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ABSTRACT: 

The classification of hyperspectral image (HSI) with high spectral and spatial resolution represents an important and challenging task 
in image processing and remote sensing (RS) domains due to the problem of computational complexity and big dimensionality of the 
remote sensing images.  The spatial and spectral pixel characteristics have crucial significance for hyperspectral image classification 
and to take into account these two types of characteristics, various classification and feature extraction methods have been developed 
to improve spectral-spatial classification of remote sensing images for thematic mapping purposes such as agricultural mapping, urban 
mapping, emergency mapping in case of natural disasters... In recent years, mathematical morphology and deep learning (DL) have 
been recognized as prominent feature extraction techniques that led to remarkable spectral-spatial classification performances. Among 
them, Extended Multi-Attribute Profiles (EMAP) and Dense Convolutional Neural Network (DCNN) are considered as robust and 
powerful approaches such as the work in this paper is based on these two techniques for the feature extraction stage and used in two 
combined manners and constructing the EMAP-DCNN frame. The experiments were conducted on two popular datasets: “Indian 
Pines” and “Huston” hyperspectral datasets. Experimental results demonstrate that the two proposed approaches of the EMAP-DCNN 
frame denoted EMAP-DCNN 1, EMAP-DCNN 2  provide competitive performances compared with some state-of-the-art spectral-
spatial classification methods based on deep learning.

1. INTRODUCTION

In the last decades, with the rapid development of technology 
Remote Sensing data has become an essential source of spatial 
and land cover information. The various remote sensing images 
are applied to solve many problems in different fields as 
environment, urban planning, Agriculture, due to the very high 
spatial and spectral resolutions. But as this point is an advantage, 
it also gives rise to a limitation because it increases the 
correlation between adjacent bands and brings out a large amount 
of information redundancy [1], [2].  

To overcome these limitations, with the aim to improve the 
classification accuracy of remote sensing images, feature 
extraction, selection, and fusion techniques became an important 
tool for the classification process specifically for hyperspectral 
image classification. 

To achieve a powerful pixel-wise classification of hyperspectral 
imagery, different methods were developed. The first methods of 
HSI classification have focused on the utilization of the spectral 
signatures of HSIs for the classification task (e.g., neural 
networks [3], support vector machines (SVM) [4], logistic 
regression [5],[6]. In addition, some other classification 
approaches have based on effective feature extraction or 
dimension reduction techniques, such as principle component 
analysis (PCA)  [7] [8], independent component analysis (ICA) 
[9], [10], however, the classification results obtained by these 
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classifiers are not good enough since the spatial information isn’t 
taken into account.  

In recent years, spatial features have been demonstrated to be 
very useful in improving the representation of hyperspectral data 
and increasing the classification accuracies [11], [12]. In this 
context, many spectral-spatial classification frameworks have 
been proposed. According to the latest research works, the spatial 
information was added to the spectral features by applying spatial 
feature extraction techniques such as grey-level co-occurrence 
matrix (GLCM), Markov random field (MRF) [13], [14], 
morphological profiles (MP) [15], attributes profiles (AP) [16], 
extinction profiles (EP) [17],...etc.   

In the last decay, Deep Learning has become a growing trend in 
big data analysis and great breakthrough has been made with the 
approach in many computer vision tasks, e.g., image 
classification [18], [19], object detection [20], and natural 
language processing [21]. The deep learning approaches have 
attracted much attention for their potential as feature extraction, 
selection, and fusion techniques to classify HIS images and 
achieve good performance. In 2014, Yushi Chen first proposed a 
deep learning framework to merge spatial and spectral features 
[22]. The deep learning framework (SAE-LR) combined PCA 
with deep learning architecture then used Stacked Autoencoders 
(SAE) to obtain high-level features and fed into logistic 
regression classifier. SAE-LR had a large potential for HSI 
classification but it has a disadvantage in terms of its training 
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time. In the following year, Makantasis in [23] used a 
convolutional neural network (CNN), a deep supervised method 
for HSI classification. Recently, CNN has achieved big success 
in the remote sensing image processing field. In 2017, Gao et al. 
proposed a new variant of CNN, DenseNet [24] considered as a 
deep network structure based on Residual Net (ResNet) [25] and 
Google Inception [26]. DenseNet represents a more powerful 
version of ResNet, which can reduce the problem of gradients 
becoming zero such as the structure can effectively use features 
and enhancing their transfer between convolution layers. 
However, CNN has a disadvantage point that is the inaccurate 
boundary location problem, which leads to obtaining incomplete 
object shapes. Therefore, the representation capability of features 
from deep networks can be complemented with information 
captured with another type of spatial extractor [27]. 

In this paper, we investigate the classification of hyperspectral 
images based on the EMAP-DCNN framework, which is 
constructed by Extended Multi-Attribute Profiles (EMAP) for 
extracting spatial features and Dense-CNN (DCNN) for 
extraction high-level features and dimensionality reduction. The 
structure of the EMAP-DCNN framework is done in two 

manners, in the first version of the feature extraction framework 
(EMAP-DCNN-1), Extended Multi-Attribute Profiles (EMAP) 
was first performed. Then, a Dense Convolutional Neural 
Network (DCNN) was applied to extract high-level features from 
the EMAP output vector. Finally, the dense fully connected layer 
is fed into SVM or Softmax classifier. In the second version 
(EMAP-DCNN-2), EMAP spatial extractor was first performed 
and stacked with the original spectral features. Then, DCNN was 
applied to extract top spectral-spatial features. In the last step 
SVM or Softmax classifier was used for performing the 
classification process. 

 
2. PROPOSED METHODOLOGY 

In this section, we first provide an overview of the EMAP-
DCNN framework shows in Figure 1 (sub-section 2.1). The 
proposed methodology is presented on two different 
architectures to define feature extraction techniques which serve 
to perform a supervised classification. 

 

 

 

Figure 1. The General process of EMAP-DCNN Frame with the two approaches. 
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Our methodology is proposed in two approaches EMAP-DCNN-
1 and EMAP-DCNN-2. The extended multi-attribute profiles 
(EMAP) are used to extract the spatial features from the 
hyperspectral data and The Dense-CNN with batch 
normalization, rectified LU (ReLU) and dropout is developed to 
extract abstract and robust features. At the end of the framework, 
softmax or SVM classifiers are employed to produce the final 
classification map. Details of the proposed framework EMAP-
DCNN are discussed in sub-Section 2.2. 
 
2.1. Extended Multi-Attribute Profiles (EMAP) 
 
Extended Multi-Attribute Profiles (EMAP) are constructed by 
the concatenation of different Extended Attribute Profiles (EAP). 
EMAP has demonstrated a greater capability to extract the spatial 
information from the remote sensing images than a single EAP 
[13] such as EMAP is computed from remote sensing datasets 
with various attributes: a: area of the regions, d: length of the 
diagonal of the box bounding the region, i: a moment of inertia 
and s: standard deviation of the gray-level values of the pixels in 
the regions. The attributes a and d represent respectively "the area 
of the regions" and "the length of the diagonal of the box 
bounding the region", are growing attributes that are efficient and 
useful to realize a multilevel data analysis. On the other hand, the 
attribute i "moment of inertia" is a geometric attribute that 
measures the elongation of the regions and the attribute s 
"standard deviation" measures the homogeneity of the intensity 
values of the pixels belonging to each region in the image and 
brings information dependent on the spectral contrast of the 
pixels [16], [28]. 
 
Dalla Mura introduced Attribute Profiles (AP). APs present a 
multilevel characterization structure of an image f applying 
successively morphological attribute filters [16], [29]. Attribute 
Profiles were defined as the successive application of thinning 
and thickening transformations. This process is considered as a 
generalization of the opening and closing process employed for 
Morphological Profiles (MP) such that the reconstruction is 
implemented as attribute filters.  
Attribute filters operate on the connected components (i.e., 
regions of spatially connected pixels) that compose an image, 
according to a specific criterion evaluated on each connected 
component CC of the image f and associated with thickening and 
thinning transformations. However, the AP is defined as 
computing an attribute A for every connected component CC of 
an image f for a given reference value Ȝ. For each connected 
component Ci of the image, whether the attribute satisfies a 
predefined criterion, afterward the region remains unaffected; 
otherwise, it is set to the radiometric value of the adjacent region 
with the nearest value, so Ci can be merged to the adjacent 
connected component. When the region is merged to the adjacent 
region of a lower (or higher) grey level, the process achieved is a 
thinning (or a thickening) [28].  

An AP is a successive chain of attribute thinning and attribute 
thickening with considering a sequence of thresholds {Ȝ1, Ȝ2. . . 
,Ȝn} as follows: 

AP (f) = {��(f),…, �ଵ(f),f, �ଵ(f),…, ��(f)} (1) 

Such as φi and γi denote respectively the thickening and thinning 
transformations, with n attributes thickening (φT) and n attributes 
thinning (γT). Therefore, each pixel p of an image f can be 
configured and typified using the values resulting from the 
successive filtering operations. 

The concept of AP was extended to multispectral and 
hyperspectral images with the definition of Extended Attribute 
Profiles (EAP) where an EAP is computed by concatenating the 
APs considering the same attribute of the r principal components 
PCs, extracted from the original image [16]: 

EAP = {AP (PCଵ), AP (PCଶ),…, AP (PCr)} (2) 

Where PCi (1≤ i ≤ r) are the rth first principal components 
obtained after applying PCA for the original hyperspectral image. 
PCA uses performing attribute filtering on the rth first PCs in 
order to reduce computational complexity. 
 

For conclusion, EMAP presents the concatenation of the EAPs 
(EAPa, EAPd, EAPi, EAPs):  

EMAP = [ EAPa, EAPd, EAPi, EAPs ] (3) 
 
2.2. Dense Convolutional Neural Network (DCNN) 

Convolutional Neural Network (CNN) is a supervised deep 
learning method that presented a multilayer model that can be 
trained from a remote sensing image to the final classification 
map. The feature extraction (FE) system based on a typical CNN 
model consists of convolutional layers, activation layers, pooling 
layers, fully connected layer, and a classification layer. 

Dense Convolutional Network (DenseNet) considered as a new 
deep structure of CNN which represents a more powerful version 
of ResNet and can be used to exploit the potential of the network 
through feature reuse, yielding condensed models that are easy to 
train and highly parameter efficient [30].  To further enhance the 
information for throughout a traditional convolutional network, 
Huang and his collaborators [13] proposed a new network, called 
DenseNet (DCNN), such as in this network shortcut connections 
are employed to concatenate the input features with the output 
features instead of adding while others CNN architectures with L 
layers have L connections (one between each layer and its 
subsequent layer).  

Suppose that the CNN has L convolution layers, Xl is the output 
of the lth layer and Hl () represents the complex nonlinear 
transformation operations in the lth convolution layer. In the 
connected structure of the traditional CNN, the output of the (l-
1)th layer is the input of the lth layer as follow : 
 ��   �� ��−ଵ,     l  N  (4) 
 
In the CNN architectures, pooling layers increase the robustness 
of the learned features, change the spatial size of feature maps, 
resulting in the concatenation operation being unfeasible. To 
address this problem, Huang et al. [24] divided the network into 
multiple dense blocks, which do the dense connections in each 
block and add a pooling layer behind each block [31], as shown 
in Figure 2 and Figure 3. 

DenseNet connects each layer to every other layer in a feed 
forward manner, it means that DCNN acquires feature maps 
from all preceding layers as input for the next layer. DCNN uses 
an extremely densely-connected structure, with the feature map 
of the output of the zeroth to the (l-1)th layers acting as the input 
to the lth layer. The connected structure is formulated as: ��   �� �଴, �ଵ , …., ��−ଵ],   l  N  (5) 
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Figure 2. The general structure of a dense block [32]: BN-ReLu-Conv. 

Where [.] denotes the concatenation operator and ��() is a 
composite conventional layer (Conv layer) with the structure of 
BN-ReLU-Conv [32] constructed by: Batch Normalization (BN), 
Restricted LU (ReLU) and Conventional layer (Conv). Finally, 
input features and those generated by each Conv layer are 
concatenated as the output of the dense block, as shown in Figure 
3.  

In DCNN, only layers within each block are densely connected 
and constructed a local dense connectivity pattern (Figure 3). 
After each dense block (not the last one), convolutional layers are 
utilized for more compacting the extracted features, however, the 
non-dense connections between each block conduct the network 
to focus more on the high level features extracted by the last 
dense block for image classification. 

 

Figure 3. General flowchart of image classification based on DenseNet [24] 

In our paper, ��() is the composite function defined as four 
successive operations: batch normalization (BN) [33], ReLU, 
convolution a,nd dropout [29] as it’s shown in Figure 1. 
 
In the first step of DCNN for our methodology, a convolution is 
constructed from the EMAP features as the input of the EMAP-
DCNN 1 and input of joint EMAP features with the original 
hyperspectral image. Let �ܨ� the number of filters in layer l and �௜� is the ith input feature tensor; * is the convolution operator;  �௝�+ଵ and �௝�+ଵ are the jth  filter and bias in layer l+1, respectively, 

where the output �௝�+ଵ of the convolution operation is defined as 
follow:  
 �௝�+ଵ  ∑ �௜� �௜=ଵ �௝�+ଵ�௝�+ଵ      l  N  (6) 

  
The filter size in this layer is set to 1 ×1×N (N is the number of 
bands) and the 1 × 1 spatial size is set to exploit the EMAP 
features. 
 
Batch normalization used for constructing dense block is usually 
applied to a convolutional network before the activation function. 
It has the following main effects: 1) it helps to obtain faster 
learning since the learning rate can be increased compared to the 
non-batch-normalized version and 2) flexibility on mean and 
variance values for each dimension in every layer which 
increases the accuracy of the network [29]. 
 
BN is illustrated as [33]:   
 �̃�  �� −�ሺ��ሻ���ሺ��ሻ            l  N  (7) 

  
Where ��  denotes the lth layer's batch feature maps, ܧሺ��ሻ 
is the expectation of  �� , Similarly, ���ሺ��ሻ  is the variance of �� . The output �̃� is the normalization result of the input tensor. 
The BN results are convolved with 1 × 1 or 3 × 3 where BN is 

followed by a rectified linear unit [30] ReLU as the activation 
function.  The ReLU function is defined as:  
 �̂= max {0, Z} (8) 

  
Such as Z is the input tensor. 
To further address the overfi tting problem, we add a dropout 
operation after ReLU such as dropout sets the output generated 
by some neurons to zero with a specific probability.  
 
After the last dense block of the framework, an average pooling 
layer is used. The average of the output feature maps is calculated 
in this layer. The global average pooling layer contains a much 
smaller number of parameters than fully connected (FC) layers 
and can retain localization ability for a network. After the FC 
layer, a softmax layer or SVM is used to obtain the final 
classification result. 
 
It is efficient to consider two main problems in HIS classification: 
the over-fitting phenomenon caused by the large model scale 
with limited training data and the effective extraction for both 
spectral and spatial features. Dense networks (DCNN) and 
EMAP have several compelling advantages to alleviate the 
vanishing-gradient problem, strengthen feature propagation, 
encourage feature reuse, and reduce the number of parameters.  
 

 3. EXPERIMENTS RESULTS AND DISCUSSION 
 
In this section, we provide a detailed description of the 
Datasets, discuss the results of the experiment and validate the 
performance of the EMAP-DCNN framework.  
 
Two publicly hyperspectral datasets were utilized to verify the 
effectiveness of our EMAP-DCNN method, i.e., Indian Pines 
(IP) and the University of Houston (UH).  
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The IP dataset was gathered in 1992 by the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. The 
dataset covers an agricultural area in Northwest Indiana (Figure 
4). IP image consisting of 145×145 pixels and 224 spectral bands 
in the spectral range from 400 to 2500 nm. The spatial resolution 
is 20 m, and the ground reference map has 16 classes (Table 1).  
 
The Huston dataset (UH) was acquired by the compact airborne 
spectrographic imager over the University of Houston campus 
and the neighbouring urban area on June 23, 2012, and was 

distributed for the 2013 GRSS data fusion contest. The size of the 
data is 349 × 1905 pixels with a spatial resolution of 2.5m and 
consists of 144 spectral bands ranging from 0.38 to 1.05ȝm. The 
ground truth map contains 15 classes of interests. Figure 5 shows 
a color composite representation of the UH data and the 
corresponding ground truth data. Table 2 gives information about 
the number of total samples for different classes of interest. 
 

 

 

 

Figure 4. Indian Pines data description 

      

Figure 5. Huston data description: (Up) hyperspectral Huston image (Down) Ground truth data. 

Started by computing EMAP extractor, four attributes [(1) area 
of the regions (a); (2) diagonal of the box bounding the region 
(d); (3) moment of inertia (i ); and (4) standard deviation of the 
gray-level values of the pixels in the regions (s)] [16]. 

For the first hyperspectral data “Indian Pines” (IP), each EAP 
leads to 36_dimentional profiles (composed by four Aps of nine 
levels computed on the 4 PCs). The Ȝ values (threshold value) 
considered are the following: (1) Ȝa = [100 500 1000 5000], (2) 
Ȝd = [10 25 50 100], (3) Ȝi = [0.2 0.3 0.4 0.5], (4) Ȝs = [20 30 40 
50].  

Then, for the second hyperspectral data “Huston data”, each EAP 
leads to 44-dimensional profiles. The Ȝ values considered are the 
following:  (1) Ȝa = [100 500 1000 5000], (2) Ȝd = [10 25 50 100], 
(3) Ȝi = [0.1 0.15 0.2 0.25], (4) Ȝs = [15 20 25 30].  

Due to the high dimensionality of the generated attributes. We 
use DCNN as a feature extraction technique for extracting high-
level features and dimensionality reduction. 

 
 
 
 
 
 

Table 1. Ground reference classes of Indian Pines (IP) 
Class number Class name Total  Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean -mintill 2455 

12 Soybean-clean 593 

13 Wheat  205 

14 Woods  1265 

15 Building-grass-trees-drives  386 

16 Stone-steal-towers 93 
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Table 2. Ground reference classes of Huston data (UH) 
Class number Class name Total Samples 

1 Grass healthy 1251 

2 Grass stressed 1254 

3 
Grass 

synthetic 
697 

4 Tree 1244 

5 Soil 1242 

6 Water 325 

7 Residential 1268 

8 Commercial 1244 

9 Road 1252 

10 Highway 1227 

11 Railway 1235 

12 Parking lot 1 1233 

13 Parking lot 2 469 

14 Tennis court 428 

15 Running track 660 

 
We configured our DCNN as follows: We tested our network 
with patch sizes {5 × 5; 7 × 7; 9 × 9; 11 × 11} and found that the 
patch size of 7 ×7 for IP data and 9 × 9 for UH data were the most 
suitable to yield satisfactory performance.  
 
The DCNN used in our method is composed of two dense blocks, 
after the first step of convolution with 1 ×1 × N where 3 ×3 fi lters 
are adopted to exploit spectral-spatial features in each dense 
block. The 3× 3 convolution operation can address the spatial 
correlation of neighbouring pixels. 
 
In the training process, with the batch size of 32, where the initial 
learning rate was set to 0.0001 for IP data and 0.001 for UH data 
(for EMAP-DCNN1) and 0.001 for IP data and 0.01 for UH data 
(for EMAP-DCNN2). The best precision was reached within 40 
epochs represented the number of epochs used during the training 
stage for Indian Pines data and 80 epochs for Huston data (for 
EMAP-DCNN1), adding we used 80 epochs for IP data and 120 
epochs for UH data (for EMAP-DCNN2). In addition, the 
dropout rate is set to 0.5.  The average pooling layer is used with 
the kernel size 3 and the stride 2. The softmax classifier was 
retained for the final step of classification because of its better 
results than the SVM. 
 
All the training and testing results of the two approaches of the 
EMAP-DCNN framework were obtained on the same computer, 
with the configuration of 32 GB of memory, NVIDIA GeForce 
GTX 1060 3GB and Intel i7. The experiments are also tried on 
GPU configured on Google Colab with only 12GB of memory. 
 
In our experiments, overall accuracy (OA %), average accuracy 
(AA%), and the Kappa coefficient (K×100) were chosen to 
evaluate the classification performance of the methods. To 
provide a statistical evaluation, each experiment was repeated 
10 times, and the mean was reported. The results of the 
experiments are shown in Tables 3, 4, and in Figures 6, 7. 
 
 
 
 

Table 3. Classification accuracies of EMAP-DCNN 1. 
Data OA Kappa AA 

Indian Pines   99.75 99.53 99.49 

Huston 99.62 99.54 99.47 

 

Table 4. Classification accuracies of EMAP-DCNN 2. 
Data OA Kappa AA 

Indian Pines   99.86 99.74 99.69 

Huston 99.7 99.66 99.59 

EMAP-DCNN Frame is compared with different frameworks 
applied to the same datasets. In our experiment, we compared the 
proposed EMAP-DCNN framework to other deep-learning-
based methods (Table 5), that are, (M1) SAE-LR [22], (M2) 
CNN [24], (M3) 3D-CNN-LR [25], (M4) SSDC-DenseNet [34]. 
These methods were programmed by the authors during a long 
time of research work. The proposed approaches of EMAP-
DCNN are denoted MP1 and MP2.  
 

Table 5. Comparison of the overall classification accuracies  
Data M1 M2 M3 M4 MP1 MP2 

IP   95.30 95.96 97.20 99.53 99.75 99.86 

UH 93.80 90.83 96.77 98.96 99.62 99.7 

 

   

(M1) (M2) (M3) 

   
(M4) (MP1) (MP2) 

Figure 6. Classification maps for Indian Pines data. 

 

The objective of our work is to propose a new spectral-spatial 
framework based on mathematical morphology and deep 
learning model in order to increase the classification accuracies 
and robust classification maps with high level extracted features. 
We attend a high classification accuracy but still have a big 
running time. 
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(M1) 

 

(M2) 

 

(M3) 

 
(M4) 

 

(MP1) 

 

(MP2) 

Figure 7. Classification maps for Huston data. 

 

4. CONCLUSION 

In this letter, a new framework based on mathematical 
morphology and deep learning feature extractors for the 
hyperspectral data classification was proposed. The well-
designed DCNN was used to extract the discriminative features 
that led to good classification performance.  

The EMAP-DCNN with the two approaches EMAP-DCNN1 and 
EMAP-DCNN2 achieved 99.86% and 99.7% in terms of OA on 
Indian Pines and Houston datasets, respectively, when training 
rate is reduced from 0.01 until 0.0001. 

 In order to boost the classification accuracy, Extended Multi-
Attribute Profiles was combined with Dense-CNN and 
outperform a simple DCNN in terms of OA, AA, and Kappa 
coefficient. 

The results obtained by the proposed approaches of EMAP-
DCNN Frame on the two hyperspectral datasets demonstrated 
that the new deep CNN models have huge potential for accurate 
hyperspectral data classification and consequently EMAP-
DCNN Frame will also be applied for multispectral, UAV and 
LIDAR image classification as our future work and we will try to 
outperform the running times of our developed models, the work 
will also extend by using novel deep learning methods as 
Capsule-network. 
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