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ABSTRACT: 
This paper presents a traffic sign detection and recognition method from mobile LiDAR data and digital images for intelligent 
transportation-related applications. The traffic sign detection and recognition method includes two steps: traffic sign interest regions are 
first extracted from mobile LiDRA data. Next, traffic signs are identified from digital images simultaneously collected from the multi-
sensor mobile LiDAR systems via a convolutional capsule network model. The experimental results demonstrate that the proposed method 
obtains a promising, reliable, and high performance in both detecting traffic signs in 3-D point clouds and recognizing traffic signs on 2-D 
images. 

 

 
1. INTRODUCTION 

 
Traffic signs play an important role in road transportation systems 
because they provide useful and vital road information and 
instruction to drivers and road users (Gudigar and Chokkadi, 
2014) . Therefore, rapidly updating traffic signs is essential for 
transportation agencies to manage and monitor the status and 
usability of traffic signs. In addition, accurately locating and 
recognizing traffic signs contributes to the development of 
intelligent transportation systems (ITS), including unmanned 
driving, driver assistance and safety warning systems, and traffic 
sign maintenance. However, although traffic sign detection and 
recognition (TSDR) have been developed and employed for recent 
years (Salti et al., 2014; Jin et al., 2014; Liu et al., 2014), manually 
investigating traffic signs (by an operator checking the status of 
each traffic sign on videos and digital images) is still a popular way 
in traffic sign inventory and monitoring. The manual traffic sign 
inventory way is labor-intensive and time-consuming, decreasing 
the reliability of TSDR.  
 
Traffic signs are defined by different colors (e.g. red, blue, green, 
and yellow in RGB color space) regarding their functions. Besides 
RGB color space, traffic sign detection works have been conducted 
based on Y’CBCR (Prieto et al., 2009), HSV (Maldonado et al., 
2010), and CIECAM97 (Gao et al., 2006) color models to achieve 
a reliable detection performance under different lighting situations. 
Moreover, traffic signs are presented by different shapes to 
regulate the drivers, and thus developing a variety of shape-based 
methods. Furthermore, to improve traffic sign detection rate, most 
methods have been developed based on color and shape, such as 
SVM (support vector machine) based, machine learning-based, 
sparse representation based graph embedding (SRGE), 
Convolutional neural network, feature-based methods, template-

matching-based, eigen-based, supervised low-rank matrix recovery 
model, and decision fusion and reasoning module based methods. 
However, video-based and image-based TSDR systems suffer from 
the following limitations: 1) weather conditions (e.g., fog and 
rain.), affecting the visibility of traffic signs, 2) shadows, caused by 
other adjacent objects or different illumination levels, 3) traffic 
signs with bad placement or disorientation, which is relevant to the 
usability and viability of traffic signs, and finally affects the road 
safety of road users, and 4) variable color and shape information of 
traffic signs. 
 
The first commercial mobile laser scanning (MLS) system was 
developed in 2003. Although MLS is still in the early process of 
applying this powerful 3D survey technology, it is being used at an 
increasing rate for transportation-related surveys because this 
technology rapidly acquire highly dense and accurate 3-D point 
clouds.  The 3-D point clouds provide accurate geometric and 
localization information of the objects (Beraldin et al., 2010); 
whereas the color imagery provides detailed texture and content 
information of the objects. Therefore, by fusing imagery and 3-D 
point clouds, MLS systems provide a promising solution to traffic 
sign detection (based on 3-D point clouds) and recognition (based 
on imagery). 
 
Currently, most existing methods for traffic sign detection in MLS 
point clouds are basically based on their prior knowledge, 
including position, shape, and laser reflectivity. Given the fact that 
traffic signs are placed close to the boundaries of the road, Chen et 
al. (2007) proposed a processing chain of cross section analysis, 
individual object segmentation, and linear structure inference to 
detect traffic signs. To exploit pole-like structures of traffic signs, 
Yokoyama et al. (2011) used a combination of Laplacian 
smoothing and principal component analysis (PCA), where 
Laplacian smoothing functioned to smooth each point cloud 
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segment to suppress measurement noise and point distribution bias; 
whereas PCA was performed on the smoothed segments to infer 
pole-like objects. A 3-D object matching framework was 
developed by Yu et al., (2015) for detecting traffic signs of varying 
shapes, completeness, or hidden in trees. In addition, Hough forest 
methods (Wang et al., 2014) and LiDAR and vision-based real-
time traffic sign detection method (Zhou et al., 2014) were also 
developed for traffic sign detection. To present clear traffic signals, 
traffic signs are made by highly reflective materials. As a result, 
traffic signs usually exhibit high retro-reflectivity (in a form of 
intensity) in the MLS point clouds. Such intensity information 
becomes an important clue for distinguishing traffic signs from 
other pole-like objects (Wen et al., 2015). In addition, Chen et al. 
(2009) detected traffic signs by using a random sampling 
consensus based method. Similarly, Vu et al.(2013) developed a 
template-driven method to detect traffic signs with the prior 
knowledge of symmetric shapes and highly reflective planes 
perpendicular to the direction of travel. 
 
Generally, there is a two-step procedure - traffic-sign detection 
using LiDAR point clouds and traffic-sign recognition using 
digital images. In traffic sign detection, most methods detect traffic 
signs from point clouds by using topology, intensity, and 
geometrical dimension, relations, shape, etc. The traffic sign 
recognition tasks are commonly employed by using machine 
learning or deep learning algorithms. Comparatively, deep learning 
methods, such as deep neural networks (DNN) ( Arcos-García et 
al., 2017), and capsule convolutional networks (Sabour et al., 2018) 
can automatically abstract high-level feature representations from 
voluminous data samples, which have become attractive in traffic 
sign recognition. These deep learning methods are proven to 
generate superior experimental results. Different from classical 
CNN models that take into account only the probability, capsule 
networks are more powerful and robust to abstract intrinsic 
features of objects. 
 

2. MOBILE LASER SCANNING DATA 
 
This research uses data collected by a RIEGL VMX-450 system. 
The system is composed of the following: two RIEGL VQ-450 
laser scanners, four CCD cameras, a set of Applanix POS LV 520 
processing systems containing two global navigation satellite 
system (GNSS) antennas, an initial measurement unit (IMU), and a 
wheel-mounted distance measurement indicator (DMI). The 
surveyed area is in Xiamen Island, Xiamen, China. A complete 
survey, at approximately 50 km/h, was conducted along Huandao 
Road from Xiamen University to the International Conference and 
Exhibition Center (ICEC). This is a typical tropical urban 
environment with high buildings, dense vegetation, and traffic 
signposts along the surveyed road. To clearly demonstrate the 
experimental results, we selected a small road-section dataset from 
the survey dataset (see Fig. 1) 

 
Fig. 1. MLS data. 

 
3. TRAFFIC SIGN DETECTION AND RECOGNITION 
 
3.1. LiDAR-based traffic sign interest region extraction 
To locate traffic signs, a filter method is first used to divide mobile 
LiDAR data into ground and off-ground points. Regarding the 
motorized mirror scanning mechanism of a RIEGL VMX-450 
system, we propose a curb-based filtering method to process 
mobile LiDAR data scan-line by scan-line.  Curbs function to not 
only contain and direct water flow to as part of the drainage system 
but also separate road surfaces from sidewalks in an urban 
environment. We extract curb points using two criteria, namely, 
height difference and slope. Slopes at the border of pavement and 
roadway are usually larger than those of consecutive points on the 
roadway. Moreover, pavement points have larger elevations than 
road points in the neighborhood. The slope criterion detects non-
road points, such as cars and curbs. Then the elevation-difference 
criterion detects the curbs from the non-road points. After 
removing road points, it is efficient to use the algorithm of 
progressive triangulated irregular network (TIN) densification to 
obtain ground points from non-road points. This TIN densification 
filtering algorithm is considered to be robust and steady for 
modelling surfaces with discontinuities such as urban areas. 
Normalized digital surface model (nDSM), a representation of 
elevated objects on a flat surface, is generated by subtracting 
digital terrain model (DTM) from digital surface model (DSM). 

To extract pole-like object, a Euclidean clustering algorithm 
is used to obtain sets of clusters, the covariance matrix’s three 
eigenvalues (λ1, λ2, and λ3, λ1≥λ2≥λ3>0) are decomposed to 
calculate three members of the eigen-based feature descriptor, geigen 

= {al, ap, av}: 

1 2
l

1

a  ,    2 3
p

1

a ,  3
v

1

a                 (1) 

where al, ap, and av represent linear, planar, and volumetric 
geometrical features, respectively. 
 
Moreover, retro-reflectance properties is used to extract traffic 
signs from pole-like objects. Then, the individual regions of traffic 
signs are outlined to generate traffic sign interest regions. 
 
3.2. Traffic sign recognition 
 
All individual traffic sign interest regions are projected on images 
simultaneously collected by a RIEGL VMX-450 system based on 
image exterior and interior orientation parameters. Then, the traffic 
sign images are segmented and resized by a pre-defined threshold. 
To recognize traffic sign, deep learning is used. Recently, deep 
learning techniques have been attractive for their superior 
performance in learning hierarchical features from high-
dimensional unlabelled data. By learning multi-level feature 
representations, deep learning models have been proved to be an 
effective tool for rapid object-oriented classification and 
recognition problems. 
 
To recognize traffic signs from the segmented image patches, we 
construct a convolutional capsule network. Capsule network, first 
proposed in Sabour et al., (2017) for classification tasks, is 
composed of entity-oriented vectorial capsules, which differs from 
conventional CNNs that employ scalar neurons to encode the 
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probabilities of the existence of specific features. A capsule can be 
viewed as a vectorial combination of a set of neurons  (Sabour et 
al., 2017). For a capsule, its instantiation parameters represent a 
specific entity type and its length represents the probability of the 
existence of that entity. Capsule networks have been demonstrated 
to be powerful and robust in various classification tasks. Thus, to 
obtain promising traffic sign recognition performance, we extend 
the original capsule network (containing two conventional 
convolutional layer, a primary capsule layer, three convolutional 
capsule layers, a capsule max-pooling layer, and three fully 
connected capsule layers) to construct a multi-layer convolutional 
capsule network. 

The two conventional convolutional layer uses 3 3 convolution 
operations to extract low-level features from the input image 
patches. These features are further encoded into high-order 
capsules to represent different levels of entities. The two 
conventional convolutional layers adopt the widely used ReLU as 
the activation function to nonlinearly transform the outputs.  

The primary capsule layer converts the low-level scalar feature 
representations in the convolutional layer into high-order vectorial 
capsule representations. This conversion is based on a 
conventional convolution operation sliding on the convolutional 
layer with a  3 3  kernal size. 

The three convolutional capsule layers extract high-order capsule 
features from low-order capsules by performing local convolution 
operations on a group of capsules and representing their features 
using a new capsule. For the capsules in the convolutional capsule 
layers, the total input to a capsule j is a weighted sum over all 
predictions from the capsules within the convolution kernel in the 
layer below: 

|C Uj ij j ii
a                                  (1) 

where Cj is the total input to capsule j; aij is the coupling 
coefficient, indicating the degree of contribution that capsule i in 
the layer below activates capsule j; 

|U j i
 is the prediction from 

capsule i to capsule j and it is defined as follows: 

|U UWj i ij i
                                   (2) 

where Ui is the output of capsule i. Wij is the transformation matrix 
on the edge connecting capsules i and j. Specifically, the coupling 
coefficients between capsule i and all its connected capsules in the 
layer above sum to 1 and are determined by a dynamic routing 
process [18]. The dynamic routing process considers both the 
length of a capsule (i.e., the probability of the existence of an 
entity) and its instantiation parameters (i.e., the orientation of the 
entity) to activate another capsule. For the convolutional capsule 
layers, the non-linear “squashing” function [18] is adopted as the 
activation function, by which the capsules with short vectors result 
in low probability estimations and capsules with long vectors result 
in high probability estimations, whereas their orientations remain 
unchanged. The non-linear squashing function is defined as 
follows: 
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By such a conversion, the capsules with short lengths are narrowed 
down to a length close to zero and the capsules with long lengths 
are shrunk to a length close to one. 
 
The three fully connected capsule layers consider all the capsules 
in the layer below to construct a high-order entity abstraction from 
a global perspective. The first fully connected capsule layer is 
obtained using a set of global capsule convolution kernels 
performing on the capsule max-pooling layer. The last fully 
connected capsule layer is a softmax layer for classification 
purposes. We use the capsule length in the softmax layer to 
represent the probability of a traffic sign image patch being an 
instance of a specific category (forbidden or warning). The 
category label of a traffic sign image patch is defined as follows: 

* arg max kk
L U                             (4) 

where Uk is the output of a capsule in the softmax layer. 
 
To effectively train the convolutional capsule network towards 
classification tasks, the margin loss (Sabour et al., 2017) is used as 
the objective function to direct the error backpropagation process. 

2 Convolutional Layers Primary Capsule Layer 3 Convolutional Capsule Layers Capsule Max-
pooling Layer

Fully Connected 
Capsule Layers

Softmax

Region Proposal

 
Fig. 2 Illustration of the proposed model. 

4. RESULTS AND DISCUSSION 

(1) Traffic-sign Detection 
Fig. 3 shows the results of traffic-sign detection (red points). 
Visual inspection shows that the detected traffic-sign results were 
satisfactory and hung on the poles. According to the detected 
traffic signs, their poles are then determined from clusters in the 
neighborhoods. The two data sets in this study contain a total of 

1,268 traffic signs. We detected 1,162 traffic signs, including 
1,101 correctly-detected traffic signs and 61 non-traffic signs. The 
detection accuracy is 86.8%. Some incompletely scanned traffic 
signs, caused by occlusions, were also undetected because of 
insufficient salient features. Although some advertising boards 
attached to light poles were misclassified as traffic signs due to 
strong reflectance, the majority of traffic signs were correctly 
detected.  
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(a)                                (b) 

Fig. 3 (a) Filtered results and (b)traffic-sign detection results 

After the traffic-sign interest regions were extracted from the 
mobile LiDAR points, to obtain their images, we projected them 
onto the digital images (see Fig. 3). Then, we performed the 
proposed GB-DBM classifier to classify the resized traffic-sign 
images into specific categories.  

(3) Traffic-sign Recognition Performance 
This test set contained 1,162 traffic sign image patches covering 35 
different categories of traffic signs and the background. At the test 
stage, the test images were fed into the convolutional capsule 
network to recognize traffic signs. For the output of the softmax 
layer of the convolutional capsule network, the capsule with the 
longest length corresponded to the category of an image patch. For 
an image patch labeled as a traffic sign, the length of the capsule 
encoded the probability of the image patch belonging to an 
instance of that traffic sign type. The proposed framework was 
capable of processing eighteen traffic sign patches per second. To 
quantitatively evaluate the traffic sign recognition accuracy, we 
used the recognition rate as the evaluation metric, which is defined 
as the proportion of correctly classified traffic signs. On average, 
our proposed framework achieved a traffic sign recognition rate of 
0.965 on the test set. 

The misclassification of the traffic signs might be caused by: 1) 
distorted traffic-sign images due to a very large viewpoint; 2) poor 
traffic-sign image quality due to extremely strong or poor 
illumination; and 3) incomplete traffic-sign images due to serious 
occlusion. 

  
(a)                                  (b) 

Fig. 4 (a) standard traffic signs downloaded from the Ministry of 
Transport of the People’s Republic of China, and (b) the 

segmented traffic sign images from LiDAR data. 
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