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ABSTRACT:

Images registration is an important task in hyperspectral image processing, while almost all local feature point based image matching
algorithm is designed for single band image only and miss the advantage of abundant spectral information. Therefor, in this paper
we propose a novel local feature detector for hyperspectral image. This method, which is named stacked local feature detector
(HSI-SFD), stack all local feature points detected from every single spectral band. With redundant information, local feature
miss-detected at noise pixel can be filtered out by the stack count threshold, leading to more reliable and robust local features.
To verify the algorithm, a hyperspectral image matching dataset is built. Multiview hyperspectral images of the several different
flat targets are taken by scan-line hyperspectral camera in library. Each image contains 270 bands within 400-1000nm. Ground-
truth transformation matrix between images is computed from corresponding points selected by hands. Experiment on the dataset
shows that features points miss-detected at texture-less area can be inhibited by HSI-SFD. Both keypoint repeatability and matching
accuracy increase significantly. Precision and matching score increase up to 10% for some scene.

1. INTRODUCTION

Due to the recent advances of hyperspectral sensors, applica-
tion and research of hyperspectral images (HSI) extended from
satellite based remote sensing to close range target detection
and recognition, such as 3D forestry mapping, health analysis,
food security, etc. Among these applications, images registra-
tion is a basic and important pre-processing step, while almost
all the image registration algorithms can handle single band im-
age only and miss the advantage of abundant spectral inform-
ation. In addition to this, HSI registration suffer from image
noise due to narrow band of light captured by sensor within in
a short period of time. The image noise are usually local peaks
and tend to be mis-detected as local feature by algorithm such
as SIFT or ORB.

Therefore, in this paper we propose a novel local feature de-
tector for hyperspectral images. By stacking local feature points
on different spectral bands and filtering out ones that do not
contains enough bands keypoints, stack local feature points is
more reliable than any local features on any single band. The
contribution of this paper are as follows:

1) A new local feature detector designed for hyperspectral im-
age is proposed. Spectral and spatial information are fully
used to extract reliable keypoints by stacking local features
from different bands. With redundant spectral information,
the detector is rubost to random noise on single band. Be-
sides, the algorithm is easy to be implemented in parallel,
leading to much faster detecting process and less memory
requirment than 3D-SIFT based detector.

2) A new hyperspectral image matching dataset is created.
Multiview hyperspectral images of the 4 different flat tar-
get is taken by scan-line hyperspectral camera. We propose
a geometrical model to describe the geometry relationship
between scan-line image pair by re-projecting the original
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images to an equivalent frame image. Ground-truth of trans-
formation matrixes is also provided.

2. RELATED WORK

Local feature detector and descriptor is a fundamental, yet im-
portant task in computer vision and photogrammetry. The re-
search history of this issue can be traced back up to 1980s.
Early detectors were artificially designed to find corners or local
peak points on both intensity and gradient, such as Harris, DoG
and Hessian. These detectors are considered to be viewport
invariant, but sensitive to scale change. With introduction of
Scale Space Theory, improved methods, such as SIFT(Lowe,
2004) and SURF(Bay et al., 2008), are both scale and view-
port invariant and applied successfully in image registration,
3D reconstruction, image retrieval and many other fields. In
the past few years, deep learning has revolutionized computer
vision, pushing the community to propose deep-learning meth-
ods for local feature detection and description. The problem
of constructing deep-learning based local feature detector is
much more complicated than other computer vision tasks, be-
cause there is no standard for what is local feature. Local fea-
ture identified by different person may vary dramatically. As
a result, there is no ground-truth label and no neural network
can be trained in a supervised way. Deep learning keypoint de-
tector needs to be designed in a new formulation. First attempt
was DetNet(Lenc, Vedaldi), in which learning task of keypo-
int detector is to find points that satisfy the so-called covari-
ance constraint, rather than the labeled location. Other stud-
ies, such as TCovNet(Zhang et al., 2017) and D2-Net(Dusmanu
et al., 2019) optimize the idea and get better result. Another
attempt was SuperPoint(DeTone et al., 2018) and UnSuper-
Point(Christiansen et al., 2019). They used the synthetic images
with well accepted keypoint location, such as standalone points
or corners, as ground truth labels. However, recent study(Jin et
al., 2020; Csurka et al., 2018) indicates that deep-learning based
method do not perform as well as they declared in real world

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-495-2020 | © Authors 2020. CC BY 4.0 License.

 
495



dataset, and sometimes even worse than handcrafted local fea-
ture detector.

However, almost all keypoint detector are developed to work
with single band image, no matter handcrafted or deep-learning
based ones. As hyperspectral image is widely used in vari-
ous domains, local feature detector designed for hyperspectral
image draws more and more attention. Algorithms were de-
veloped to get more reliable and robust keypoints by taking
advantage of spectral information available in multi and hyper-
spectral image. A natural solution is to generalize traditional 2D
keypoint detector to Rn spaces (especially R3 for hyperspec-
tral datacube). This idea come from volumetric medical im-
age registration, such as computed tomography (CT) and mag-
netic resonance imaging (MRI). 3D Sift(Rister et al., 2017), for
example, use 3D DoG to locate keypoints and eigenvector of
structure tensor to derive a local orientation to each keypoint.
However, there is a dearth of research of applying 3D Sift to
HSI data, because the third dimension of hyperspectral image,
which is reflectance change across spectral wavelength, has dif-
ferent physical interpretation from medical images. As a res-
ult, SS-Sift (Al-khafaji et al., 2018)and UMSGC-SIFT (Li et
al., 2018) was proposed to detect keypoints for HSI data. In
SS-Sift, 3D Gaussian filte is calculated with different param in
spatial and spectral axis, to make stronger smoothing effect in
spectral domain and a better result for keypoint detection. In
UMSGC-SIFT, both gradient and intensity value are considered
to overcome the low signal-noise ratio. Both algorithms can
make full use of all band information to locate the keypoints
on either spectral domain or spatial domain. The main draw-
back of these detector is memory consuming. Due to calcu-
lation of 3D-DoG of whole HSI data cube, runtime memory
requirement is several times, or even tens of times, the size of
data cube. The spectral and spatial resolution of HSI data, as
hyperspectral image sensor developed, have increased signific-
antly. The size of single HSI data cube can reach even tens of
GB with more than 200 bands and eight million pixels, which
makes it is impossible to run such detector on the whole HSI
image without cutting it apart. On the other side, hyperspec-
tral images tend to include significant redundancy in adjacent
bands, leading to large amounts of redundant information being
processed, stored, and transmitted (Feng et al., 2017). Inspired
by hyperspectral data classification, band selection (Ordóñez et
al., 2018) or feature extraction(Mukherjee et al., 2009) of HSI
image is processed to reduce spectral redundancy before local
feature detection. Then local feature is detected on every se-
lected or extracted bands, as a result, memory requirement is
quite low and is irrelevant to spectral bands count. Meanwhile,
detector of each band is independent, making it easy to be im-
plemented in a parallel way(Ordóñez et al., 2020). However,
keypoints obtained by these methods are simply a collection of
keypoints of all bands, failing to improve keypoint repeatabil-
ity and reliability by making use of spectral information across
wavelength.

3. METHOD

3.1 Stacked Keypoint Detection

In order to facilitate the simultaneous use of HSI spectral and
spatial information, we developed a framework called Hyper-
spectral Stacked Feature Detector (HSI-SFD). The framework
can integrate feature points of all spectral bands. As shown in
Figure 1, there are 3 main steps of feature detection and de-
scription in the proposed method:

1) Single Band Keypoint Detection: Feature point is detected
by a certain feature point detector, such as SIFT, ORB or mod-
ern deep-learning based feature detector, for each band of hy-
perspectral image. Keypoint collection Pk of kth band can be
expressed as follows:

Pk = Det(IkB) (1)

where IkB is the kth band of the hyperspectral image I. In this
paper, SIFT detector (implemented by VLFeat(Vedaldi, Fulker-
son)) is used in this paper, for it is wildly tested and proven to be
the golden standard in local feature detection, even compared
with modern deep-learning based keypoint detector(Csurka et
al., 2018)

2) Stack Keypoints by Location: It is hard to find keypoints at
the same coordinate on different bands, because keypoints may
hay sub-pixel coordinate and there may be slight difference for
the same points on different bands. To simplify the problem,
stack points are supposed to locate only on the center of each
pixel, which means the coordinates of stack points are integers.
The stack point located at pixel (m,n) , PS

(m,n) , is generated
from keypoints from every bands that meet the requirement as
follows:

PS
(m,n) ⇐ {Pk

(x,y) |
√

(m− x)2 + (n− y)2 < εs} (2)

where Pk
(x,y) is the keypoint located at (x, y) on the kth band.

εs is stack threshold to determine the scope of one stackpoints.
Stack points consisting of t feature points at different bands is
called t-stacked feature points PS

t and is expressed as follows:

PS
t = {PS

(m,n) | ConsNum(PS
(m,n)) = t)} (3)

where ConsNum(PS
(m,n)) is the count of feature points the

stack point PS
(m,n) consists of.

3) Keypoint Description By Panchromatic Image: Local fea-
tures of corresponding panchromatic image are detected and
described by the same detector in step 1). Then panchromatic
keypoints within εp pixel from the nearest stacked feature point
is retained. Their descriptor is used as the stacked feature point
descriptor.

Descst = Descpan where d(Ppan, P
S
t ) < εp (4)

where Descpan is the descriptor of panchromatic keypoint
Ppan. d(Ppan, P

S
t ) is the smallest Euclidean distance between

Ppan and t-Stack Keypoints Set PS
t

Since most hyperspectral camera can not capture correspond-
ing panchromatic image, it is synthesized from hypercube in
our research. 4 different decolorization algorithms are used to
generate panchromatic image, which are 1, Reflectance Mean
of all bands; 2, Radiance integration of all bands; 3, FakeGray:
weighted sum of fake RGB bands (640nm, 550nm and 470nm);
4. Contrast Preserved Decolorization algorithm proposed by
Kang et al. 2018.

3.2 Evaluation Metric

The performance of HSI-SFD is evaluated through image regis-
tration by KNN matching (k=2 in our work). Radio test is ap-
plied to eliminate false-positive matches and a threshold of 0.8
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Figure 1. Schematic of the proposed stacked local feature detector for hyperspectral image

Figure 2. Pseudo-color images of the samples in the database

is used for all test cases. We use the metrics of putative match
ratio, precision, matching score, recall, proposed by Heinly et
al. 2012, to evaluate feature matching. Besides, we also com-
pute the widely used standard metric: repeatability, to test the
performance of detector only.

4. EXPERIMENT

There are two experiments taken in this paper. One studies the
influence of stack count on keypoints count and distribution.
Another one analyses the match performance of HSI-SFD. De-
tails and datasets we used are described as follows.

4.1 Dataset

As there is no publicly available hyperspectral image matching
dataset, a new affine HSI dataset was created to evaluate hyper-
spectral feature detector and descriptor. Inspired by widely used
Oxford VGG-affine dataset and HPatches dataset, geometry re-
lationship between hypercubes in the dataset can be well ap-
proximated by homography matrix. In detail, 8 sequence were

captured by Headwall Nano-Hyperspec camera in laboratory.
All targets are flat object made of different material. View-
port is translated horizontally in 4 sequence (translation dataset)
and rotated in the other 4 scenes (rotation dataset). There are
6 images in translation dataset and 5 images in rotation data-
set. Pseudo-color images of some samples in the dataset are
show in Figure 2. Each hypercube contains 270 spectral bands
within 400-1000nm. Only 163 bands in visible bands, whose
wavelength range is 400-760nm, is used to synthesize panchro-
matic image. Stack points are also detected in these bands for
consistency.

Pixel value of original hyperspectral images is digital num-
ber(DN), and it is influenced by both incident light intensity
and material reflectivity. To get the reflectance data, a reflect-
ance panel is used the estimate the incident light. The light
source we used is a halogen lamp and its light field is uneven.
To overcome this issue, we propose a preprocess shown in fig-
ure 3. Firstly, image of reflectance panel is captured. Then
target is placed just in front of the panel and image is taken
by the same parameters. Follow by dark current correction and
back ground removal, radiance image for both target and panel
are generated. Finally reflectance image is generate by division
and all pixels which does not belong to the target are removed
by masking and croping.

The Nano-Hyperspec is a line-scanning hyperspectral camera.
As a result, geometry relationship between scan-line hyperspec-
tral images cannot be modelled by affine transformation. In or-
der to address this issue, our solution is to generate equivalent
virtual frame hyperspectral image from the original one. Spe-
cifically, virtual image plane is defined the one same as cent-
ral scanline. Then original images are re-projected to the equi-
valent image plane by the line-scan camera geometrical model
presented by Ait-Aider Berry. Camera was calibrated using the
Close-Range Photogrammetry Calibration Field of School of
Remote Sensing and Information Engineering, Wuhan Univer-
sity. Finally, ground-truth affine transformation matrix is com-
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Figure 3. Preprocess of hyperspectral data to generate reflectance image

Figure 4. Number of Stack Points with respect to Stack Count

puted from the corresponding points selected by hands.

4.2 Keypoint distribution

Stack points was detected under different stack count on im-
ages within one dataset and result of BookCover Lica dataset
is shown in Figure 4. As we expected, the count of stacked
feature points decreases as stack count increase. Besides, the
way stack points count decrease shows similar patterns among
images. From 1 to 10 stacked layers, stacked feature points
numbers are rapidly diminishing. Most of filtered features are
invalid ones which can hardly find any matches and are caused
by image noise. Besides, kernel density analysis shows that
features located at texture-less region reduce significantly, as
shown in Figure 5. There is almost no keypoints in these areas
when stack count reaches 10. The feature point matching also
verified that there is no effective match among these features.
Both results indicate that HSI-SFD can make use of band in-
formation to overcome low SNR and get more reliable features.
When stacked band is larger than 10, stacked feature point de-
crease in proportion to stacked band count. For each addition
stack count, the number of keypoints decreases by about 4%.
The result indicates that no feature point can be detected in all
spectral bands. With more spectral information, more local fea-
ture at different spectral range can be detected.

4.3 Keypoints Matching

First, keypoints on all 8 scenes is detected and described by Sift
algorithm and matching between all image pairs using KNN
algorithm. The results are listed in Table 1 & 2. It indicates that
Radiance Integration reports the lowest value of all metrics and
10% approximately less than other decolorization method. The
other 3 methods show similar match performance. However

(a) 1-stack (b) 10-stack (c) Pseudo Color

Figure 5. Kernel aensity analysis of 1 & 10 stack points. Blue
means there is no keypoints while green represent keypoints.

The brighter the color, the more the keypoints.

Table 1. Matching Metric for panchromatic keypoints on
translation dataset (all data are percentage)

PMR Precision MS Recall Repeatability

AveRef 50.54 67.90 36.11 64.59 50.59

Contrast Preserve 46.14 65.85 31.63 60.04 48.20

Radiance 38.52 55.81 23.28 52.86 38.62

FakeGray 51.57 68.36 36.70 68.20 49.47

FakeGray is slightly better, about 1-3% higher in all metrics on
all test cases.

Then, HSI-SFD is applied to all images and 10-stacked fea-
ture point is detected and matched between all image pairs.
The result is shown in Table 3 & 4. All performance met-
rics increase on all test cases. For example, putative match ra-
tio of the best performance test case, FakeGray, increase from
51.57% to 60.44%, precision increase from 68.36% to 72.71%,
matching score increase from 36.7% to 44.60%, recall increase

Table 2. Matching Metric for panchromatic keypoints on
translation dataset (all data are percentage)

PMR Precision MS Recall Repeatability

AveRef 42.71 75.62 33.71 64.58 48.80

Contrast Preserve 42.12 76.05 32.51 63.64 48.77

Radiance 30.70 62.04 20.74 49.32 38.60

FakeGray 47.62 77.11 37.51 70.77 50.31
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Table 3. Matching Metric for 10-stack points on translation
dataset (all data are percentage)

PMR Precision MS Recall Repeatability

AveRef 60.44 72.27 44.59 74.19 56.38

Contrast Preserve 56.84 70.24 40.48 71.57 53.67

Radiance 49.81 69.35 35.17 67.15 48.69

FakeGray 60.17 72.71 44.60 73.83 56.78

Table 4. Matching Metric for 10-stack points on rotation dataset
(all data are percentage)

PMR Precision MS Recall Repeatability

AveRef 51.50 79.84 41.61 69.51 57.63

Contrast Preserve 52.48 80.40 42.35 71.40 57.39

Radiance 42.85 77.88 33.73 61.74 51.91

FakeGray 55.57 81.80 45.71 75.16 58.60

from 68.20% to 74.19% and repeatability increase from 50.59%
to 56.78%. Among all different decolorization methods, 10-
stacked feature points of FakeGray and Reflectance Mean al-
gorithm show much the same result on putative match radio,
matching score, recall and repeatability, which are 4 5% bet-
ter than the other two decolorization methods and 2% better on
precision. For translation and rotation dataset, matching metric
increase much the same, which indicate that proposed method
is robust to rotation and view port change.

5. CONCLUSION

HSI-SFD can not only effectively improve the accuracy and re-
liability of feature point detection, but also have a good suppres-
sion effect on noise, which can effectively improve matching
accuracy of feature points in hyperspectral images. At the same
time, compared with the existing hyperspectral feature point ex-
traction methods, such as 3D-SIFT, SS-SIFT, etc., the method
proposed in this paper can perform multi-band parallel comput-
ing and effectively solve the problems of 3D-SIFT-like methods
in memory and computation speed.

References

Ait-Aider, O., Berry, F., 2019. A flexible calibration method for
the intrinsic and mechanical parameters of panoramic line-scan
cameras. Computer Vision and Image Understanding, 180, 47–
58. https://doi.org/10.1016/j.cviu.2019.01.004.

Al-khafaji, S. L., Zhou, J., Zia, A., Liew, A. W.-C. C., 2018.
Spectral-Spatial Scale Invariant Feature Transform for Hyper-
spectral Images. IEEE TRANSACTIONS ON IMAGE PRO-
CESSING, 27(2), 837–850.

Bay, H., Ess, A., Tuytelaars, T., Gool], L. V., 2008. Speeded-Up
Robust Features (SURF). Computer Vision and Image Under-
standing, 110(3), 346 - 359. Similarity Matching in Computer
Vision and Multimedia.

Christiansen, P. H., Kragh, M. F., Brodskiy, Y., Karstoft, H.,
2019. UnsuperPoint: End-to-end Unsupervised Interest Point
Detector and Descriptor.

Csurka, G., Dance, C. R., Humenberger, M., 2018.
From handcrafted to deep local features. 1–41.
http://arxiv.org/abs/1807.10254.

DeTone, D., Malisiewicz, T., Rabinovich, A., 2018. SuperPoint:
Self-supervised interest point detection and description. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), IEEE.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J.,
Torii, A., Sattler, T., 2019. D2-Net: A Trainable CNN for Joint
Detection and Description of Local Features. Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition.

Feng, S., Itoh, Y., Parente, M., Duarte, M. F., 2017. Hyper-
spectral Band Selection From Statistical Wavelet Models. IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENS-
ING, 55(4), 2111–2123.

Heinly, J., Dunn, E., Frahm, J.-M., 2012. Comparative eval-
uation of binary features. A. Fitzgibbon, S. Lazebnik, P. Per-
ona, Y. Sato, C. Schmid (eds), Computer Vision – ECCV 2012,
Springer Berlin Heidelberg, Berlin, Heidelberg, 759–773.

Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M.,
Trulls, E., 2020. Image Matching across Wide Baselines: From
Paper to Practice. arXiv.

Kang, X., Duan, P., Li, S., Benediktsson, J. A., 2018.
Decolorization-Based Hyperspectral Image Visualization.
IEEE Transactions on Geoscience and Remote Sensing, 56(8),
4346–4360. https://doi.org/10.1109/tgrs.2018.2815588.

Lenc, K., Vedaldi, A., 2016. Learning Covariant Feature De-
tectors. G. Hua, H. Jégou (eds), Computer Vision – ECCV 2016
Workshops, Springer International Publishing, Cham, 100–117.

Li, Y., Li, Q., Liu, Y., Xie, W., 2018. A spatial-spectral SIFT
for hyperspectral image matching and classification. Pattern
Recognition Letters, 0, 1–9. https://doi.org/10.1016/j.
patrec.2018.08.032.

Lowe, D. G., 2004. Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of Computer Vis-
ion, 60(2), 91–110. https://doi.org/10.1023/b:visi.

0000029664.99615.94.

Mukherjee, A., Velez-Reyes, M., Roysam, B., 2009. Interest
Points for Hyperspectral Image Data. IEEE Transactions on
Geoscience and Remote Sensing, 47(3), 748–760.
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F., Heras, D. B., 2018. Alignment of Hyperspectral Images Us-
ing KAZE Features. Remote Sensing, 10(5), 756.

Rister, B., Horowitz, M. A., Rubin, D. L., 2017. Volumetric Im-
age Registration From Invariant Keypoints. IEEE Transactions
on Image Processing, 26(10), 4900–4910.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-495-2020 | © Authors 2020. CC BY 4.0 License.

 
499



Vedaldi, A., Fulkerson, B., 2008. VLFeat: An open and
portable library of computer vision algorithms. http://www.
vlfeat.org/.

Zhang, X., Yu, F. X., Karaman, S., Chang, S.-F., 2017. Learning
discriminative and transformation covariant local feature de-
tectors. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-495-2020 | © Authors 2020. CC BY 4.0 License.

 
500




