
FUSION OF LIDAR AND HYPERSPECTRAL DATA FOR SEMANTIC SEGMENTATION
OF FOREST TREE SPECIES

E. Tusa1,2,3 ∗, J. M. Monnet1, J. B. Barré1, M. Dalla Mura2,4, J. Chanussot2
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ABSTRACT:

Hyperspectral images (HI) and Light Detection and Ranging (LiDAR) provide high resolution radiometric and geometric information
for monitoring forests at individual tree crown (ITC) level. It has many important applications for sustainable forest management,
biodiversity assessment and healthy ecosystem preservation. However, the integration of different remote sensing modalities is a
challenging task for tree species classification due to different artifacts such as the lighting variability, the topographic effects and the
atmospheric conditions of the data acquisition. The characterization of ITC can benefit from the extraction and selection of robust
feature descriptors that solve these issues. This paper aims to investigate the integration of feature descriptors from HI and LiDAR
by using the intra-set and inter-set feature importance for the semantic segmentation of forest tree species. A fusion methodology is
proposed between high-density LiDAR data - (20 pulses m−2) and VNIR HI - (160 bands and 0.80m spatial resolution) acquired on
French temperate forests along an altitude gradient. The proposed scheme has three inputs: the field inventory information, the HI and
the LiDAR data. Our approach can be described in nine stages: polygon projection, non-overlapping pixel selection, vegetation and
shadow removal, LiDAR feature extraction, height mask, robust PCA (rPCA), feature reduction and classification. The overall accuracy
of tree species classification at pixel-level was 68.9% by using random forest (RF) classifier. Our approach showed that 74.0% of trees
were correctly assigned overall, by having conifer species such as Norway Spruce (Picea abies) with a producer’s accuracy of 97.4%.

1. INTRODUCTION

Spatial distribution of forest tree species has important benefits
for sustainable forest management (Ghosh et al., 2014). For in-
stance, scientists are able to study the functioning of forested
ecosystems by understanding variables associated to stress, dis-
ease patterns, invasive species spread and deforestation (Ghosh et
al., 2014, Lee et al., 2016). This information is very relevant to
establish useful exploitation policies of forests (Dalponte et al.,
2012). Conventional ecological survey methods of tree species
mapping require an exhaustive work that thrives in difficult sce-
narios, relies on small plot-level datasets and implies a significant
amount of time, manpower and economic resources (Ghosh et al.,
2014, Lee et al., 2015).

Several studies have highlighted the potential of spectral and spa-
tial resolution in remote sensing based tools for monitoring for-
est ecosystems. For instance, hyperspectral sensors extract radi-
ance information from objects or scenes lying on the Earth sur-
face (Bioucas-Dias et al., 2013) by covering the visible (V), near-
infrared (NIR), and shortwave infrared spectral bands in the range
from 300 to 2500 nm (Bioucas-Dias et al., 2012). LiDAR data
describe the scene using a point cloud that has explicit 3D coor-
dinates (x, y, z), intensity of the returns, return number, number
of returns, point classification, among other attributes (Vincent et
al., 2017). The advances in the integration of LiDAR and hyper-
spectral sensors make possible to identify tree species at pixel-
level with a high accuracy.

∗Corresponding author.

Data fusion is implemented at three levels: observation-level,
feature-level and decision-level (Tusa et al., 2020). Considering
that tree species identification is a remote sensing topic posed
as a supervised approach (Dalponte et al., 2019), recent studies
pursue to integrate HI and LiDAR data to improve the classifi-
cation (decision-level fusion). In (Matsuki et al., 2015), features
are extracted from the HI by applying principal component anal-
ysis (PCA) for reducing the redundancy within the bands (Liao
et al., 2017). In (Lee et al., 2016), the algorithm rPCA is ap-
plied for filtering the noise and for selecting relevant features.
This study demonstrated that rPCA improved the classification
of six tree species over PCA, with an overall accuracy of 61.0%
at tree-level. The algorithms support vector machines (SVM)
(Lee et al., 2016) and RF (Maschler et al., 2018, Anderson, 2018)
have been used for tree species classification with HI. Although
SVM performs superior for high dimensional features, it requires
a proper parameter-setting that can be time-consuming for large
datasets. Alternatively, RF can be a good choice for feature selec-
tion (feature-level fusion) and classification (Tusa et al., 2014).

The aim of this study is to integrate HI and LiDAR data for the
classification of four forest tree species. The matrix decompo-
sition of rPCA increases the feature representation, which can
be reduced by considering the intra-set and inter-set feature im-
portance. This work is divided as follows: section 2. describes
the study site and the data acquisition specifications, section 3.
presents the contributions based on PCA and rPCA, feature se-
lection and classification based on RF, section 4. discusses the
results of feature fusion for the classification and finally, section
5. corresponds to the conclusions and the work perspectives.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-487-2020 | © Authors 2020. CC BY 4.0 License.

 
487



2. STUDY SITE

The study area corresponds to the site of Chamrousse, located in
Belledonne massif, Northern Alps, France. Trees with a diameter
at breast height (DBH) over 7.5 cm were inventoried on seven
field plots: four of size of 50×50m2, two circular plots of 15m
radius, and a plot of 80 × 100 m2, which is part of a long-term
inventory dataset (Fuhr et al., 2017). The forest is dominated by
Norway spruce (Picea abies; 37.5%) and other conifers: silver fir
(Abies alba; 31.6%) and mountain pine (Pinus uncinata; 10.6%);
broadleaves species are mainly represented by European beech
(Fagus sylvatica; 15.2%).

For tree positions, slope, distance and azimut relatively to refer-
ence poles are recorded. Tree crown extensions were measured
during the summer 2018, with ruban tapes in the north, south,
east and west directions as the horizontal distance between the
trunk center and the vertical projection of the furthest live branch
along that direction. Tree positions in the Lambert 93 projected
coordinate system are then computed from the angular and dis-
tance measurements. As GNSS precision is around a few meters
under forest cover, trees positions are displayed over the LiDAR
canopy height model. In case of a significant shift, position of the
reference pole is adjusted by using the co-registration method de-
scribed in (Monnet and Mermin, 2014). The field data is summa-
rized in Table 1 by considering seven plots with 893 tree crowns.

The remote sensing data was collected between 21st and 23rd of
June 2018. LiDAR acquisition was carried by using a RIEGL
LMS Q780 sensor. The 3D point cloud has a mean pulse density
of 20 pulses m−2. The HI was collected by using a Hyspex
VNIR 1600 sensor. It has 160 bands with a spatial resolution of
0.80 m and a spectral resolution of 4.5 nm in a spectral range
between 400 and 1000 nm.

Level Field measurement Min. Max. Mean

Tree
DBH [cm] 7.5 104.5 26.2
Tree Height [m] 2.0 38.4 14.8
Crown area [m2] 0 161.9 23.3

Plot
Average DBH [cm] 16.3 31.2 25.8
Number of stems/ha 460 980 640
BA [m2/ha] 13.0 64.5 40.8

Table 1: Summary of the field measurements at tree- and plot-
level. Minimum (Min), Maximum (Max) and Mean are dis-
played. BA refers to basal area.

3. METHODOLOGY

The semantic segmentation workflow for forest tree species clas-
sification is presented in Figure 1. The proposed scheme has three
inputs: the field inventory information, the HI and the LiDAR
data. This approach comprises the following steps: polygon pro-
jection, non-overlapping pixel selection, spatial filtering, vege-
tation and shadow mask, LiDAR features, height mask, robust
PCA, feature reduction and classification.

3.1 Polygon projection

Each tree crown from the inventory is projected into the xy-plane
by fitting an ellipsoidal crown shape. Then, a HI pixel is asso-
ciated with a crown by verifying if the pixel center coordinate is
inside the crown polygon. The pixel center coordinate, (xc, yc),
is computed through equations (1)

xc = (2ci + 1)sf + x0

yc = y0 − (2ri + 1)sf
(1)

Figure 1: Semantic segmentation flowchart for forest tree species
classification by integrating HI and LiDAR data.

where (x0, y0) is the xy coordinates for the upper-left pixel in
the image, sf is the half of the spatial resolution of the image,
and (ri, ci) are the coordinates for the row and the column pixel
positions in the image (ri ∈ {0, ...,m} and ci ∈ {0, ..., n} with
an image size m× n.

3.2 Spatial filtering

According to (Laybros et al., 2019), a strategy for reducing lo-
cal noise and improving class separability can be implemented
through the spatial filtering. Conventionally, a mean filtering is
computed by moving a windows of 3 × 3 over each band. In
(Dechesne et al., 2017), three circular neighborhoods of radius
rf ∈ {1.0, 3.0, 5.0} m are applied to compute the mean value
of every pixel in each band. Since the pixel center coordinate
(xc, yc) is known, the pixels whose centers are inside of the cir-
cular neighborhood of each pixel, are selected for averaging the
reflectance in each band. Finally, the three mean values of all
pixel associated to each rf are averaged.

3.3 Non-overlapping pixel selection

The crown pixel correspondence becomes challenging when some
crown regions overlap among each other. To overcome this issue,
those overlapping pixels that are associated with crown trees of
different species, are not considered in our ground truth. The
purpose is to select a representative set of pure pixels for each
species. The overlapping pixels for those trees of the same species,
are labeled to the tree with the greatest height and crown area.
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This pixel - tree association is relevant when the training and test-
ing sets are defined for the classification.

3.4 Vegetation and shadow mask

The selection of sunlit pixels is advised because shadowed pixels
are affected from a low signal-to-noise ratio (SNR) (Torabzadeh
et al., 2019). Several strategies have been proposed for shadow
removal. In our approach, the criterion explained by (Dalponte
et al., 2014), estimated the average of the blue portion of the
spectrum in the range of [450, 550] nm. Then, Otsu threshold
is calculated over this range. Since the Otsu threshold value re-
moved approximately 50.0% of the pixels, the minimum thresh-
old is computed to preserve around 65.0% of our ground truth.

The normalized difference vegetation index (NDVI) is used to
separate forest from non-vegetation (Laybros et al., 2020). In
(Dalponte et al., 2018), authors selected a NDVI value greater
than 0.5 to consider well-lit, leafy vegetation pixels. In (Alonzo
et al., 2016), they used a threshold of 0.6 based on the average
NDVI for all crowns. For our approach, a NDVI value of 0.55 is
applied for all forest plots.

3.5 LiDAR features

From the LiDAR 3D point cloud, 24 LiDAR features are com-
puted at point-level according to (Dechesne et al., 2017):

• Two vegetation density features: the cumulative sum of lo-
cal height maxima retrieved from each radius rf maximum
filter within three cylindrical neighborhoods of radius rc ∈
{1.0, 3.0, 5.0}m. The second feature is computed from the
number of points classified as ground points over the total
number of points within each cylindrical neighborhood of
radius rc. The three outputs of the neighborhoods for every
point are averaged.

• Two shape features: the scatter and the planarity are com-
puted from the eigenvalues of the covariance matrix within
the three cylindrical neighborhoods of radius rc.

• 20 statistical features from each LiDAR point using the cylin-
drical neighborhoods given in rc. The height and intensity
information from the LiDAR data are used to derive statisti-
cal features: minimum; maximum; mean; median; standard
deviation; median absolute deviation from median; mean
absolute deviation from median; mean absolute deviation
from mean; skewness; kurtosis; 10th, 20th, 30th, 40th, 50th,
60th, 70th, 80th, 90th and 95th percentiles. All the statistical
functions are used for the height, while the mean is used for
the intensity only.

After computing the LiDAR features at point-level, these features
are rasterized at the resolution of the HI, sc. The feature values
of the points inside the pixel that is centered at the coordinate
x = (xc, yc), are weighted according to the function W (x)

W (xi) =Wh(xi)Wv(xi)

Wh(xi) = exp

(
−γ
∣∣∣∣∣∣∣∣x− xi

wh

∣∣∣∣∣∣∣∣2
)

Wv(xi) =

∣∣∣∣∣∣∣∣Zi − Zmin

wz

∣∣∣∣∣∣∣∣
(2)

where Wh and Wv are the weighting functions of the horizontal
and vertical information, respectively. The point xi represents the

xy coordinate of each 3D point inside the cylinder, γ is selected
to be 0.5 (normal distribution), wh is an horizontal bandwidth
equal to

√
2sc, Zi represents the z coordinate of each 3D point

inside the pixel and wz = Zmax − Zmin, corresponds to the
difference between the maximum and minimum height 3D point
values in the vertical weighting function, Wv . These weighting
functions have been used for finding the maximum value of the
3D point cloud distributions for 3D segmentation purposes (Xiao
et al., 2019). In this way, the information of the highest points
close to the pixel center are given more importance because these
are associated to the most illuminated regions in the image.

3.6 Height mask

The purpose of the height mask is to avoid negative effects due
to shrubs, grassland and low height objects. A threshold value of
hmin = 1.5 m (Kandare et al., 2016) is applied over the digital
surface model (DSM) for preserving most of the forest regions.
At this point, by merging all the criteria of specie purity, pixel
illumination and height information, a set of nlp labeled pixels
associated with nHI = 160 hyperspectral bands and nLi = 24
rasterized LiDAR metrics is processed in the next stage.

3.7 Robust PCA

From a given data matrix of size m × n, PCA can generate a
low-rank matrix L that minimizes the error S = D− L:

min
L,S
||S||F , s.t. rank(L) ≤ r, D = L+ S (3)

where r � min(m,n) is the target rank of D and || · ||F is the
Frobenius norm. Although PCA is widely used as dimensionality
reduction technique, it can be affected by large-amplitude noise.
rPCA (Lee et al., 2016) is a method proposed to improve the ro-
bustness of the PCA for dealing with outliers. This algorithm
pursues to recover a low-rank matrix L from highly noisy mea-
surements D = L + S, by separating a sparse matrix S. Given
the matrix D, the matrices L and S are computed by satisfying
the following condition:

min
L,S

rank(L) + λ||S||0, s.t.L+ S = D (4)

where || · ||0 is the l0-norm, λ is a regularization parameter for
balancing the importance between the ranking operator and the
sparsity regularization. Equation (4) is reformulated as a convex
optimization approach:

min
L,S
||L||∗ + λ||S||1, s. t.L+ S = D (5)

where || · ||∗ is the nuclear norm, which is the sum of singular val-
ues of L; and || · ||1 is the l1-norm. In (Brunton and Kutz, 2019),
authors described the programming implementation of the rPCA
algorithm. In this stage, the matrices L and S are obtained from
the HI, DHI, and the rasterized LiDAR features, DLi, separately.

3.8 Feature reduction

Considering the findings of (Luan et al., 2014), the sparse ma-
trix S contains detailed information to establish inter-class and
intra-class differences. This is a motivation to focus on the effect
of stacking features according to the feature importance given
by the RF classifier (Friedman, 2001). Let LHI and SHI be the
low-rank and sparse matrices from HI, DHI; the principal com-
ponents (PC) are computed to obtain: PCD

HI, PCL
HI and PCS

HI.
The same procedure is repeated with the LiDAR information to
have six matrices: DLi, LLi and SLi; and the corresponding PC:
PCD

Li, PCL
Li and PCS

Li.
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The feature selection was carried out by calculating the RF scores
to estimate the intra-set feature importance. Let A be a feature
set of 5 features [a1,a2,a3,a4,a5], then, the RF scores, si, are
computed for the i-th feature to obtain [s1, s2, s3, s4, s5], where
s4 > s3 > s1 > s5 > s2. In this way, the features are ordered
in decreasing magnitude of importance by creating a sorted set
of features [a4,a3,a1,a5,a2]. By considering this order, each
feature forms a subset together with the features that have higher
importance:

• [a4]

• [a4,a3]

• [a4,a3,a1]

• [a4,a3,a1,a5]

• [a4,a3,a1,a5,a2]

Each subset is evaluated in the RF classifier and the subset with
the highest F1-score corresponds to the selected feature set. This
procedure is applied for every set of features: DHI, LHI, SHI,
PCD

HI, PCL
HI, PCS

HI, DLi, LLi, SLi, PCD
Li, PCL

Li and PCS
Li.

The 12 sets of selected features are ordered based on the F1-score
as it is described in Table 4. The procedure to stack features from
a different set to another is explained as follows. The set with the
highest F1-score is our reference set to which new features will be
added to increase the overall F1-score. Let A = [a4,a3,a1] be
our reference set with the highest F1-score, the feature set B =
[b1,b2,b3,b4] contains the features to be added to the set A.
The estimation of the inter-set feature importance is achieved by
stacking every feature to the reference set:

• [a4,a3,a1,b1]

• [a4,a3,a1,b2]

• [a4,a3,a1,b3]

• [a4,a3,a1,b4]

Each subset is evaluated in the RF classifier to obtain the F1-
scores: [F11, F12, F13, F14], where F13 > F14 > F11 >
F12. By considering this ranking, the features are ordered in
decreasing F1-score to be stacked sequentially in the reference
set and to generate the following subsets:

• [a4,a3,a1,b3]

• [a4,a3,a1,b3,b4]

• [a4,a3,a1,b3,b4,b1]

• [a4,a3,a1,b3,b4,b1,b2]

The subset of features that increased the F1-score of the reference
set are stacked to form a new reference set. This procedure is
repeated with the remaining sets.

3.9 Classification

For the tree species classification, tree crowns were selected ac-
cording to the number of pixels per crown. Thus, those trees that
had more than 4 pixels per crown, were considered in our dataset.
By applying this criterion, an average of 19.6 pixels per crown
was obtained which is close to the average number of pixels per
crown selected by (Baldeck and Asner, 2014) (24.9 pixels per
crown). After performing the tree crown selection, the number of
trees per specie were distributed according to Table 2.

For the RF classifier, the number of decision trees to grow was
set to 1000. The training and test sets were defined by randomly
separating trees and by associating the pixels with their crowns.
The tree crowns were divided into six sets. The training set was
formed by five of these six sets, resulting in a test set of 1550
pixels, which is a similar number of samples selected by (Lee et
al., 2016) (1537 pixels).

Our dataset showed a problem of class imbalance, which means
the number of trees and pixels per class are not evenly distributed
(Anderson, 2018). To address this problem, two strategies were
implemented. First, those tree species that had less than six trees
or had less than 1% of total number of pixels were grouped into a
class called “other” species. Second, RF automatically weighted
the classes by considering that these are inversely proportional to
the frequency that the class has in the data (Albon, 2018). The
pixel distribution is described in Table 3.

Abbr. Genus species English name No.
ABAL Abies alba European silver fir 139
ACPS Acer pseudoplatanus Sycamore maple 5
BEPE Betula pendula Silver birch 5
BEsp Betula sp. Birch 2
COAV Corylus avellana Common hazel 5
FASY Fagus sylvatica European beech 73
FREX Fraxinus excelsior European ash 1
PIAB Picea abies Norway spruce 190
PIUN Pinus uncinata Mountain pine 11
POTR Populus tremula European aspen 2
SOAR Sorbus aria Common whitebeam 1
SOAU Sorbus aucuparia Rowan 3

Table 2: Abbreviation, full name and number of tree crowns per
species in the study area. The total number of trees is 437

Abbr. Average No. Pixel Tree
pixels/tree pixel [%] [%]

ABAL 18.4 2258 29.9 31.8
FASY 23.4 1707 20.0 16.7
PIAB 20.0 3808 44.5 43.5
PIUN 8.2 90 1.1 2.5
Other 16.4 393 4.6 5.5
Overall 19.6 8556 100 100

Table 3: Abbreviation, number and percentage of trees and pixels
for four identified species and one “other” species class

4. RESULTS AND DISCUSSION

The results of feature stacking based on feature importance and
F1-score are presented for the HI and the LiDAR data for the fu-
sion of these two modalities. The ground truth of the seven plots
is illustrated in Figure 2. Four classes of tree species were dis-
criminated at pixel-level. The tree species PIAB is present in all
forest plots, while the class PIUN is in plot 4 only. The classifi-
cation at tree-level is obtained by applying a majority voting rule
to define the species for each crown (Lee et al., 2016).
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The ranking of the feature sets based on the F1-score obtained by
pixel classification is described in Table 4. Due to the difference
between the amount of features from HI and LiDAR data, the
spectral descriptors performed better than those features extracted
from the LiDAR point cloud. However, the rasterized LiDAR
features were not filtered spatially as the HI bands, which clearly
considers the information from the neighborhood of each pixel.
Feature selection based on RF importance reduced the amount of
features and increased the classification performance. According
to Table 4, the reference set for our approach is formed by 10
features from DHI. The complete HI set is represented in Fig-
ure 3(a) by computing the mean spectral signature of each tree
species considering the ground truth from Figure 2.

Original set Reduced set
Rank Feature No. F1 [%] No. F1 [%]

1. DHI 160 49.7 10 54.5
2. PCD

HI 160 52.5 100 54.0
3. SHI 160 51.0 82 52.1
4. PCS

HI 160 51.4 145 52.1
5. PCL

HI 160 47.8 23 51.9
6. LHI 160 48.3 8 51.0
7. SLi 24 49.7 22 50.0
8. PCD

Li 24 48.6 21 48.5
9. LLi 24 46.6 19 47.8

10. DLi 24 47.0 19 47.0
11. PCL

Li 24 44.3 10 46.5
12. PCS

Li 24 44.4 20 45.4

Table 4: Ranking of set of features according to the F1-score (F1)
and the number of features (No.) in the original and reduced sets,
by applying RF scores of importance

Table 5 shows the F1-scores of pixel classification for each tree
species by adding the amount of HI features marked in the second
row. Since DHI is the reference set with F1-score of 54.5%, the
selection of 20 PC from PCD

HI increased 5.2 points of percent-
age. The effect is clear in the most abundant classes, conifers,
such as PIAB and ABAL. The minority classes such as FASY,
PIUN and other species; decreased their performance at the limit
that the PIUN class is not detected by the model. The addition
of 25 features from SHI, the sparse information from HI, im-
proved for the species ABAL, PIAB and PIUN. Although the 18
PC from HI improved the performance for ABAL, FASY and
PIAB species, the 8 PC from the low-rank representation, PCL

HI,
improved the F1-scores for all species. The contribution of 2 fea-
tures from LHI increased in 0.01 points of percentage.

Table 6 shows the F1-scores of pixel classification by adding the
amount of LiDAR features marked in the second row. The com-
putation of these LiDAR features was explained in the subsection
3.5 and the mean normalized range of each feature by species
can be visualized in Figure 3(b). The results are presented for the
datasets SLi, PCD

Li and DLi. The datasets associated to the low-
rank representation LLi and the PC: PCL

Li and PCS
Li, decreased

the overall F1-score. Hence, these features were not considered
for the feature fusion. Although the LiDAR information of these
three datasets contributed with 1.2 points of percentage, the per-
formance of the PIUN tree species increased 7.4 points of per-
centage with respect to the F1-score in the HI datasets. LiDAR
data can be very useful for describing minority classes, but our
feature fusion strategy gave more importance to the overall result
than the individual species performance. In total, 4 features from
LiDAR information are integrated to the selected features from
HI to obtain a new set of 87 features that are described in Figure
3(c). The overall F1-score for the fusion of the selected features
from HI and LiDAR data was 68.9%.

(a) Plot 1 (b) Plot 1b

(c) Plot 2 (d) Plot 3

(e) Plot 3b (f) Plot 4

(g) Plot Premol

Figure 2: RGB representation of the forest plots corresponding
to the Chamrousse site with the following color labels: Abies
alba (ABAL), Fagus sylvatica (FASY), Picea abies (PIAB),

Pinus uncinata (PIUN) and “other” species
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(a) Mean hyperspectral signatures

(b) Mean normalized LiDAR features

(c) Mean normalized selected features

Figure 3: (a) Mean spectral signature of each forest tree species in
the range 400 to 1000 nm. (b) Mean normalized LiDAR features
of each forest tree species. (c) 87 selected features from HI and
LiDAR data from the datasets ranked in Table 4. Legend: Abies
alba (ABAL), Fagus sylvatica (FASY), Picea abies (PIAB),

Pinus uncinata (PIUN) and “other” species

Specie DHI PCD
HI SHI PCS

HI PCL
HI LHI

No. 10 20 25 18 8 2
ABAL 33.0 43.7 50.3 52.0 55.7 57.9
FASY 53.4 47.8 47.2 48.4 54.7 54.5
PIAB 67.8 71.6 74.3 74.7 77.4 77.1
PIUN 11.1 0 21.1 11.1 38.1 38.1
Other 6.1 3.8 0 0 3.6 0
Overall 54.5 59.7 63.3 64.1 67.6 67.7

Table 5: F1-scores of feature fusion from the HI sets by stacking
a number of features (No.) to the reference set DHI: 20 features
from PCD

HI, 25 features from SHI, 18 features from PCS
HI, 8

features from PCL
HI and 2 features from LHI. The last column

represents the contribution of the HI data for the tree species clas-
sification: overall F1-score of 67.7%

Specie SLi PCD
Li DLi

No. 2 1 1
ABAL 59.1 58.7 61.2
FASY 57.6 57.1 57.2
PIAB 77.5 78.0 77.4
PIUN 45.5 45.5 45.5
Other 0 0 3.7
Overall 68.6 68.8 68.9

Table 6: F1-scores of feature fusion from three LiDAR sets by
stacking a number of features (No.) to the reference set described
in Table 5

Tables 7 and 8 present the species classification at the pixel-level
and tree-level, respectively. The overall accuracy at tree-level is
74.0%, which is greater to the accuracy at pixel-level, 68.9%.
The species PIAB, the most abundant class, obtained the highest
producer’s accuracy among all species, but the user’s accuracy is
affected by the wrong classification of the minority species as it is
illustrated in Figure 4. Two trees labeled as ABAL (Figure 4(b))
and PIUN (Figure 4(h)) species, are wrongly detected as PIAB. In
Figure 4(d), the tree is correctly detected as FASY, but the amount
of pixels predicted as PIAB is notorious over the region of in-
terest. The second class after the PIAB tree species with good
performance is ABAL, which belongs to the conifers family. At
tree-level, ABAL obtained a good producer’s accuracy (70.6%)
and the second highest user’s accuracy (85.7%). The FASY tree
species has less number of crowns than the class ABAL and the
second amount of pixels in our dataset. Broadleaves, such as
FASY tree species, are characterized by having the biggest tree
crowns with the greatest average amount of pixels per crown (Ta-
ble 3). FASY performed the highest user’s accuracy at pixel- and
tree-level. The minority classes such as PIUN and other species
are challenging to be detected because the model predicted them
as the majority class PIAB.

The approach in (Lee et al., 2016) based rPCA and SVM pro-
vided an overall accuracy for the classification of six tree species
of 91.7% and 61.1% at the pixel- and tree-level, respectively. In
the test set, they used 1537 pixels associated with 677 crown
trees, which means every crown had approximately 2.3 pixels.
There is a negative difference of 30.6 points of percentage be-
tween the pixel- and the tree-level overall accuracy by having an
estimated increase of pixels from 1 to 2.3. Our test set contains
73 tree crowns with 1550 pixels (21.2 pixels per crown). The re-
sulting overall accuracy for the classification of four tree species
was 68.9% and 74.0% at the pixel- and tree-level, respectively.
The estimated increase of pixels from 1 to 21.2, generated an
improvement in the overall accuracy of 5.1 points of percentage
between the pixel- and the tree-level performance.
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Ground truth
Species ABAL FASY PIAB PIUN Other Total Producer’s accuracy [%]

Classification results

ABAL 174 0 91 0 0 265 65.7
FASY 55 176 202 0 0 433 40.6
PIAB 66 4 712 0 3 785 90.7
PIUN 0 0 12 5 0 17 29.4
Other species 9 2 38 0 1 50 2.0
Total 304 182 1055 5 4 1550
User’s accuracy [%] 57.2 96.7 67.5 100 25.0 68.9

Table 7: Species classification results at pixel-level obtained by the fusion of HI and LiDAR features

Ground truth
Species ABAL FASY PIAB PIUN Other Total Producer’s accuracy [%]

Classification results

ABAL 12 0 5 0 0 17 70.6
FASY 1 3 6 0 0 10 30.0
PIAB 1 0 38 0 0 39 97.4
PIUN 0 0 2 1 0 3 33.3
Other species 0 0 4 0 0 4 0
Total 14 3 55 1 0 73
User’s accuracy [%] 85.7 100 69.1 100 0 74.0

Table 8: Species classification results at tree-level obtained by the fusion of HI and LiDAR features

(a) ABAL (b) ABAL (c) FASY (d) FASY

(e) PIAB (f) PIAB (g) PIUN (h) PIUN

Figure 4: Results of pixel classification for tree-level assess-
ment of 8 tree crowns: (a) ABAL tree correctly detected, (b)
ABAL tree detected as PIAB, (c) FASY tree correctly detected,
(d) FASY tree correctly detected with an important amount of
PIAB pixels, (e) and (f) PIAB trees correctly detected with few
pixels from other species, (g) PIUN tree correctly detected and
(h) PIUN tree dectected as PIAB. Legend: Abies alba (ABAL),

Fagus sylvatica (FASY), Picea abies (PIAB), Pinus unci-
nata (PIUN) and other species

5. CONCLUSION

In this work, we presented a data fusion scheme that integrated
features extracted from the HI and the LiDAR data for semantic
segmentation. The potential of rPCA and PCA are applied to ex-
pand the feature representation through the low-rank and sparse
information, and their principal components. The sparse features
from the HI contributed to increase the F1-score of the classifier
performance by adding 49.4% of the sparse features. The feature
selection implements two steps: first, the intra-set feature impor-
tance was described by the RF scores; then, the inter-set feature
importance was estimated by the overall F1-score for stacking
different set of features. This method offers the flexibility of in-
corporating additional features such as vegetation indexes, which
increases the interpretability of the model. The feature reduc-
tion process decreased the dimensionality from 1104 to 87 fea-
tures. The overall accuracy of tree species classification at pixel-
level was 68.9%. Our approach showed that 74.0% of trees were

correctly assigned overall, which represented an improvement of
12.9 points of percentage with respect to (Lee et al., 2016). Al-
though these two remote sensing modalities provided valuable in-
formation, the most abundant classes, the conifers such as Abies
alba and Picea abies, benefited mainly from the HI information.
However, it became a challenging task for dealing with imbal-
anced classes of our dataset, such as Pinus uncinata. Future work
is going to be focused in the implementation of tree species detec-
tors by selecting the most relevant features from HI and LiDAR
data for each specific tree species.
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