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ABSTRACT: 

 

With the rapid development of autonomous vehicles (AV) and high-definition (HD) maps, up-to-date lane marking information is 
necessary. Over the years, several lane marking extraction approaches have been proposed with many of them based on accurate and 
dense Light Detection and Ranging (LiDAR) point cloud data collected by mobile mapping systems (MMS). This study proposes a 
normalized intensity thresholding strategy and a deep learning strategy with automatically generated labels. The former extracts lane 
markings directly from LiDAR point clouds while the latter utilizes 2D intensity images generated from the LiDAR point cloud. 
Additionally, the proposed approaches are also compared with state-of-the-art strategies such as original intensity thresholding and a 
deep learning approach based on manually established labels. Finally, each strategy is evaluated in asphalt and concrete pavements 
separately to assess their sensitivity to the nature of pavement surface. The results show that the deep learning model trained with 
automatically generated labels performs the best in both asphalt and concrete pavement area with an F1-score of 84.9% and 85.1%. 

In asphalt pavement area, original intensity thresholding strategy shows a lane marking extraction performance comparable to the 
other strategies while in concrete pavement area, it is significantly poor with an F1-score of 65.1%. Between the proposed 
normalized intensity thresholding and deep learning model trained with manually labeled data, the former performs better in asphalt 
pavement area while the latter obtains better results in concrete pavements. 
 

 
*  Corresponding author 

┼   Indicates equal contribution 

1. INTRODUCTION 

With the advent of autonomous vehicles (AV) and advanced 
driver assistance systems (ADAS), high-definition (HD) maps 
with lane-level details such as pedestrian crosswalks, signalized 
intersection, and bike lanes are necessary for navigation and 
route planning. Lane markings form an integral part of such 
maps, and thus their extraction is essential. In addition, clearly 
identifiable lane markings are critical elements of traffic 
management systems and accident mitigation. Especially in 
populated urban areas, worn-out lane markings have led to 
many car accidents [1]. Therefore, it is required to provide 
detailed and up-to-date information about lane markings along 

the road surface. 
A number of studies have detected lane markings through 
imagery or videos; however, these approaches cannot provide 
precise information about the reflective properties of lane 
markings. In order to accurately evaluate the quality of lane 
markings, LiDAR point clouds are chosen in this research since 
they can be obtained in a short interval of time with high 
density and accuracy without being affected by weather, 
lighting, or occlusions. Additionally, the intensity information 
provided by LiDAR can be used to assess the quality of lane 
markings by departments of transportation for road maintenance 
operations. 

Since lane markings are retro-reflective materials painted on 
low albedo pavements (asphalt or concrete), the extraction using 
LiDAR point clouds mainly depends on intensity thresholding. 
Many researchers also rasterized the point cloud into an 
intensity image for lane marking extraction to reduce 
computations. Thus, LiDAR data-based strategies can be 
classified into two categories based on input data: (1) 3D 

LiDAR point cloud-based extraction, and (2) 2D LiDAR 
intensity image-based detection. For extraction of lane markings 
directly from a point cloud, Yu et al. [2] at first partitioned the 
road surface point cloud into multiple blocks across the driving 
direction to account for varying point density and intensity 
distribution. Subsequently, Otsu’s threshold was applied to 
extract candidate lane markings. Finally, false positives were 

eliminated by first defining a spatial density filter. Points with a 
spatial density less than a threshold would be considered as 
noise and hence removed. Yan et al. [3] divided the LiDAR data 
into scanlines which are computationally less expensive to 
process. Non-lane marking points were then removed through 
intensity-based filtering that preserved lane marking points at 
the edge. Lastly, all points located between edge points were 
extracted as lane marking points. Yang et al. [4] implemented 
an adaptive block and multi-threshold detection method to 
account for intensity variation in the point cloud due to scanner-
to-object distance and incidence angle. The road surface point 

cloud at first was segmented along the driving direction. Then, 
each segment was divided into several blocks across the driving 
direction. For each block in each segment, Otsu’s threshold and 
a gradient threshold were calculated. The latter depends on the 
average intensity value of the center block, maximum block 
width, and the number of blocks in each section. The greater of 
these two thresholds was considered optimal to binarize point 
clouds in a block for lane marking extraction. 
For lane marking extraction from LiDAR intensity images, 
Guan et al. [5] used an Inverse Distance Weighting (IDW) 
strategy to calculate pixel values in intensity images generated 
from road surface point clouds. Multiple scanning-distance-

based thresholds were then applied to extract lane markings in 
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the intensity images. The markings were further refined by 

application of Otsu’s thresholding and morphological 
operations. Kumar et al. [6] began by generating two raster 
images based on intensity and range values. Thereafter, a range 
and cross-slope value-based threshold was applied for lane 
marking extraction. Morphological operations were then 
utilized to remove outliers. Soilán et al. [7] first hypothesized a 
Gaussian Mixture Model for intensity distribution. They defined 
two classes – a class with a larger fraction of points and low-
intensity values belonging to pavement and a class with high-
intensity values and a smaller number of points belonging to 
lane markings. Each point is assigned to a class based on higher 
posterior probability. Intensity images were then created from 

the high-intensity class to ensure minimum points are 
processed. Finally, the lane markings are extracted through 
application of Otsu’s threshold and an area-based filter. Yao et 
al. [8] proposed another LiDAR intensity image-based lane 
marking extraction approach. The image pixel values were 
calculated based on IDW interpolation where the chosen pixel 
size is close to point spacing. An adaptive thresholding strategy 
was applied to extract lane marking by first generating an 
integral image from the original intensity image [9]. In an 
integral image, each pixel value is a sum of the top-left 
rectangular area of the original image. Then, the original image 

was binarized based on the sum of pixel values in its 
neighborhood in the integral image. 
With the ever-growing popularity of deep learning architectures, 
researchers have resorted to various image segmentation 
convolutional neural networks for extracting lane markings 
from intensity images. He et al. [10] proposed a lane marking 
detection strategy based on a Segnet inspired architecture which 
is a fully convolutional neural network (FCNN). They first 
normalized the intensity values in point cloud based on their 
mean and standard deviation, followed by their scaling to a 
range of 0 to 255. They generated 12,729 intensity images with 
cell size equivalent to an area of 1 cm2. Out of these images, 

2,729 were used for training the network. Wen et al. [11] also 
adopted an FCNN approach for lane marking extraction. They 
generated intensity images from road surface point cloud at a 
resolution of 4 cm. 3,000 images in highway and urban areas 
were manually labeled to train a U-net model. Another training 
dataset of 1,000 images was curated from an underground 
garage to train the second U-net model. While learning-based 
approaches are robust to intensity and point density variation, 
generating labeled training data is a major hurdle that prevents 
their ubiquitous adoption. 
An important aspect of lane marking extraction with LiDAR 

intensity values is the nature of pavement surface. Adrian et al. 
[12] found that the average luminance of concrete pavements 
was 1.77 times that of asphalt pavements. This means that 
concrete surfaces, in general, are more reflective. Puttonen et al. 
[13] measured spectral and directional reflection properties of 
asphalt and concrete surfaces under sun exposure. Brightness 
was characterized by a bidirectional reflection factor which 
ranged between 0.14 to 0.41 for concrete surface and between 
0.27 to 0.32 for asphalt surface over the electromagnetic 
spectrum of 400 nm to 2500 nm. Moreover, concrete surfaces 
showed higher reflectance in 1000 nm to 1500 nm spectrum 

which is typically the wavelength of laser beams in LiDAR 
scanners. These studies indicate that performance of lane 
marking extraction strategies based on LiDAR intensity values 
must be evaluated with respect to pavement surface. 
Based on above literature, it is evident that there is a gap in 
analyzing the sensitivity of LiDAR-based lane marking 
extraction strategies to pavement material (asphalt and concrete) 
even though reflectivity depends, to a large extent, on nature of 
pavement surface. Further, intensity thresholding strategies 

obtain a high number of false positives due to intensity variation 

caused by object-to-scanner distance and incidence angle. Even 
though adaptive thresholds or intensity calibration are sought as 
solutions, they require prior knowledge or assumptions for 
modeling intensity distribution. On the other hand, though deep 
learning approaches overcome such issues, they are still marred 
by the fact that a huge amount of data must be labeled manually 
for them to be effective. These challenges have been addressed 
in this paper whereby two approaches for lane marking 
extraction are proposed. In summary, the main contributions of 
this research are: 
1. A 3D point cloud-based normalized intensity thresholding 

strategy is implemented for lane marking extraction where 

the normalization can be applied independent of the 
reference target. 

2. A 2D intensity image-based deep learning strategy is also 
developed where labeled data is generated through an 
automated procedure. Thus, abundant training samples are 
generated in a short interval of time. 

3. These approaches are compared with state-of-the-art 
strategies such as original intensity thresholding and deep 
learning based on manually labeled data over 3 datasets. 

4. Based on the hypothesis that LiDAR data-driven lane 
marking extraction is sensitive to pavement surface nature, 

all four strategies have been separately evaluated in asphalt 
and concrete pavements. 

 
2. MOBILE MAPPING SYSTEMS DESCRIPTION 

A wheel-based MMS is used in the research, as shown in Figure 
1. It is equipped with four 3D LiDAR scanners: three Velodyne 

HDL-32E and one Velodyne VLP-16 Puck Hi-Res. The HDL-
32E scanner consists of 32 radially oriented laser rangefinders 
while VLP-16 has 16 of them. The specifications of both kinds 
of LiDAR scanners are list in Table 1. Additionally, this MMS 
is also mounted with three FLIR Grasshopper3 9.1MP GigE 
cameras (two forward-facing and one rear-facing). All the 
cameras are synchronized to capture RGB imagery with a 
maximum resolution of 9.1 MP at a rate of 1 frame per second 
per camera. The LiDAR and imaging sensors are geo-
referenced by an Applanix POSLV 220 GNSS/Inertial 
Measurement Unit (IMU) navigation system. The GNSS 

collection rate is 20 Hz, and the IMU measurement rate is 200 
Hz. 
 

LiDAR 

Scanner Field of View 
Points 

Captured

/sec 
Range 

Velodyne 

HDL-32E 
Vertical: 40° (-30.67° to 10.67° ) 

Horizontal: 360° 
57 10  

100 m 

(accuracy 

of ± 2 cm) 

VLP-16 

Puck Hi-

Res 

Vertical: 20° (-10° to 10°) 

Horizontal: 360° 
53 10  

100 m 

(accuracy 

of ± 3 cm) 

Table 1. Specifications of LiDAR scanners mounted on the 
wheel-based mobile mapping systems (MMS) 

To geo-reference point clouds from the different LiDAR 
scanners, mounting parameters between the onboard LiDAR 
scanners and GNSS/IMU unit are estimated through a system 
calibration strategy [14]. Simultaneously, a forward and 
backward projection between the reconstructed point cloud and 
RGB imagery can be achieved using the trajectory information 
and mounting parameters, which were estimated using the 
LiDAR-camera calibration procedure [15]. The projection 
facilitates the assessment of the performance of the different 
lane marking extraction strategies. An example is illustrated in 
Figure 2 where corresponding image and LiDAR point cloud 

are shown. The magenta circle in the former is projected onto 
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the corresponding LiDAR point cloud (displayed as a red dot). 

Hereafter, a red dot will represent a location in the LiDAR point 
cloud, while magenta circle will display the same location in 
RGB imagery. 
 

 
Figure 1 The wheel-based mobile mapping systems (MMS) 

used in this research 

 
Figure 2. Projection of a location (empty magenta circle) in a 

RGB imagery onto the corresponding LiDAR Point cloud (red 
dot) using the estimated LiDAR/camera/GNSS/IMU system 

calibration parameters 

3. MOBILE MAPPING SYSTEMS DATASETS 

All strategies in this research were evaluated on two datasets 
collected over an interstate highway and one acquired over a 
rural highway. The used sensor, length of asphalt or concrete 

pavements, average local point spacing (LPS) [16], and average 
driving speed are listed in Table 2. The location of each dataset 
along with regions of concrete pavement is shown in Figure 3. 
 

 

 

(a) (b) 
Figure 3. Trajectory, concrete pavement distribution, and 

regions of interest (ROIs) for generating intensity normalization 

maps of each LiDAR-based MMS dataset in (a) dataset 1 and 2, 
and (b) dataset 3 

Dataset 
Used 

Sensors 

Length of 

pavement (mile) 

Average 

LPS 

Average 

Speed 

1 

HDL32E-F 1 

HDL32E-L 1 

HDL32E-R 1 

Asphalt: 15.55 

Concrete: 2.49 
3.11 cm 

45.62 

mph 

2 

HDL32E-F 1 

HDL32E-L 1 

HDL32E-R 1 

VLP16 

Asphalt: 27.65 

Concrete: 6.22 
3.19 cm 

47.42 

mph 

3 

HDL32E-F 1 

HDL32E-L 1 

HDL32E-R 1 

VLP16 

Asphalt: 2.23 

Concrete: 13.06 
3.16 cm 

47.70 

mph 

1 HDL32E-F, HDL32E-L, and HDL32E-R denote different LiDAR 

sensors of the same model 

Table 2. Description of the three LiDAR-based MMS point 
clouds 

4. METHODOLOGY 

Figure 4 presents the proposed framework for lane marking 
extraction in this research. The road surface point cloud is at 
first extracted from the MMS-based LiDAR point cloud [17]. 
Thereafter, the road surface point cloud is directly processed 
through original and normalized intensity thresholding 
strategies to obtain lane markings. On the other hand, for deep 
learning-based detection, intensity images are generated from 
the same road surface point cloud. Two U-net models are 
trained: one on manually-established labels and another on 
automatically-generated labels. The latter is obtained from the 
lane markings extracted through the normalized intensity 

thresholding strategy. Finally, the performance of these 
strategies is compared in asphalt and concrete pavement areas. 
 

 
Figure 4. Flowchart of the proposed framework for lane 

marking extraction 

The rest of this section describes lane marking extraction 
strategies implemented in this research Section 4.1 elaborates 
on 3D point cloud-based lane marking extraction: original and 

normalized intensity thresholding strategies, collectively 
referred to as "intensity thresholding approaches". Section 4.2 
details the lane marking detection from 2D intensity images 
through deep learning strategies based on manually-derived and 
automatically-established labels, denoted as "deep learning 
approaches". 
 
4.1 Point Cloud-based: Intensity Thresholding Approaches 

In order to evaluate the performance of the proposed normalized 
intensity thresholding strategy, a state-of-the-art strategy – 
original intensity thresholding – is implemented [17]. This 
strategy extracts hypothesized lane markings by thresholding 
original intensity values using a 5th percentile threshold. Then, 
a noise removal strategy is applied to obtain final lane 
markings. However, this strategy obtains a large number of 
false positives, especially in highly reflective concrete pavement 
regions. On the other hand, for the normalized intensity 

thresholding strategy, the intensity values are normalized before 
applying a threshold to reduce false positives. This 
normalization procedure assumes the same objects should 
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exhibit similar intensity values acquired from different laser 

beams [18, 19]. Specifically, the normalized intensity value 
corresponding to an original value observed by a particular 
beam is calculated as the conditional expectation of intensity 
observed by other beams for the regions where that beam 
observed the given intensity value. The normalized intensity 
thresholding strategy includes the following five steps: 
1. For a given dataset, a small section is randomly chosen from 

the road surface point cloud.  
2. The LPS of the small road surface point cloud is evaluated 

for determining the cell size [16]. Then, the point cloud is 
gridded into cells. For each cell, intensity values and laser 
beam IDs of the points that lie within its bounding box are 

stored. 
3. For a given laser beam b that recorded an intensity value i, 

all the cells containing the pair (b, i) are searched. The 
average intensity over these cells is computed, ignoring 
values observed by beam i. The resultant average is the 
normalized intensity of (b, i), and a lookup table (LUT) 
stores all the original and normalized intensity values. 

4. The original intensity values of the whole dataset are then 
normalized using the LUT.  

5. Hypothesized lane markings can be extracted from the 
normalized road surface point cloud using the 5th percentile 

intensity threshold. 
6. The false positives of derived hypothesized lane markings 

are removed using the strategy proposed by Ravi et al. [17]. 
It is worth noting that the small road surface point cloud 
randomly selected to generate LUTs belonged to a concrete 
pavement area where high-intensity values are observed for 
both pavement surface and lane markings. It is also assumed 
that there is no negative effect on the intensity contrast between 
lane markings and asphalt pavements upon normalization even 
though the small segment of the road surface point cloud 
belongs to a concrete region. This is evident by the results 
presented later in section 5.1. Another important consideration 

in LUT generation is the designated cell size. In this research, 
the cell size is determined based on a multiplication factor 
threshold (ThMF) and the LPS of the selected point cloud [16]. 
In addition, LUTs are generated for each dataset because the 
driving speed varies from one dataset to another. Additionally, 
the number of laser beams and scanning orientation changes the 
LPS of LiDAR scanners mounted on our MMS, so the selected 
point cloud is split according to the used scanners. The above 
steps in this strategy are applied to the selected point cloud of 
each sensor in each dataset. 
 

4.2 Intensity Image-Based: Deep Learning Approaches 

As stated earlier, two U-net models [20] are trained using 
manually-established and automatically-generated labels. These 
deep learning approaches include the following four steps: 
1. Road surface point cloud is at first partitioned into point 

cloud blocks. Then, these blocks are rasterized into intensity 

images 
2. Intensity images are manually labeled for the first U-net 

model (referred to as "U-net model 1"). On the other hand, 
for the second U-net model (referred to as "U-net model 2"), 
labels are generated automatically using the lane markings 
obtained from the normalized intensity thresholding 
strategy. 

3. The manually-established and automatically-generated 
labels are utilized for training U-net model 1 and 2, 
respectively. 

4. The lane markings in intensity images are detected through 

the trained U-net models. 

For intensity image generation, the most important factor is the 

cell size. An optimal cell size avoids time-consuming 
calculations and maintains an adequate level of lane marking 
details in the image. In addition, the width of mapped roads, as 
well as the LPS of available data, are the other two important 
considerations in cell size selection. The width of highways 
surveyed in this research varied between 12 to 16 meters 
(including shoulder width). Thus, the road surface point cloud is 
partitioned into blocks of length 12.8 meters along the driving 
direction, as shown in Figure 5 (a) and required a fixed input 
image size of 256×256. Thus, resizing along both dimensions of 
the block is minimized without negatively impacting the level 
of detail in the intensity image. After the point cloud 

partitioning, the two-step enhancement is applied to generate 
intensity images. The first intensity enhancement is applied to 
the point cloud blocks by selecting a threshold (ThEN) – 5th 
intensity percentile – where the intensity values greater than 
ThEN are set to 255, while lower intensity values remain the 
same. Then, the enhanced point cloud block, as shown in Figure 
5 (b), is converted into intensity images, as depicted in Figure 5 
(c). A pixel value is calculated as the average of the intensity of 
all points falling within it. Finally, the second enhancement is 
applied to the intensity images – using a 5th intensity percentile 
threshold. The enhanced intensity image, as shown in Figure 5 

(d), hereafter referred to as "intensity image," is used for 
labeling, training, and detection. This dual enhancement (for the 
point cloud block and the intensity image) amplifies the lane 
marking pixel values for easier detection by the U-net model. 
 

  
(a) (b) 

  
(c) (d) 

Figure 5. Illustrations of (a) original road surface point cloud 
block (b) enhanced point cloud block, (c) intensity image, and 

(d) enhanced intensity image 

After the intensity image generation, some intensity images are 
manually labeled to train U-net model 1, while for U-net model 
2, the lane markings derived through normalized intensity 
thresholding strategy are utilized for generating labels 
automatically. First, lane markings obtained from the 
normalized intensity thresholding, as presented in Figure 6 (a), 
are divided into 12.8-m-long blocks and converted into images 

with a 5cm pixel size and image size of 256×256. Then, in order 
to improve the spatial structure of lane markings, the boundary 
pixels of a lane marking are used to generate a bounding box, as 
displayed in Figure 6 (b). All the pixels within this bounding 
box are labeled as lane markings, as depicted by Figure 6 (c). 
These labeled images are utilized for U-net model 2 training. 
For robust training of both U-net models, data augmentation 
techniques are applied during each epoch such as: (i) clockwise 
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image rotation in the range from 0° to 180°, (ii) image resizing 

between 80% to 120% of its original size to simulate zoomed in 
and out images respectively, and (iii) horizontal flip. 
 

   
(a) (b) (c) 

Figure 6. Automatic label generation: (a) normalized intensity 
thresholding lane markings, (b) bounding boxes (in red) 

enclosing lane markings, and (c) labeled image. 

The U-net architecture is shown in Figure 7. The left path of the 
network is called encoder and the right part is referred to as 
decoder. A loss function based on the Dice coefficient [21] is 
adopted because of the skewed distribution of lane marking and 
non-lane marking class in intensity images. The dice coefficient 

quantifies how well the two classes overlap. It is defined as in 
Equation (1), where ytrue and ypred represent the ground truth and 
predicted pixels for the lane markings. Each pixel can be 
classified as either non-lane marking or lane marking and takes 
value 0 or 1, respectively. The Dice coefficient value falls 
between 0 to 1, where the latter signifies a perfect overlap. The 
final goal is to predict lane markings as close to ground truth as 
possible, and the chosen loss function serves as an accurate 
proxy since minimizing it means maximizing the Dice 
coefficient or degree of overlap. Performance metrics such as 
precision, recall, and F1-score – represented by Equations (2 - 
4) where TP, FP, and FN are the true positives, false positives, 

and false negatives, respectively – are reported for all strategies. 

 
2

_
y ypixel true pred

Dice coefficient
y ypixel pixeltrue pred


=

+ 

 
(1) 

 
TP

Precision
TP FP

=
+

 (2) 

 
TP

Recall
TP FN

=
+

 (3) 

 1 2_
Precision Recall

F score
Precision Recal


= 

+
 (4) 

 

 
Figure 7. U-net architecture (adapted from Ronneberger et al. 

[20]) 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we first discuss the LUTs generated from 
normalized intensity thresholding for each dataset and show 

how this strategy successfully reduces false positives in 
concrete pavement regions without affecting performance in 
asphalt areas. Then, performance metrics of each of the four 
strategies in both asphalt and concrete pavements are presented 

and accounted for in general and in the context of pavement 

surface. 
 
5.1 Effect of Pavement Surface and Intensity 

Normalization 

At the intensity normalization stage, three small road surface 
point clouds located in ROIs 1, 2, and 3 (concrete pavement 

area) were selected for each dataset, as shown in Figure 3. The 
detailed information, including the length of ROIs, number of 
the sensors, driving speeds, and cell sizes, for generating LUTs 
are listed in Table 3. As mentioned previously, the total 
numbers of LUTs generated are 3, 4, and 4 for datasets 1, 2, and 
3, respectively. From Table 3, relatively large cell sizes were 
determined for ROI 3 because of its faster driving speed. Also, 
the cell sizes of VLP16 are slightly larger due to the less points 
acquired by fewer laser beams for the same ROI. The resultant 
LUTs for one of the HDL32E LiDAR scanners in ROIs 1, 2, 
and 3 are shown in Figure 8. It is apparent from Figure 8 that 
normalized intensity values in ROI 3 are greater than ROIs 1 

and 2. This is because datasets 1 and 2 belonged to the same 
interstate highway, while dataset 3 was acquired on a rural 
highway. Compared to a rural highway, wear and tear of 
pavement material in interstate highway is more gradual [22]. 
Thus, normalized intensity values are significantly impacted by 
the nature of pavements, which in turn affects the obtained 
LUT. After all the LUTs were generated for each LiDAR 
scanner in each dataset, the original intensity values of dataset 
1, 2, and 3 were normalized. Figure 9 illustrates sample 
hypothesized lane markings derived through the original and 
normalized thresholding in dataset 3. As can be clearly 

observed, false positives are reduced in concrete pavement area 
after normalization. In addition, using the LUTs generated from 
concrete regions does not negatively impact the normalized 
intensity values in asphalt pavement regions. 
 

   
(a) (b) (c) 

Figure 8. Lookup tables (LUT) generated for intensity 
normalization of an HDL 32E LiDAR unit in (a) ROI 1, (b) ROI 

2, and (c) ROI 3. 

  

  

 

 
Figure 9. Hypothesized lane markings derived through original 
and normalized intensity thresholding strategies in concrete and 

asphalt pavement area for dataset 3 
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ROI 1 2 3 

# of sensors 3 4 4 

Avg. speed (mph) 49 48 65 

Length of ROI (m) 155 190 155 

Cell Size of HDL32E sensors (m) 0.12 0.12 0.25 

Cell Size of VLP16 sensor (m) 0.20 0.20 0.30 

Table 3. Length of ROIs, number of the sensors, driving speeds, 
and cell sizes for generating LUTs of HDL32E and VLP16 

LiDAR units in three datasets 

5.2 Performance of Lane Marking Extraction Strategies 

U-net model 1 is trained on 400 manually labeled intensity 
images and validated on 104 such images. On the other hand, 
for U-net model 2, a total of 1,183 automatically labeled 

intensity images are used as a training dataset, while another 
238 automatically labeled images are used for validation. 
Datasets 1 and 3 are utilized to generate these images for each 
U-net model. In addition, the same hyperparameters were used 
for both of them. The learning rate, batch size, and epochs are 

48 10− , 8, and 100, respectively. The learning rate is also 

diminished by a factor of 10 when there is no improvement in 

the validation loss from the current lowest value for 5 
consecutive epochs. Additionally, early stopping is also 
implemented where the training is halted when the validation 
loss shows no improvement from the current lowest value for 
15 consecutive epochs. The weights of the two models were 
updated by the Adam optimizer. Figure 10 shows the training 
loss (calculated on training data) and validation loss (calculated 
on validation data) plots for U-net models 1 and 2. These plots 
are produced by calculating training and validation loss at the 
end of each epoch. The model tries to learn the mapping from 
input to output based on the seen training data and performance 

on validation data indicates if the learning is useful or not when 
an unseen data is fed as input. U-net model 2 obtains the lowest 
validation loss of 0.12, while model 1 can only achieve a value 
of 0.17 for the same. U-net model 2 is trained on a larger 
training dataset, which helps it attain a lower validation loss 
than U-net model 1. For evaluating the performance of each 
strategy, a test dataset of 174 images is generated from dataset 2 
by manual labeling, with 92 images in asphalt pavement areas 
and 82 in concrete pavement areas. For intensity thresholding 
approaches, the derived lane markings (point cloud) are 
rasterized into intensity images for subsequent performance 
evaluation. Table 4 and 5 show the performance metrics for the 

state-of-the-art strategies (original intensity thresholding and 
deep learning with manual labeling) and proposed approaches 
(normalized intensity thresholding and deep learning with 
automated labeling) in asphalt and concrete pavement areas. 
 

Lane Marking 

Extraction Strategies 
Precision Recall F1-score 

Original intensity 

thresholding 
83.8 % 68.3 % 72.9 % 

Normalized intensity 

thresholding 
81.1 % 78.5 % 77.9 % 

Deep learning with 

manual labelling 

(U-net model 1) 

57.5 % 99.3 % 72.0 % 

Deep learning with 

automated labelling 

(U-net model 2) 

80.3 % 92.0 % 84.9 % 

Table 4. Performance metrics in asphalt pavements for lane 
marking extraction strategies  

Lane Marking 

Extraction Strategies 
Precision Recall F1-score 

Original intensity 

thresholding 
84.4 % 57.9 % 65.9 % 

Normalized intensity 

thresholding 
87.1 % 69.7 % 76.0 % 

Deep learning with 

manual labelling 

(U-net model 1) 

63.8 % 98.5 % 77.1 % 

Deep learning with 

automated labelling 

(U-net model 2) 

88.1 % 83.3 % 85.1 % 

Table 5. Performance metrics in concrete pavements for lane 
marking extraction strategies  

  
 

(a) (b) 

Figure 10. Training and validation loss curves for (a) U-net 
model 1 and (b) U-net model 2 

Based on performance metrics in Table 4 and 6, the results can 
be discussed in general and in the context of pavement surface: 

1. General trend: In both pavement areas, U-net models 
obtain higher recall in comparison to intensity thresholding 
approaches. This means that the former can extract true lane 
markings better than the latter. Figure 11 displays an 
intensity image with low edge lane marking point density 
along with corresponding lane markings extracted by the 
different strategies. The deep learning approaches can 
extract lane markings with low point density, but intensity 
thresholding approaches miss them. Additionally, it is also 
observed that U-net model 1 shows a very poor precision 
metric. This means lots of positive predictions are false 

since it cannot distinguish well between actual lane 
markings and high-intensity non-lane marking points as 
illustrated in Figure 12. Overall, U-net model 2, which is 
trained on almost 3 times more training data than model 1, 
has the best performance in both pavement regions as 
evident by its high F1-score. 

2. Asphalt pavements: Higher precision is obtained by the 
intensity thresholding approaches which means that less 
false positives are observed. This is because the outliers are 
eliminated to a great extent by the noise removal strategy. In 
addition, the normalized intensity thresholding strategy 
performs better than U-net model 1 based on the F1-scores. 

Lastly, the performance of the original intensity 
thresholding strategy is comparable to the other three 
strategies, which shows that its performance is not 
significantly impacted in asphalt pavements as shown in 
Figure 13. 

3. Concrete pavements: In concrete pavement area, the 
original intensity thresholding strategy shows a substandard 
performance with an F1-score of only 65.9 %. Figure 14 
compares lane marking results in a concrete region where all 
the strategies except the original intensity thresholding 
perform well. The normalized intensity thresholding 

strategy successfully suppresses high-intensity non-lane 
marking points. Thus, thresholding the normalized intensity 
values leads to less false positives and hence better lane 
marking extraction. On the other hand, the deep learning 
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models successfully learn to eliminate these high-intensity 

non-lane marking points lacking any spatial structure. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Worn-out yellow edge line area: (a) RGB imagery of 
location i, (b) original intensity image, predicted lane marking 
images of (c) original intensity thresholding, (d) normalized 

intensity thresholding, (e) U-net model 1, and (f) U-net model 2 

  
(a) (b) 

  
(c) (d) 

Figure 12. False positive problem: (a) RGB imagery of location 
i (b) original intensity images, and images with predicted lane 

markings from (c) U-net model 1 and (d) U-net model 2 in 
dataset 2 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 13. Asphalt pavement area: (a) RGB imagery of location 
i, (b) original intensity image and predicted lane marking 

images from (c) original intensity thresholding, (d) normalized 
intensity thresholding, (e) U-net model 1, and (f) U-net model 2. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 14. Concrete pavement area: (a) RGB imagery of 
location i, (b) original intensity image and predicted lane 

marking images from (c) original intensity thresholding, (d) 
normalized intensity thresholding, (e) U-net model 1, and (f) U-

net model 2 

In summary, it is observed that the lane marking extraction 
performance of deep learning approaches is superior to that of 
intensity thresholding approaches since the latter relies on 
content (intensity and point density), while the former’s 
detections are based on both content as well as context (location 
of points). In asphalt pavement area, all the strategies obtain 
satisfactory results; however, in concrete pavement area, 
original intensity thresholding does not perform well and one 
must either normalize intensity to deal with lack of contrast 
between lane marking and pavement surface or train deep 
learning models that can learn complex mapping from input to 

output. Thus, the proposed normalized intensity thresholding 
and deep learning approaches are less sensitive to the nature of 
pavement surface. Finally, the U-net model trained on 
automatically generated labels outperforms the one trained on 
manually established labels which shows the robustness of 
automated procedure of label generation. 
 

6. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

Even though the pavement surface plays an important role in 
lane marking extraction, there have not been any studies that 
evaluate the lane marking extraction in this context. In addition, 
the existing intensity thresholding strategies for lane marking 
extraction require prior knowledge for adaptive thresholding 
and noise removal. The learning-based strategies can get around 
those issues; however, curation of manually labeled data is a 
time-consuming step. Therefore, this paper seeks to tackle the 

above issues by proposing normalized intensity thresholding 
and automated label generation procedure-based deep learning 
strategy for lane marking extraction. The proposed strategies are 
compared with state-of-the-art strategies of original intensity 
thresholding and deep learning based on manually labeled 
training data. All of them are evaluated in asphalt and concrete 
regions separately. 
The datasets processed covered both asphalt and concrete 
pavements. The proposed intensity normalization strategy 
significantly reduces false positives in concrete pavement area 
as opposed to thresholding of original intensity values. In 

addition, the U-net model 2 which is trained on automatically 
generated labels outperforms all other strategies in both asphalt 
and concrete areas. It had precision, recall, and F1-score of 
80.3%, 92%, and 84.9% respectively in asphalt pavements 
while the same metrics in concrete pavements were 88.1%, 
83.3%, and 85.1%. On the other hand, the intensity 
normalization strategy showed better performance than U-net 
model 1 in asphalt pavements and vice-versa in concrete 
pavements. We also observed that the original intensity 
thresholding strategy could provide reasonable lane marking 
extraction results in asphalt pavement area where the lane 
markings and pavement surface exhibit a significant intensity 

contrast. However, due to poor intensity contrast in concrete 
pavements, its performance suffers to a great extent, as shown 
by a poor F1-score of 65.9%. In such cases, the proposed 
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intensity normalization and deep learning approaches obtain 

better results indicating their robustness to varying intensity 
distribution due to the nature of pavement material. Lastly, we 
conclude that the deep learning approaches can detect lane 
markings with low point density unlike intensity thresholding 
approaches because of their ability to capture the content as well 
the context in the intensity image. 
One of the directions for future work will explore the 
application of the current normalization algorithm to single-
beam LiDAR scanners. As far as a deep learning approach is 
considered, transfer learning is another exciting direction for 
moving forward. The idea is to fine-tune the trained U-net 
model 2 on a training dataset that is captured by different 

LiDAR scanners or is captured in areas with different lane 
marking patterns than the one encountered in this research. This 
will save significant training time as the network is not trained 
from scratch. Preliminary results indicate that the fine-tuning 
encoder path of U-net leads to better performance than decoder. 
Additionally, one can also exploit RGB information along with 
the point cloud for improved lane marking extraction, 
particularly in areas where the markings are of poor quality. 
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