...,
n}, where i is the index of vectors, x; is a hyperspectral vector
with d dimensions and » is the number of vectors. Then a kxd
RP matrix R is created, whose columns have unit lengths. The
matrix projects each hyperspectral vector into k-dimensional
space (k << d). RP is computationally very simple with order O
(dkn).

For given constants ¢ and f > 0, and the dimension £ will be
selected such that,

4+2
kzko ::W_gﬁ}/?,]ogn (1)
where &= projection accuracy
[ = projection success rate
n = vector number
The value of ko is depending on &, § and n. For a k-dimensional
matrix R, the choice of its entries is one of the interests for
hyperspectral remote sensing image segmentation. Generally,
the entries of R can be considered as random variables
following a Gaussian distribution (Fang, Zhang, Wei, 2008),
although it can also be replaced by another much simpler
distribution. Based on this consideration, the Achlioptas’s
matrix is defined to further efficaciously represent the sparsity
of hyperspectral remote sensing image. Suppose that R is a kxd
RP matrix [rg] ixa. Its entry rg can be calculated from the below
distribution

1 p=1/6
ry =310 p=2/3 @
-1 p=1/6

In fact, since rgs take zero with the maximum probability,
Achlioptas’s result means further computational savings. Using
the Achlioptas’s matrices R, the high-dimensional data X can be
projected into a low-dimensional subspace, that is,

y-RX 3)

Consequently, the low-dimensional image ¥ = {y:: i = 1, ..., n},
where y; is a vector with £ dimensions. With probability at least
1-n, for any distinct rows y; andy» in ¥,

(1- S)Hxl - x2H2 <[y, -y, H2 <(1+ g)Hx1 - x2H2 (C))
where ||| is Euclidean distance.

The projection distance is preserved in relatively fix range
based on Eq. (4) and RP matrix is not depend on hyperspectral
remote sensing image.

This paper measures the similarity by the Euclidean distance,
which is a widely used weigh of similarity of data vectors. It is
optimal, in the sense of dimensionality reduction, to make the
low-dimensional image as large as possible retaining original
hyperspectral remote sensing image information.

2.2 BIAS-CORRECTED
ALGORITHM

FUZZY C-MEANS

When the number of samples of each class has a large
difference in hyperspectral image, the segmentation accuracy of
the traditional FCM algorithm is not ideal for the segmentation,
which will cause an incorrect partition. In order to make full use
of the reserved similarity in a low-dimensional space and
overcome salt and pepper noises, BCFCM algorithm is used in
this paper. The objective function of the BCFCM algorithm is
defined by adding the bias field and neighborhood relationship
term into that of FCM algorithm, and the optimal segmentation
can be obtained by minimizing the objective function iteratively.
Provided that the low-dimensional image ¥ under RP algorithm
can be divided into ¢ classes. The objective function of the
BCFCM algorithm can be expressed as,

JBCFCM(U’VaH) = zzu;jm H Yi—v; _hi ”2
i1 j=1
(5)

+£ZZ%”’( Sy, —v,~h, |2J

R i=l j=1 y-eN;

H = bias field

V = cluster center vectors set
N; = neighbors set

o =neighbors coefficient

m = weighted exponent

U = fuzzy membership matrix
u;; = fuzzy membership

ujj satisfies,

where

Zu[j=1,and0<u,.j<1,i=1,...,n. (6)
=

For hyperspectral remote sensing image segmentation, the
deterministic segmentation results, z = {zi, ..., zi, ..., za}, Where
zi € {1, ..., ¢}, can be obtained by defuzzification of
membership degree in the decision-making process. That is, the
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vector y; belongs to the cluster ; with the largest fuzzy
membership degree,

z, =arg ,I:rll,?.),{c u; ™
By utilizing Lagrange multiplier (i = 1, ..., n), the
minimization of the objective function Jpcrem in Eq. (5) is
performed under the restriction condition of Eq. (6). Then
Lagrange equation is constructed and its partial derivative
equals to zero, for m > 1

n C

Zzug/m || Ji _v/ _hi ||2

i=1 j=1

a n C
o —Zﬁf(zug/ -1 ®)
i=1 J

ij i =1

o P

R i=l j=1 y,.€eN;

.
Uy =y

=0

After solving u;", it becomes

« 1

1
a Z m-1
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In exactly the same way,

Z”ijm (yi _hi)""Ni Z(yr _hr)
i=1

R y.eN;
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i=1
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(11)

2.3 ENSEMBLE ALGORITHM

As different RP may result in different clustering solutions, it is
attractive to design the cluster ensemble framework with RP for
improved and robust clustering performance. So a more
efficient cluster ensemble algorithm for multiple RP and
BCFCM is proposed. The realizing procedure of the proposed
algorithm is described as follows.

Input: a hyperspectral remote sensing image X.

Output: the clear segmentation results z.

Initialization: ¢, 8, c, a, m, e, k, W, Tyyax, U, V, H.

Step 1. RP procedure.
Form R < Eq. (2), and generate ¥ < Eq. (3).
Step 2. BCFCM procedure.
While iter® < Tpa¢
Update U" < Eq. (9), V" < Eq. (10), H" < Eq. (11)
Calculate Jacrem™ < Eq. (5)

If ||u® - uyV|| < e or iter® > Tyyay then

break

else

1)

iter( iter” + 1

end if
end while
Step 3. Ensemble algorithm procedure.
Forw<Ww
Run Step 1 and Step 2.
end for
Get fuzzy membership matrix U"

Step 4. Apply BCFCM algorithm to obtain the segmentation
result z < Eq. (7).

3. EXPERIMENTAL RESULTS AND
DISCUSSION

To demonstrate the feasibility and validity of the proposed
algorithm, the experiments are performed by using real
hyperspectral remote sensing image from Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) scanner. This
data set covers 224 bands in the place of Salinas Valley,
California, USA, with the wavelengths from 0.2 to 2.4pum and
10nm spectral resolution, as well as 3.7m spatial resolution.
After discarding the 20 water absorption bands ([104-108],
[150-163], 220) and correcting the atmospheric and calibrating
radiation, sub-blocks with 204 bands are intercepted as
experimental data. Figure 1 shows two false colour composite
images, which use an approximate RGB image of three-band
combination of hyperspectral remote sensing image, namely
band 29 (0.64pm), band 20 (0.55um) and band 12 (0.47pm)
express approximately the R, G, B components, respectively.
Among them, the scopes of sub-blocks are 128x128 vectors.
Additionally, in application, the points in the image that do not
contain any information are regarded as the background and do
not allow them to participate in the segmentation. Therefore, the
number of valid data points in the experimental image is 12464
and 1940, respectively.

(a) Experimental image 1 (b) Experimental image 2
Figure 1. False color composite images.
For the experimental image, the number of vectors 7 is equal to
16384, which is 128 times 128. And the dimension d of the
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vector is 204, which makes the BCFCM algorithm require more
calculation time and larger storage space. To this end, RP,
dimensionality reduction algorithm, is required before
performing the segmentation algorithm in this paper. For
improving the projection success possibility of 1-n7, the value
of S is supposed 0.5. In the range where ¢ is greater than 0 and
less than 1.5, when & is 1, the maximum value of the
denominator £/2-¢%/3 is 6 in Eq. (1). At this time, the value of ko
is 292, which is not desirable because it is larger than the
original dimension. However, when ¢ is greater than 1.5, the
value of ko is negative. Then the low dimension k can be
selected by any integer smaller than the original dimension d.
Therefore, this paper takes ¢ as 2, and & is equal to three, which
is sufficient for subsequent hyperspectral remote sensing image
segmentation.

After RP operation, BCFCM algorithm is used to segment the
low-dimensional image. Weighting exponent m must be selected
between 2 and 4.5 by experimental means. When the value of m
is high, the cluster membership is inclined to be softened and
the segmentation result tends to be blurred. Therefore, the
weighting exponent m takes 2. The convergence threshold e
takes 0.0002. The number of ensembles takes 30, and
maximally iterative number Tmax takes 100 in the experiments.
Finally, the values of class ¢ are supposed 6 and 4 for the
images shown in Figure 1. (a) and (b), respectively.

In order to prove the superiority of the proposed algorithm,
BCFCM algorithm without dimensionality reduction (d-
BCFCM), BCFCM algorithm after PCA (PCA-BCFCM) and
RPFCM algorithm (Popescu, 2015) are used as comparison
algorithms to segment hyperspectral remote sensing image,
respectively. Figure 2. (al) and (b1) are two standard images of
experimental images. Figure 2. (a2) and (b2) show the
segmentation results from the proposed algorithm. Figure 2. (a3)
and (b3), Figure 2. (a4) and (b4), as well as Figure 2. (a5) and
(b5) show the segmentation results from d-BCFCM algorithm,
PCA-BCFCM algorithm and RPFCM algorithm, respectively.
Through the above experiments, the segmentation results from
the proposed algorithm is superior to that from the other three
algorithms, which can prove the efficiency and accuracy of the
proposed algorithm for hyperspectral remote sensing image
segmentation. For the first experiment, grapes-untrained and
vineyard-untrained on the bottom left corner in Figure 2. (a2)
can be roughly segmented by the proposed algorithm. Although
RPBCFCM algorithm still cannot accurately subdivide these
two classes, it is much better than the method without RP,
because RP can maintain the data topology. In addition, for the
second experiment, although the variance of the bare land in the
right side in Figure 1. (b) is large and the number of data on the
upper left corner in Figure 1. (b) is relatively small, the
proposed algorithm can still obtain better segmentation results.
However, the segmentation results are not ideal; there are
misclassified vectors and leaking classified vectors due to the
noise effect on the BCFCM algorithm.

Confusion matrix shows the accuracy of the segmentation result
by comparing a segmentation result with ground truth
information. According to Table 1, kappa coefficients and
overall accuracies for the four algorithms are calculated. From
Table 1, the value of the accuracy for RP-BCFCM algorithm is
higher than those for others. In particular, the comparison of
these accuracies shows that the overall accuracy of Figure 1. (b)
is nearly 49.33% better than that from the PCA-BCFCM
algorithm. From accuracy perspective, because spectral
information and data structure are considered, the proposed
algorithm is advisable for hyperspectral remote sensing image.
Thus, the proposed algorithm can achieve a better segmentation
result.

(a3) &-BCFCM
P

\\ ¥
'

(a4) PCA-BCFCM

(b3) d-BCFCM

(b4) PCA-BCFCM

(a5) RPFCM
Figure 2. Comparison of segmentation results.

(b5) RPFCM

Table 1 Accuracy evaluation of segmentation results.

. accuracy algorithms
Figure 0" RPBCFCM Blé(li/éiw B Cg_CM RPFCM
Figure kappa 84.28 16.51 4438 59.35
1. (a) OA 87.51 28.15 51.75 66.92
Figure  kappa 70.59 12.67 34.70 44.75
1. (b) OA 79.02 29.69 49.12 59.02

4. CONCLUSIONS

This paper presents a new segmentation algorithm based
on RP and BCFCM algorithm for hyperspectral remote sensing
image segmentation. By analyzing the segmentation
performance, the proposed algorithm is the best algorithm for
segmentation of hyperspectral remote sensing image comparing
with other algorithms. Besides, in consideration of
computational cost, RP constitutes a promising avenue for low-
cost dimensionality reduction for hyperspectral remote sensing
image. However, there are still some problems, such as the
segmentation results will also be influenced by noises.
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