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ABSTRACT: 

GNSS Reflectometry system is an excellent to sense soil moisture content. In recent, GNSS-R technique could be aided to detect soil 
moisture contents but still have many difficulities issues, most especially vegetation impact. Soil moisture observing is a major concept 
for enhancing the sustainability of the earth’s system and process. On retrieving soil moisture from spaceborne GNSS-R technology 
has been challenging to the system, retrieving model and geophysical parameters. In this research, we use the Support Vector Machine 
(SVM) method to retrieve global soil moisture, the TDS-1 Delay Doppler Map (DDM) and the AVHRR Normalized Difference 
Vegetation Index (NDVI) imagery as inputs and the Soil Moisture and Ocean Salinity (SMOS) soil moisture data as a reference to 
retrieve global SM daily basis. The results have shown that the squared correlation coefficient (R) values are much higher in TDS-1 
fused with NDVI than using DDM alone, which indicates that vegetation impact has effectively weakened. The feasibility of this 
approach could provide the performance for spaceborne GNSS-R retrieving to soil moisture analysis.  

1. INTRODUCTION

GNSS-R technology has tremendously succeeded in earth 
observations since the recent decades. Spaceborne GNSS-R 
platforms as TDS-1 and CYGNSS have been successfully 
launched and aided in retrieving useful information on the areas 
of sea and land applications. In this GNSS-R concept, both 
together with transmitter and receiver becomes bistatic radar by 
adequately retrieving the reflected signals. This configuration 
can be used for both of an altimeter or a scatterometer, to 
investigate the interesting characteristics as surface roughness, 
or dielectric properties and sub-surface features. GNSS- R 
technology proved to be highly productive and efficient for 
monitoring the earth’s environments, measuring significant 
wave heights, wind speeds, surface roughness, ice and snow 
thicknesses and soil moisture conditions. 
However, despite these advantages, there are still challenges in 
retrieve techniques on data assimilation, verification and 
accuracy assessments in line with a temporal and spatial capsule. 
Many soil moisture techniques determination employed, ranging 
from multi-disciplinary data sources as well as machine learning 
approaches. GNSS- R for soil moisture observation has utilized 
in-ground and air-based. Camps, A., et al. (2016) initiated 
spaceborne GNSS- R sensitivity to soil moisture using 
TechDemoSat-1 data preliminary results showed a good 
correlation with soil moisture. Recently, Senyurek, V., et al. 
(2020) calculated with NASA CYGNSS data are compared and 
analyzed for the soil moisture retrieval through utilizing multiple 
validation strategies including SVM has RMSE values 0.065 
cm3/cm3. Observing soil moisture is a major factor in 
hydrological practice, which influence on evapotranspiration, 
run-off and   infiltration on the land surface. It has significantly 
improved the  prediction of soil moisture with short, medium and  
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huge changes in climate, and hazardous crisis such as in disaster 
mitigated land. Raghu Garg et al. (2019) process using with 
several machines techniques figured out to extract knowledge 
from big data learning methods for sustainability on plant-related 
studied. In this research, attempts have using SVM machine 
learning methods to retrieve global soil moisture, taking the TDS-
1 DDM input and the SMOS SMC as reference. This paper is 
categorized as follows: section 2 describes the specific data 
preparation; section 3 states the data processing and next is the 
discussion; finally, the conclusion in section 4. 

2. DATA PREPARATION

In this research, we used UK TDS 1 data and AVHRR NDVI data 
as inputs and SMOS data which is an ESA Explorer Opportunity 
Science Mission as reference. All data are prepared monthly from 
January to March 2017 and collocated.  

2.1 Soil Moisture and Ocean Salinity (SMOS) 

SMOS is one of ESA’s missions, and the satellite brings 
radiometer that operates in the microwave L band range to detect 
brightness temperature images. The images over land used to 
derive global maps of SMC every three days, achieving an 
accuracy of 4% at a spatial resolution of about 50 km. A new re-
processed level of SMOS SSM product released from the CATDS 
Centre, i.e. SMOS level 3 products (SMOSL3), which provided 
as global gridded maps of SSM. It contains surface soil moisture 
conditions and land information in a daily product. Soil moisture 
data generated with two products per day: one for ascending and  
one for descending orbits. Finally, the three months products 
aggregated, and it provides retrieving to soil moisture from 
spaceborne observation. 
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Figure 1. SMOSL3 monthly data from January to March 2017 
 
2.2 Normalized Differential Vegetation Index (NDVI) 

NOAA Climatic satellites with AVHRR sensor record the NDVI 
daily product. The NDVI produces daily output and obtains 
time-series data for vegetation observation. NDVI is ubiquitous 
as an index of vegetation. Based on remote sensing observation, 
the monitoring of vegetation occurrences takes place via times 
series data analysis and big data processing systems. These 
systems may use a pixel or object-based algorithms to examine 
vegetation health, evapotranspiration, and other ecosystem 
functions as agricultural concerned. NDVI observation can make 
sustainability of earth’s vegetation and enhancing the climatic 
condition as well. 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2. AVHRR NDVI monthly data of January to March 2017 
 
2.3 UK Test DemoSat (TDS-1) 

The spaceborne GNSS receiver received the reflected signals, 
which is flying on-board TechDemoSat-1satellite. The receiver 
can process various simultaneous tracks, from multiple GNSS-
transmitters. GNSS reflections are not only sensitive to the 
ocean, but also for the land information, triggering to the other 
potential new opportunities for remote sensing and estimating 
the thickness of sea ice, snow depth, soil moisture levels, and the 
classification of vegetative foliage.  
Camps, A., et al. (2016) pointed out the presence of vegetation 
indicates that it attenuates the GNSS signal, reducing the 
reflection coefficient, and the sensitivity to soil moisture, which 
is still enough for remote sensing from space. They detail 
analysed vegetation impacts on SM as the more vegetation cover 
(NDVI increases), the reflective SNR and the sensitivity to soil 
moisture and the Pearson correlation coefficient decreases; 
however, it is still significant.  
Camps, A., et al. (2018) analysed retrieval to surface and sub-
surface soil moisture by using four years TDS-1 data and SMOS 
with different spatial scales at global and regional observation. 

They found that GNSS-R observation to soil moisture retrieving 
performance is ~0.09 dB %. However, this is relying on the spatial 
scale used for the ground-truth and the selected region.  
Park, H., et. al., (2018) developed the DDM simulator using TDS-
1 and CYGNSS data shown that the DDM over land varies 
according to the glistening zone characteristics, e.g., the mixture 
of surface type, topography, soil moisture, and vegetation, etc. 

     
 
 
 
 
 
        
 
 
 
 

 
Figure 3. Averaged SNR of DDM for TDS L1B monthly data  

 
For the sufficiently diffuse scattering of the GNSS signal from a 
surface roughness, V. U. Zavorotny et al. initiated the following 
bistatic radar equation holds for the correlation power as a 
function of the time delay and the frequency offset, namely the 
Delay-Doppler Map (DDM) as below. 
                |Y , f |   P G  , f  dS         (1.1) 
 
Where,   Ti = the coherent integration time, 
     PtGt = the transmitter’s capable isotropic radiated power 
     Gr = the receiver antenna gain pattern,  
     Rt, Rr = distances between the nominal specular point 
  and the transmitter/receiver,  
     2 = the Woodward Ambiguity Function (WAF), which   
                describes the range and Doppler selectivity of the  
                coherent   radar,  
     0 = the normalized bistatic radar cross-section    
                (BRCS) of the rough surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. SNR and Antenna Gain Histogram for the DDM data 
 
In the above figure, Delay Doppler Map obtained by the 
collocated three months data of UK TDS-1 from January to March 
2017. SNR DDM observation can vary how the reflected signal 
received from the receiver relies on the ground surface topography 
and other geophysical parameters influenced. 
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2.4 Support Vector Machine (SVM) 

SVM supervised learning technique used for data regression and 
classification analysis. In other terms, SVM is a prediction tool 
that maximizes estimated accuracy while automatically omitting 
overfit to the data. SVM trained with a learning algorithm that 
executes a learning bias derived from statistical theory. SVM is 
very popular utilized in machine learning research around the 
world. SVM becomes popular and, it gives exact correctness 
comparable to complex neural networks with further details 
features. A proposed explanation that performed the accurate 
classification of the training samples, and new learning 
algorithms designed to find such precise fit to the data. 

 
 
 
 

 
 

 
 
 
 
 
 
 

 
Figure 5. Maximum margin hyperplane (Bahga & Madisetti) 
 
SVM training involves deciding the maximum margin 
hyperplane that divide the two classes. The maximum margin 
hyperplane is one which has the most significant separation from 
the nearest training data point. Figure 5 shows the margins for 
an SVM. Given a training data set (xi, yi) where xi is an n-
dimensional vector and yi = 1. If xi is in class 1 and yi = -1 if xi 
is in class 2. A standard SVM finds a hyperplane w.x-b = 0, 
which correctly separates the training data points. It has a 
maximum margin which is the distance between the two 
hyperplanes w.x-b =1 and w.x-b = -1 as shown in figure 5. The 
optimal hyperplane which a maximum margin can obtain with the 
following quadratic programming problem, 
 
 Min w, b w C i                             (1.2)  
    
subject to yi(w.xi-b)= 1- i, i > 0, 1 < i < l where C is the soft 
margin parameter and  is a slack variable for the non-separable 
case. The optimal hyperplane to be obtained as, 
 
 ,             (1.3)   
            
Where, i is the Lagrange multiplier, and K (xi, x) is the kernel 
function. A standard SVM is a two-class classier where the 
outcome is 1 or -1. When sets are non-linear separable, the data 
points in the initial finite-dimensional space classed to an 
important dimensional feature where it can be separated easily. 
The accuracy performance of an SVM classifier depends on the 
selection of kernel, the kernel’s parameters, and soft margin 
parameter C. There are two kinds of Kernel RBF functions; Gaussian 
and Exponential. In this research, we use Gaussian Radial Basis 
Function with a Gaussian form, 
 
 ,                          (1.4) 

 
After the model has been built, the predict method is used to 
make the predictions.

                       

2.5 Controlling Complexity  

SVM is a robust technique to evaluate any training samples and 
generalizes preferable on given datasets. The complexity in terms 
of kernel affects the accomplishment of new datasets. For 
controlling complexity, SVM supports parameters should be able 
to determine by cross-validation on the given datasets. Choosing 
the right kernel-related with the problem or application would 
enhance SVM’s performance. The following diagram gives a 
better understanding of how to control in complexity process 
carried out.  

 
 
 
 
 
 
 
 
 
 

Figure 6. Controlling Complexity (Andrew W. Moore) 
      
2.5.1 SVM Classification: Although, it can consider that 
neural networks are more applicable to use than SVM technique, 
however, sometimes unsatisfactory results obtained. A 
classification scheme has usually involved training and testing 
data involving some data instances. Each occurrence in the 
training set concluded one of the target values and different 
attributes. SVM intends to build a model that shows the target 
value of information instances in the testing set, which gives only 
the data attributes. SVM classification is an example of one of the 
supervised learning techniques. Known labels help to show 
whether the system is performing accurately or not. This 
information points guides to the desired feedback, validating the 
correctness of the system, and improve the network learn to act 
accuracy performance. 
 
2.5.2 SVM prediction on Soil Moisture: In this research, 
Support Vector Machines (SVMs) are used to develop these 
predictive soil moisture models and then drive soil moisture 
retrieving on time series data analysis. Vapnik (1995) developed 
the statistical learning strategy theory that SVMs can be used to 
predict a quantity forward in time with the results of “training” 
data. There are two critical factors to enhance the generalization 
capability of the learning machine. The training error rate is the 
first factor, and the second one is the potentiality of the learning 
machine estimated according to Vapnik–Chervonenkis (VC) 
dimensions. 
Ahmad, S., et al. (2010) pointed out, and compared soil moisture 
observation with SVM RMSE value was 0.34 to 0.77 tested in 
selected sites 2% less and more predicted than other techniques 
such as an Artificial Neural Network (ANN) and Linear 
Regression model (MLR).  
Ren, C., et al. (2019) figured out GNSS Interferometric 
Reflectometry data to the correlation with received SNR and soil 
moisture estimation using least square- SVM method. They 
concluded that LS-SVM based on multi-satellite fusion results is 
a more accurate estimation on retrieving soil moisture than single 
satellite means single station.  Garg, R., et al. (2019) extracted big 
data for the sustainability of soil nutrition composition 
comparatively analyzed with machine learning techniques as 
support vector machine (SVM) using the polynomial function, 
radial basis function (RBF) methods and others. 

yi=1 2/| |w| | X2 
 

X1 
b 

yi= -1 
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3. DATA PROCESSING AND RESULTS DISCUSSION 

3.1 Data Processing 

The following figure presents the processing flow of this work. 
On the one hand, SMC calculated using both TDS-1 data and 
NDVI data. On the other hand, the retrieval also carried out using 
TDS-1 data alone as a comparison. The data used in this work 
collected from January to March 2017. 
 
 
 
  
 
 
  
 
 
 
 
 
 
 
 

 
Figure 7. Data Processing Flow of Retrieving Soil Moisture  

 
The data processing carries out as follows. First, TDS-1 DDM 
SNR data has filtered according to these principles: (1) The data 
whose corresponding antenna gain is below 10dB is filtered out 
to guarantee the data quality; (2) the information whose 
coordinates located in the ocean is filtered out. Secondly, the 
TDS-1DDM and SMOS SMC data are matched in both time and 
space dimensions to ensure the rationality of the retrieval. The 
next step is to fuse TDS-1 DDM and the NDVI imagery as input 
and the SMOS soil moisture data as a reference. Again, TDS-
1DDM SNR only used for input and to give room for results 
comparison with SMOS data as a reference. They were 
retrieving SM, a better accuracy result with the SVM method 
based on input data achieved. These involve removing features 
from the usual which have low weights to gain a specified level 
of data sparsity.  
Lastly, using only features retained after choosing the feature 
selection process is done, a representation of the full training set 
of documents created. The Radial Basis Kernel Function (RBF) 
SVM in the fixed feature space classify the test data retained. 
This method planned to take advantage of the memory freed as 
a result of increased data sparsity and include more big data 
training sets while keeping the memory consumption constant. 
Concurrently, the performance controlling the possible negative 
impact of the reduced feature space calibrated. We here trained 
19701 and tested 4925 out of 24626 samples data. 
 
3.2 Results and Discussion  

UK TDS 1 and AVHRR NDVI data as inputs and SMOS data as 
reference datasets used to train SVM-based machine learning 
classifier.  
 
3.2.1 Training with SVM Classification (without NDVI):  
The following figures present the data processing results 
obtained using TDS-1 along and SMOS as reference dataset 
according to training and testing tasks. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. SVM classification with a training dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. SVM classification with a testing dataset 
 

In the above figures 8 and 9, the data optimization finished with 
iteration 34214 times and the respective values obtained are as 
follows: nu = 0.996238, obj value= 4068.650054, rho = 0.027386, 
nSV = 19640 and nBSV = 19614. After the prediction task has 
done, the result shows that the mean square error is 0.0827153, 
and the squared correlation coefficient is 0.102284 for the training 
dataset. And the mean square error is 0.0779197, and the squared 
correlation coefficient is 0.0960314 for the testing dataset. 
 
3.2.2 Training with SVM Classification (with NDVI): 
The following figures present the data processing results obtained 
using TDS-1 fused with NDVI data as input and SMOS as 
reference according to training and testing tasks. 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 10. SVM classification with a training dataset 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. SVM classification with a testing dataset 
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In the above figure 10 and 11, the data optimization finished with 
iteration 45525 and the respective values obtained are as follows: 
nu = 0.995864, obj = -3830.046966, rho = -0.126590, nSV = 
19642 and nBSV = 19603. After the prediction task has done, 
the result shows that the mean square error is 0.0764551, and the 
squared correlation coefficient is 0.177215 for the training 
dataset. And the mean square error is 0.0727246, and the squared 
correlation coefficient is 0.16478 for testing dataset. It is showed 
that the squared correlation coefficient (R) values with NDVI 
much higher than without NDVI dataset. Higher correlation 
coefficient means more correlation to retrieve soil moisture. 
Specifically, for each calculation, its training performance is 
superior to its testing stage. 
 

4. CONCLUSION 

This work focus on the TDS-1 DDM data and SMOS data to 
remotely sense the global soil moisture using SVM learning 
approach. Support Vector Machines acts as one of the best 
methods for data classification performance. It combines     
generalization as a technique to control dimensionality. In 
classification problems, generalization control obtained by 
maximizing the margin, which corresponds to the minimization 
of the weight vector in a legal framework. The solution obtained 
as a set of support vectors that can be sparse.  However, retrieval 
performance is still to be improved. Although ground and air- 
based observation had shown good results of (0-5) cm soil 
moisture or vegetation water contents, it had assumed that 
spaceborne GNSS- R observation would be too weak and 
uncertainty on soil moisture sensing. Also, in this research, 
space-borne GNSS-R data to retrieve on soil moisture is not very 
significant. Data range should extend on yearly analysis. Data, 
features and models are the essential cores of the 
multidisciplinary data source fusion driven by the SVM 
classification method, in terms of time series data analysis. 
GNSS R technology boost to complement the results of the 
existing space-based earth sensing techniques, such as SAR or 
other space-borne data.  
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