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ABSTRACT: 

 

Despite its high accuracy and fast speed in object detection, Single Shot Multi-Box Detector (SSD) tends to get undesirable results 

especially for small targets such as vehicles on high-resolution images. In this paper, we propose a new convolutional neural network 

based on SSD to detect vehicles on high-resolution images. In the proposed framework, the feature fusion module and detection module 

are incorporated. In the feature fusion module, feature maps of different scales are integrated into a fusion feature for object detection, 

which could improve the accuracy effectively. Besides, to prevent the network from overfitting and speed up the training, the batch 

normalization layer is embedded between the detection layers in the detection module. Some ablation experiments provide strong 

evidence for the effectiveness of these above structures. On the UCAS-High Resolution Aerial Object Detection Dataset, our network 

has the ability to achieve the 0.904 AP (average precision) with 0.094 AP higher than SSD512 but similar speed to it.  

 

 

1. INTRODUCTION 

With the development of society and economy, the number of 

vehicles is constantly increasing. Monitoring traffic conditions 

enables the related transportation department to better control 

traffic and plan road. Accurate monitoring can avoid traffic 

accidents and ease traffic jams. Compared with traditional 

sensors, remote sensing technology featuring rich information, 

low cost and wide coverage, which is widely used in traffic 

applications.(Sakai et al., 2019). As one of the important 

applications, vehicle detection can be applied in traffic 

monitoring, road planning, target tracking, etc.(Tang et al., 

2017b). Therefore, vehicle detection in remote sensing images 

has attracted more and more attention in recent years. The 

existing approaches for vehicle detection in remote sensing 

images could be simply categorized into three types, including 

computer vision methods, traditional machine learning methods 

and deep learning. 

 

Many computer vision methods of vehicle detection have been 

proposed in the literature. As the key part of these methods, the 

selection of features usually includes spectral features (Bar and 

Raboy, 2013), texture features(Chen et al., 2016), shape 

features(Zhang et al., 2017), etc. With a range of features, 

vehicle detection is achieved in different applications. When its 

geometric and radiometric feature, such as the shape and the 

spectral information, is obvious and distinctive, the vehicle can 

be detected with a better reliability, however, the detection result 

is relatively poor especially for complex background. 

 

In the traditional machine learning methods, the Haar-like 

feature (Papageorgiou et al., 1998), artificial neural network 

(ANN) and Histogram of Oriented Gradient(HOG) and 

otherwise are extensively used in vehicle detection. An approach 

based on Haar-like features with adaptive enhancement 

technology was proposed (Leitloff et al., 2010). Taking the 

symmetry of vehicles in remote sensing images into 

consideration, Ren (Ren et al., 2016) presented a method of 

optimizing Haar-like features. Cao (Cao et al., 2011) combines 

the HOG features from the Adaboost classifier to build the 
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feature vector and trains the SVM classifier for vehicle detection.  

 

Although these methods are able to improve the accuracy of 

vehicle detection effectively, their features used for object 

detection should be designed manually. When we change the 

targets, features should be redesigned. Mentioned above indicate 

that the model has poor generalization performance, which 

restricts the further development of vehicle detection technology. 

 

Deep learning techniques have shown their superior advantages 

in feature expression. Therefore, vehicle detection technology 

based on deep learning has been widely studied An oriented 

single shot multi-box detector was proposed for detecting 

vehicles with arbitrary orientations by Tang et al(Tang et al., 

2017a). Hybrid depth convolution neural network (HDNN) 

extracts variable scales of features for detection(Chen et al., 

2014). Sommer (Sommer et al., 2017) systematically studied the 

potential of Fast R-CNN and Faster R-CNN on aerial images. 

Overall, deep learning has made some breakthroughs in vehicle 

detection. However, there are still problems that need urgent 

solutions such as insufficient learning of the features due to the 

small size of the vehicle. 

 

In this paper, we propose a convolutional neural network based 

on SSD for vehicle detection. By fusing feature maps of different 

scales, more information about vehicles could be available. The 

batch normalization layer is incorporated to prevent the network 

from overfitting and speed up the training. The main 

contribution of this paper is designing a multi-scale feature 

fusion network for vehicle detection in high resolution images, 

which can improve the accuracy remarkably. 

 

2. RELATED WORK 

2.1 Convolutional Neural Network 

With the development of deep learning, convolutional neural 

network (CNN) has become a new research hotspot due to its 

powerful ability of feature expression. As one of the most 

important and successful neural networks in deep learning, CNN 
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Figure 1. The structure of CNN 

 

has been widely used in a variety of applications, such as 

classification, object detection, image registration, etc. With the 

deepening of research, many networks, such as Alexnet 

(Krizhevsky et al., 2012), VGG(Simonyan and Zisserman, 2014), 

GoogleNet (Szegedy et al., 2015), Resnet (He et al., 2016) have 

been proposed. Weight sharing and local perceptron are CNN’s 

characteristics, which not only makes the network structure 

easier to optimize but also reduces the risk of overfitting. In 

general, it is a multi-layer perceptron, which uses convolution to 

extract low-level features and combines low-level features into 

high-level features. CNN mainly includes input layer, hidden 

layer and output layer, and the hidden layer includes convolution 

layer, pooling layer and full connection layer. The structure of 

CNN is shown in Figure 1. 

 

2.2 Batch Normalization 

The stochastic gradient descent (SGD) is widely used to train a 

convolutional neural network, which features simplicity and 

efficiency (Bottou, 2010). However, due to the linear 

transformation and nonlinear activation mapping in each layer, 

small fluctuations of the parameters are amplified with the 

number of network layers increasing, and changes of parameters 

lead to their poor distribution in each layer, resulting in the 

gradient disappears. Therefore, aiming at these problems, the 

Batch Normalization(BN) (Ioffe and Szegedy, 2015) is proposed 

in deep neural network training. BN re-parametrizes the 

underlying optimization problem to make the loss landscape 

more stable and smooth. This implies that the direction of 

gradient descent is more predictive, which enables us to use a 

larger learning rate and faster network convergence (Santurkar 

et al., 2018). So, it is used in most deep learning models because 

it’s practical success. 

 

2.3 SSD Network 

In terms of the design of network, the object detection network 

can be divided into two categories: region proposal and end-to-

end. The former method employs a proposal network to extract 

the position of the object, and then determines the object 

categories, which mainly includes: R-CNN (Girshick et al., 

2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 

2015), etc. The end-to-end method directly extracts and 

distinguishes the objects on the feature maps, which greatly 

improve the detection efficiency. YOLO (you only look once) 

(Redmon et al., 2016), SSD (Single Shot Multi-Box Detector) 

(Liu et al., 2016), YOLO v2 (Redmon and Farhadi, 2017), 

YOLO v3 (Redmon and Farhadi, 2018) ,etc. are the 

representative methods of this kind. 

 

As a one-stage detection method, SSD holds better performance 

on the PASCAL VOC (Everingham et al., 2010), COCO (Lin et 

al., 2014), and ILSVRC (Russakovsky et al., 2015) datasets. It 

combines the advantage of Yolo and Faster R-CNN, which is a 

multi-scale object detection network. Thanks to the 
characteristics of multi-scale and multi-box, SSD could detect 

objects in different scales separately on each feature map. 

Considering the inaccurate positioning caused by the fixed size 

of boxes, SSD sets different scales and ratios of boxes for each 

feature map. The structure of SSD is shown in Figure 2. 

 

Due to the better performance of detection, a range of 

improvements have been made in different settings, such as 

FSSD (Li and Zhou, 2017), DSSD (Fu et al., 2017). These 

improvements effectively increase the accuracy of object 

detection by extracting more abundant information from the 

feature maps. 
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Figure 2. The structure of SSD 

 

3. PROPOSED METHOD 

Although SSD detects objects with several feature maps of 

different scales, these feature maps are irrelevant which tends to 

make the network unable to combine the overall information and 

local information for detection. And this weakens the capacity of 

object detection, especially for small objects like vehicles. At the 

same time, due to the small size of vehicles in the images, the 

low-level feature map contains less information. As a result, the 

network structure is redundant and detection speed decreases 

greatly. Therefore, fusion of feature maps and optimizing 

network structure will improve the accuracy and the speed of 

detection. 

 

3.1 Network Structure 

Our network is designed based on SSD, which mainly is divided 

into two parts: feature fusion module and vehicle detection 

module. In the feature fusion module, high-level and low-level 

feature are fused to generate a new fusion feature. Next, the 

fusion feature are inputted into the detection module for multi-

scale detection. We use three levels of feature maps for fusion 

and introduce batch normalization to the detection module. 

Considering the small size of the vehicle in the image, we only 

use the four scales for detection. The method will be detailed 

discussed in Section 3.2 and 3.3. The overall structure of our 

network is shown in Figure 3. 

 

3.2 Feature Fusion Module 

What is the most distinctive between our method and SSD is the 
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Figure 3. The structure of our network 

 

detection base map. SSD directly uses the conv4_3 in VGG as 

the base map. Inspired by FSSD, our method fuses the low-level 

and high-level feature maps to a new feature map as the base 

map for detection. The structure of the module is shown in 

Figure 4. There are some factors to be considered when 

designing the feature fusion module, which will be introduced in 

the following. 

 

Convolution Layer: In SSD512 based on VGG16, it chooses 

conv4_3, fc7, conv6_2, conv7_2, conv8_2, conv9_2 and 

conv10_2 as feature map to detect objects. Besides, the feature 

map is resized to 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512 of the 

original image, respectively. Due to the small size of vehicles in 

the image, assuming that the size of feature map smaller than 

1/32 of original one contains less information, we introduce 

conv6_2 for feature fusion instead of using conv7_2 as in FSSD. 

Conv7_2 has been tried, but the ablation experiment gains 

unsatisfactory results.  
 
Concatenate layer: There are two methods of feature merging: 

concatenation and element-wise summation. Concatenation 

merges the channels of the features, and the value involved in 

each channel is unchanged. As two feature maps concatenate, 

the same number of channels is unnecessary. The element-wise 

summation is implemented by adding values of each 

corresponding channel in the feature map with equal number of 

channels. According to the analysis of the experiment the 

concatenation is selected as the method for feature merging. 
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Figure 4. The feature fusion module 

 

Up-sampling layer: To fuse feature maps more conveniently 

and effectively, the size and channel of feature map is needed to 

be adjusted to the same value. Firstly, 1×1 convolution is used 

to make conv4_2,fc7,conv6_2 share the same number of 

channels. Feature maps generated from fc7, conv6_2 are down-

sampled with 2×2 max-pooling leading to different size with 

conv4_3. The feature maps are resized to equivalent size with 

conv4 3 by up-sampling. In this way, all the feature maps have 

the same size and channel. 

 

3.3 Batch Normalization Module 

Batch normalization mentioned in Section 2.2 shows excellent 

performance, which can speed up training and improve accuracy. 

L2Normalization is involved in SSD’s object detection, while 

batch normalization is used to generate the fusion feature maps 

of FSSD. However, neither of these two normalization methods 

are engaged in scaling feature maps, which lowers the accuracy. 

Therefore, batch normalization is introduced in our network. 

When generating different scales of feature maps, normalization 

is added before inputting to the next layer, to avoid overfitting 

and low accuracy. At the same time, considering the tininess of 

vehicles in the subsequent feature maps, we abandoned some 

large-scale feature maps to improve detection efficiency. The 

module structure is shown in Figure 5. 

 

4. EXPERIMENT 

UCAS-High Resolution Aerial Object Detection Dataset 

(UCAS-AOD) (Zhu et al., 2015) is selected to train and test our 

network. 269 images (3240 vehicles) with about 1300×700 

pixels in size are used in our experiment. Among these images, 

215 is used to train and validate, and 54 to test. The predicted 

box will be correct if its intersection over union (IoU) with the 

ground truth is higher than 0.5. We choose average precision 

(AP) as the metric of detection. Faster R-CNN, SSD300, 

SSD512 and YOLOv3 models are selected as comparison. To 

make the comparison more reasonable, all models are trained on 

single Nvidia 1050Ti GPU. Our and other modules are 

implemented based on Keras package.  

 

4.1 Ablation Study 

In this section, some important factors are considered in network 

design. We compare the results deriving from different settings 

to verify the effectiveness of the module. All the models are 

trained with UCAS-AOD and the results are summarized in 

Table 1.  
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Figure 5. The detection module 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-49-2020 | © Authors 2020. CC BY 4.0 License.

 
51



 

data BN fusion method fusion layers detection layers AP 

UCAS-AOD √ concat conv4_3-conv6_2 4 0.904 

UCAS-AOD √ concat conv4_3-fc7 4 0.878 

UCAS-AOD √ concat conv4_3-conv7_2 4 0.901 

UCAS-AOD × concat conv4_3-conv6_2 4 0.876 

UCAS-AOD √ concat conv4_3-conv6_2 3 0.895 

UCAS-AOD √ concat conv4_3-conv6_2 5 0.888 

UCAS-AOD √ ele-sum conv4_3-conv6_2 4 0.881 

Table 1. Results of the ablation study on UCAS-ADC. BN means that batch normalization layer is added in the detection layer. The 

options of layers we can fuse include conv4_3, fc 7, conv6 2. The fusion layers represents the layers we choose to merge. The detection 

layers represents the number of detection layers. The AP is measured on UCAS-AOD test set. 

 

4.1.1 The Fusion Layers 

We make a comparison with networks of different fusion 

features. Considering the complexity of the network, we fuse 

four feature maps (conv4_2, fc7, conv6_2, conv7_2). The AP on 

UCAS-AOD is 0.907. However, when we remove conv7_2, the 

AP is similar to that with four feature maps, which shows that 

conv7_2 is useless for detection. Then we continue to remove 

conv6_2, the AP is decreased to 0.878, which proves conv6_2 

could improve the accuracy of detection. So we choose conv4_2, 

fc7 and conv6_2 to fuse our feature. 

 

4.1.2 Concatenation or Element-wise Summation 

From Table 1, we can see that concatenation can achieve 0.904 

AP while the element-wise summation only achieves 0.881 AP. 

The result shows that concatenation is 0.023 AP higher than 

element-wise summation when implementing vehicle detection 

in UCAS-AOD. 

 

4.1.3 Batch Normalization Layer or Not 

In SSD512, the network only uses L2Normalization in the 

conv4_2, which makes the network easier to overfitting in 

detection. To find a simple and efficient way to avoid this 

problem, we add batch normalization between low-level and 

high-level feature layers. As can be seen from Table 1, the 

additional batch normalization layer brings 0.028 AP 

improvement, which proves the effectiveness of batch 

normalization in the network. 

 

4.1.4 The Detection Layers  

The author uses conv4_3, fc7, conv6_2, conv7_2, conv8_2, 

conv9_2, and conv10_2 to detect different scales objects in 

SSD512. However, given that the tininess of the vehicle, the 

high-level feature map contains less information. Therefore, we 

choose fconv1, fconv2, fconv3, and fconv4 as the detection 

layers in our network. The result can achieve 0.904 AP, but when 

we decrease or increase the number of detection layers, their AP 

are dropped to 0.895 and 0.888, respectively. The results show 

that the four detection layers are better than other numbers of 

layers. 

 

4.2 Results on UCAS-AOD 

According to the ablation experiments, the network structure is 

designed as follows: VGG16 with 512×512 pixels as input is the 

backbone network. Conv4_3, fc7 and conv6_2 are converted to 

256 channels with 1×1 convolution layer, and then fc7 and 

conv6_2 up-sample to 64×64. Afterward, conv4_3, fc7 and 

conv6_2 are concatenated together to a fusion feature. Finally, 

several detection blocks (including one batch normalization 

layer, one 3×3 convolutional layer with stride 2 and one ReLU 

layer) are applied to detect vehicles.  

 

 

 
(a) SSD512 

 
(b) YOLO v3 

 
(c) Ours 

Figure 6.The result of (a) SSD512, (b) YOLO v3 and (c) Ours. From the figure (a) (b), there are many missing and false detection in 

the results of SSD and Yolo, and the detection result is poor in the detection of some smaller vehicles. Although our method has some 

problems in some areas with dense vehicles, the overall performance is better, and the smaller vehicles can also be accurately detected. 
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Method data base network speed(FPS) GPU input size AP 

Faster R-CNN UCAS-AOD Resnet50 0.82 Nvidia 1050Ti 600×600 0.733 

SSD300 UCAS-AOD VGG16 12.30 Nvidia 1050Ti 300×300 0.652 

SSD512 UCAS-AOD VGG16 6.91 Nvidia 1050Ti 512×512 0.81 

YOLO v3 UCAS-AOD Darknet-53 10.95 Nvidia 1050Ti 416×416 0.828 

Ours UCAS-AOD VGG16 7.41 Nvidia 1050Ti 512×512 0.904 

Table 2. UCAS-AOD test detection results. The speed of all models are tested on a single Nvidia 1050Ti GPU. The metric of speed is 

Frame per Second (FPS).  

 

We train our models on Nvidia 1050Ti GPUs for 14k iterations. 

The learning rate starts at 0.002 and decreases to 0.0002 after 

11k iterations. The anchor box’s size has been modified 

according to the size of vehicles, which mainly range between 

30 to 80 pixels. We adopt Adam with beta1 0.9 and beta2 0.999 

(Kingma and Ba, 2014) to optimize our pre-train network. We 

compare the proposed method with several detection models, 

including Faster R-CNN, SSD300, SSD512 and YOLOv3. The 

default parameter settings are used in our experiments. Figure 6 

shows the detection results of different methods. Table 2 lists the 

AP of different methods on the test dataset. Our network 

achieves 0.904 AP and scores the highest AP among those 

methods mentioned above, which increases by 0.091 compared 

with the SSD512. From Figure 6, we can see that our network 

has fewer problems of false and missed detection than other 

methods. Moreover, most of the results using our network have 

higher confidence. Therefore, our network has better 

performance. 

 

4.3 Speed 

Testing speed is another essential part of detection methods. The 

inference speed is shown in Table 2. Our network can run at 7.41 

FPS with the input size 512×512 on a single Nvidia1050Ti GPU. 

We also test other models in the same environment. Although 

our network adds a concatenation layer and several batch 

normalization layers, there is no reduction in speed compared 

with SSD512 due to the decrease of detection layers. In Table 2, 

it is clear that our network is similar in running speed to SSD512 

while having the highest accuracy. 

 

5. CONCLUSION 

In this paper, we proposed a new convolutional neural network 

based on SSD for vehicle detection, which applies feature fusion 

and batch normalization layers together on it. Since the small 

size of vehicles in high-resolution images, it is hard to detect by 

simply using the same-level features. The fusion layer is 

designed for getting more information by concatenating features 

at different levels. Then we generate the detection layer based on 

the fusion feature layer and batch normalization is added into the 

detection layer to prevent the network from overfitting and to 

speed up training. The ablation experiments demonstrate the 

effectiveness of these structures. Similarly, the results on UCAS-

AOD show that our network can improve the accuracy 

effectively without loss of speed, which could get 0.904 AP and 

achieve a speed of 7.41FPS. In the future, we will use more 

robust backbone networks such as Resnet to get better 

performance on other datasets. 
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