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ABSTRACT: 

Precise point cloud classification can enhance lidar performance in various applications, such as land cover mapping, forestry 

management and autonomous driving. The development of multispectral lidar improves classification performance with rich spectral 

information. However, the employment of spectral information for classification is still underdeveloped. Therefore, we proposed a 

spectrally improved classification method for multispectral LiDAR. We conducted spectral improvement in two aspects: (1) we 

improved the eigenentropy-based neighbourhood selection by spectral angle match (SAM) to reform the more reliable neighbour; (2) 

we utilized both geometric and spectral features and compare the contributions of these features. A three-wavelength multispectral 

lidar and a complex indoor experimental scene were used for demonstration. The results indicate the effectiveness of our proposed 

spectrally improved method and the promising potential of spectral information on lidar classification.  

1. INTRODUCTION

Since the invention of lidar, lidar point cloud classification has 

attracted considerable attention in the field of remote sensing 

(Vosselman and Maas 2010). Precise point cloud classification 

can enhance lidar performance in various applications, such as 

land cover mapping, forestry management and autonomous 

driving.  

There are many traditional single-wavelength LiDAR data 

classification studies, which are limited by the lack of spectral 

information. The spectral information from passive technologies 

could remedy this limitation, but the data fusion need to deal with 

the problem of the varying illumination conditions (Malik et al. 

2007) and the registration problem (Zhang et al. 2015). The 

development of multispectral lidar successfully obtains spectral 

and spatial information simultaneously (Hakala et al. 2012; Wei 

et al. 2012; Woodhouse et al. 2011). With years of development, 

the multispectral lidar has been gradually effective and practical 

(Chen et al. 2019c; Ren et al. 2018). 

Many researchers try to explore the advantages of spectral 

information on classification. Basically, the raw spectral 

intensities with or without normalization were directly employed 

for classification (Gong et al. 2015; Kaasalainen and Malkamäki 

2020). For target recognition, the raw spectral intensities could 

also be compared with library spectra (Myntti 2015). Then, 

similar with the development of passive multispectral technology, 

researcher designed the active spectral (vegetation) indices for 

spectral feature extraction (Morsy et al. 2016; S. Kaasalainen 

2017). Considering the different influences on different 

incidence angles, the spectral indices (SI) may not perfectly 

remove the incidence angle effect (Kaasalainen et al. 2018). But 

SI still improves the classification performance than raw spectral 

intensities because of the alleviation of the radiometric 
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uncertainty of instrument and incidence angle (Shi et al. 2015). 

Except the spectral index, more spectral features were proposed 

for classification, e.g., the spectral statistical parameters 

(Vauhkonen et al. 2013) and color features (Chen et al. 2019a). 

In addition, the spatial information is combined with spectral 

information to enhance the classification. Focusing on the sparse 

signal, the hierarchical Bayesian model is used for distance 

estimation and classification on single-photon system (Altmann 

et al. 2018). The hierarchical method processing spectral and 

spatial information in several phases is also popular (Chen et al. 

2017; Chen et al. 2019b; Suomalainen et al. 2011). In former 

works, the spectral information was not fully utilized for 

classification. multispectral point cloud. The methods exploring 

the potential of spectral information need to be developed. 

Therefore, we proposed a spectrally improved classification for 

multispectral LiDAR. Our method was developed based on the 

fundamental framework for pointwise point cloud classification 

proposed by Weinmann et al. (2015). This fundamental 

framework achieved nice classification result and had been used 

by many researchers. That fundamental framework was designed 

for single-wavelength LiDAR, and the spectral information was 

not considered in the neighbourhood selection and feature 

extraction. To explore the advantage of the spectral information 

form multispectral LiDAR, we improved the framework in two 

aspects: (1) we improved the eigenentropy-based neighbourhood 

selection by spectral angle match (SAM) to reform the more 

reliable neighbour; (2) we utilized both geometric and spectral 

features and compare the contributions of these features. A three-

wavelength multispectral lidar and a complex indoor 

experimental scene were employed for demonstration. 
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2. METHOD

In this research, the multispectral lidar point cloud classification 

consists three phases: (1) neighbourhood selection, (2) feature 

extraction and classification, and (3) refinement of classification 

result. In the first phase, the spectral information is used to 

construct a more precise neighbourhood. In the second phase, 

seven spectral and ten geometric features are constructed and the 

most important features are selected for classification by random 

forest. In the third phase, the spectral and spatial information are 

employed by conditional random field for label smoothing. 

2.1 Spectrally Improved Neighborhood 

For neighborhood selection, we used the spectral similarity to 

construct a novel spectrally improved eigenentropy-based 

neighborhood selection. We first conducted the popular 

eigenentropy-based neighborhood selection. After that, every 

point obtained their own optimized eigenentropy-based k nearest 

neighborhood. After the decision of k, we expanded the 

neighborhood with 1.5*k nearest points as an alternative 

neighborhood. Next, the spectral similarity between the 

alternative neighborhood points and the center point were 

measured according to SAM. SAM is chose as a common 

spectral similarity measurement approach, which is much less 

sensitive to the brightness. Finally, the k most spectrally-similar 

points in the alternative neighborhood reformed the spectrally 

improved eigenentropy-based neighborhood.  

This spectra-improved modification on neighbourhood selection 

is based on the hypothesis that the spectrum-similar points tend 

to be from the same material and have similar spectral and 

geometric attributes. Compared with the traditional 

eigenentropy-based neighborhood, the spectrally improved 

neighborhood may extract the more precise geometric and 

spectral features and then result in a higher classification 

accuracy. 

2.2 Feature Extraction and Selection 

In former lidar classification research, the geometric features are 

the main information for classification, because the radiometric 

calibration on intensity is not well-developed. After the 

improvement of the intensity data quality and the radiometric 

calibration, the intensity features could be used for classification, 

which principally improves the classification result, which has 

been demonstrated in many studies (Yan and Shaker 2014).  

In this research, 7 kinds of spectral features and 11 geometric 

features are designed, and then the feature selection is conducted 

to figure out the most effective features for multispectral LiDAR 

classification.  

2.2.1 Spectral Feature: We totally constructed 7 kinds of 

spectral features. Firstly, we employed four moments of statistics: 

the first raw moment (mean), positive square root of the second 

central moments (standard deviation), the third central moments 

(skewness), and the fourth central moment (kurtosis). The four 

features indicate the statistical spectral attributes of 

neighborhood points. Based on the assumption that points from 

the same class shares the similar spectra, the feature of mean is 

supposed to be an effective feature. The formulas of these 

features are expressed in the following: 
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Where the subscript 𝑗 ∈ 𝐽  indicate the spectral channel 𝑗 . 

𝑚𝑒𝑎𝑛𝑗  is the mean of intensities in spectral channel 𝑗 ∈ 𝐽, 𝐾

indicates the number of neighborhood points, 𝐼𝑗𝑘 is the intensity

of the point 𝑘 ∈ 𝐾 in spectral channel 𝑗 ∈ 𝐽.  

In addition, the coefficient of variation (CV) and ratio of one 

channel to all (ratio) are also considered.   

𝐶𝑉𝑗 =
𝑠𝑡𝑑_𝑑𝑒𝑣𝑗

𝑚𝑒𝑎𝑛𝑗
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Besides, we borrowed ideas from the passive multispectral 

technology to construct SI. The SI used in this research is 

designed by the normalized difference vegetation index (NDVI), 

because NDVI is one of the most popular and effective indices.  

𝑆𝐼𝑚𝑛 =
𝑚𝑒𝑎𝑛𝑚 − 𝑚𝑒𝑎𝑛𝑛

𝑚𝑒𝑎𝑛𝑚 + 𝑚𝑒𝑎𝑛𝑛

Where the 𝑆𝐼𝑚𝑛  is the spectral index constructed by mean of

channel m and n. Based on this formula, we build 𝐶𝐽
2 spectral

indies.  

2.2.2 Geometric Feature: We used 11 common geometric 

features, which has been widely used in lidar classification. 

These features are calculated based on a 3D structure tensor 

represented by the local covariance matrix derived from the 3D 

coordinates of neighborhood points. The first three geometric 

features are three eigenvalues of this 3D structure tensor: 

𝜆1, 𝜆2 and 𝜆3. Then, three saliencies, named linearity, planarity

and sphericity, are constructed based on these eigenvalues . In 

addition, we also involved sum of eigenvalues, omnivariance, 

anisotropy, and eigenentropy.  
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3
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𝐶𝜆 = 𝜆3/(𝜆1 + 𝜆2 + 𝜆3) 

These defined spectral and geometric features are corresponded 

to different quantities and units. Therefore, a normalization was 

conducted to map each dimension onto the interval [0,1].  
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2.2.3 Feature Selection: After the construction of spectral 

and geometric features, there might be some useless features 

increase feature redundancy the computational cost. Therefore, 

we used the random forest to evaluate the importance of features, 

according to which, the most useful ones are selected for 

classification to decrease the overfitting and computational time 

(Dash and Liu 1997).   

In this research, we used the random forest for classification as it 

offers a good trade-off between efficiency and accuracy 

(Breiman 2001). We also evaluate the feature importance by 

random forest. In random forest or decision trees, every internal 

node provides a division of samples based on a single feature. 

The quality of a split is measured by impurity, which could be 

described as information gain or Gini impurity. Nodes with the 

greatest decrease in impurity occur at the head of trees. In 

contrast, nodes with the least decrease in impurity appear at the 

end of trees. In a random forest, the impurity decreases are 

averaged as the mean decrease in impurity, according to which 

the feature importance is ranked.  

2.3 Classification and CRF 

In this research, the random forest and CRF were used for 

classification and label smoothing. As one of ensemble learning 

methods, random forest is a good trade-off on accuracy and 

efficiency. A random forest contains a few decision trees and 

provides additional randomness while training the decision trees. 

Each decision tree would produce its own response. After that, 

the final result would be the most popular output voted by all 

decision trees in the random forest. Random forest improves the 

robustness and classification accuracy, compared with a single 

decision tree. 

CRF (Lafferty et al. 2001) is used in this research because CRF 

has been widely demonstrated to be effective by both terrestrial 

and airborne lidar (Vosselman et al. 2017). The association 

potential can be delineated by the posterior probability of random 

forest. For interaction potentials, the contrast-sensitive Potts 

model (Boykov and Jolly 2001) is employed. After the 

construction of the graph and potential, the loopy belief 

propagation (LBP) (Frey and MacKay 1998) is performed to 

maximize the posterior probability. 

3. EXPERIMENTAL INSTRUMENT AND MATERIALS

3.1 Experimental Instrument 

The experimental instrument employed in this research is a three-

wavelength multispectral lidar. The three wavelengths are 466, 

527, and 628 nm. The laser source is a supercontinuum laser 

(SuperK, NKT Photonics). The transmitted spectrum covers from 

450 nm to 2000 nm and the pulse repetition rate is 20 kHz. After 

the transmission of the laser beam, it is reflected by a scanning 

mirror for 3D scanning. Then, the laser beam would be 

backscattered by the detection target. The backscattered signal 

would be reflected by the mirror again and into the optical 

receiving unit. Next, two dichroic mirrors would divide the echo 

signal into different wavelengths, which would be transformed 

into electric signal by three avalanche photodiodes.  

3.2 Experimental Materials 

A complex indoor experimental scene is used for validation as 

illustrated in Figure 2. The scene includes 14 materials with 

different spatial and spectral properties. The detection distance is 

about 7m. The experimental targets include a piece of black paper, 

a Sansevieria trifasciata plant, two ceramic flowerpots, two 

brown cardboard boxes, a blue lamp, a black ceramic vacuum 

cup, a white ceramic drinking cup, a yellow cellulose tape, a 

wooden box, Pachira macrocarpa leaves, P. macrocarpa trunk, 

a blue plastic bin, and a carrot-like ceramic object in the bin. 

Figure 2. Experimental scene containing 14 materials 

After the scanning of the experimental scene, the multispectral 

lidar point cloud is obtained as shown in Figure 3. The size is 

about 1.01 × 0.51 × 0.35 m, and 6684 points were produced. We 

conducted the reference target-based radiometric calibration to 

obtain the precise spectral information of every point. The effects 

of detection distance and beam incidence angle on spectral 

intensities are calibrated through it.  

Figure 3. Multispectral lidar point cloud after the reference 

target-based radiometric calibration.  

4. RESULTS

4.1 Neighborhood Selection and Features 

We compare the classification results with traditional 

eigenentropy-based neighborhood selection and spectrally 

improved neighborhood selection. Figure 4 shows the random 

forest classification accuracies with different feature sets, in 

which CRF is not conducted yet.  

Figure 4. The comparative result of neighbour selection based 

on random forest classification. The left, medium and right bars 

indicate the result based on feature sets of the geometrical & 

spectral, only geometrical, and only spectral features.  
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The comparative classification results demonstrated the 

advantages of spectral information in two ways: neighbour 

selection and classification features. The classification accuracy 

results indicated that our proposed spectrally improved 

neighborhood selection method outperformed the traditional 

eigenentropy-based method, especially for the geo & spe 

(improved from 87.26% to 92.37%) and the spectral only features 

(improved from 84.62% to 87.01%). To explain the reason why 

it could increase the classification accuracy, we show an example 

for exhibiting the superiority of the spectrally improved 

neighborhood in Figure 5. 

(a)                     (b) 

Figure 5. Neighborhood of (a) eigenentropy-based method, and 

(b) spectrally improved method. The red points are the

neighborhood points. 

Figure 5 indicates a neighborhood example of a centre point in 

the blue plastic bin. The spectrally improved neighborhood 

selection successfully removed the falsely neighborhood points 

from the carrot-like ceramic object in the bin. The spectral 

similarity could distinguish the spectral difference between these 

two targets. That demonstrated the effectiveness of our proposed 

spectrally improved neighborhood selection.  

The advantage of spectral information is also revealed in 

classification features. As shown in Figure 4, the classification 

result based on spectral features produce much higher overall 

accuracies than the geometric features. That might be not only 

owning to the better prediction capability of spectral features, but 

also owning to the complex indoor scene.  

We evaluated the feature importance by random forest and 

figured out that the spectral features obtained higher 

contributions than geometric features. The most important 

features are ordered decreasingly here: mean_spe, SI_spe, 

StdDev_spe, Skew_spe, CV_spe, Kurtosis_spe, Eigenvalue_geo, 

ChangeofCurv_geo, Sphericity_geo, Anisotropy_geo, and 

Omnivariance_geo. Therefore, the spectral features contributed 

much more than geometric features for multispectral lidar 

classification. 

4.2 CRF 

The results in figure 6 showed the effective performance of CRF 

on labelling smoothing. And the overall accuracy of the random 

forest and CRF are 88% and 93%, respectively. The salt-and-

pepper noise errors were significantly alleviated by CRF, though 

the overall accuracy was not much improved. In addition, the 

error points in the black paper, the Sansevieria trifasciata plant, 

the brown cardboard box, and the black ceramic vacuum cup 

were almost corrected.  

(a) 

(b) 

Figure 6. Result based on (a) random forest and (b) CRF. The 

green and red points indicate the correct and false points, 

respectively. 

5. CONCLUSION

To sum up, this paper studied a spectrally improved classification 

method for multispectral lidar. The main improvements were on 

the neighbour selection and feature extraction. Finally, the CRF 

was employed for labelling smoothing. We demonstrated our 

proposed method with an indoor complex scene and a three-

wavelength multispectral lidar. The experimental results showed 

that the spectral information could help for more precise 

neighbour selection and the more effective feature extraction, and 

finally contributed to a higher classification overall accuracy. 
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