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ABSTRACT:

In light of the ongoing urban sprawl reported in recent studies, accurate urban mapping is essential for assessing current status and
evolve new policies, to overcome various social, environmental, and economic consequence. Imagery and LiDAR data integration
densifies remotely sensed data with radiometric and geometric characteristics, respectively, for a precise segregation of different
urban features. This study integrated aerial and LiDAR images using point primitives, which were obtained from running the Phase
Congruency model as an image filter to detect edges and corner. The main objective is to study the effect of applying the filter at
different spatial resolutions on the registration accuracy and processing time. The detected edge/corner points that are mutual in both
datasets, were identified as candidate points. The Shape Context Descriptor method paired-up candidate points as final points based
on a minimum correlation of 95%. Affine, second and third order polynomials, in addition to the Direct Linear Transformation
models were applied for the image registration process using the two sets of final points. The models were solved using Least
Squares adjustments, and validated by a set of 55 checkpoints. It was observed that with the decrease in spatial resolution, on one
hand, the registration accuracy did not significantly vary. However, the consistency of the model development and model validation
accuracies were enhanced, especially with the third order polynomial model. On the other hand, the number of candidate points
decreased; consequently, the processing time significantly declined. The 3D LiDAR points were visualised based on the Red, Green,
and Blue radiometric values that were inherited from the aerial photo. The qualitative inspection was very satisfactory, especially
when examining the scene’s tiny details. In spite of the interactivity in determining the candidate points, the proposed procedure
overcomes the dissimilarity between datasets in terms of acquisition technique and time, and widens the tolerance of accepting
points as candidates by including points that are not traditionally considered (i.e. road intersections).

1. INTRODUCTION

1.1 Overview

Our world is encountering the largest wave of urbanization. A
decade ago, only two out of ten settled in urban communit-
ies. The estimates of this number are six and seven out of
ten in 2030 and 2050, respectively. This represents a threat to
the available resources, which require reallocation and develop-
ment efforts made by policy makers, in order to accommodate
their anticipated shortage in the future (Megahed et al., 2015).
The United Nations in its 2018’s report stated that over 80%
of the population in North America lives in urban settlements
(UN, 2015). This urban sprawl is a challenge for the concerned
authorities to overcome deterioration in available resources and
services. Consequently, accurate and precise detection of dif-
ferent urban morphologies is essential for evaluating current
situations, and developing effective plans to tackle anticipated
urban expansion in the future. This magnifies the necessity of
smart cities as a technological way out of this confrontation,
where digital remotely sensed data can be collected from dif-
ferent sensors, integrated, processed, and analyzed (Li et al.,
2013).

Integration of LiDAR (Light Detection And Ranging) and im-
agery data contributes to the construction of a complementary
∗ Corresponding author

geodatabase, in which geometric and radiometric characterist-
ics are associated for better urban pattern recognition. A suc-
cessful integration of both data types is conditioned by the ac-
curacy of their registration to each other. Various registration
primitives have been used to associate LiDAR and optical im-
agery data; points, lines, and polygons. (Mitishita et al., 2008)
registered photogrammetric and LiDAR data using centers of
rectangular roof planes. (Habib et al., 2005) used linear fea-
tures from planar patches as primitives to also register same
data types. (Yan et al., 2017) applied a polygon-based image re-
gistration technique, in which corresponding polygons in both
datasets were selected, sample vertices along polygons’ edges
were generated, and then matched. The research work showed
that high-resolution digitized historical map can be registered
accurately to GIS polygons as a reference data set. (Zhang
et al., 2015) registered images acquired by sensors mounted
on UAVs (Unmanned Aerial Vehicles) and LiDAR data. They
used objects extracted from LiDAR data and their correspond-
ing boundaries from imagery data as control objects, and matched
extracted edges and corners, then used the endpoints in coarse
registration. All of these studies and similar ones look for an op-
timal compromise between automating the registration process,
minimizing computations, sub-processes, cost of resources, and
execution time, maximizing model accuracy, and generalizing
registration techniques to fit different land-uses.
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The purpose of the presented work is to assess the potential-
ity of the Phase Congruency model in generating edge/corner
points as primitives for the registration of imagery and LiDAR
data at different SRs (Spatial Resolutions), using multiple regis-
tration models, in terms of registration accuracy and execution
time.

1.2 Phase Congruency (PC) Model

(Morrone, Owens, 1987) introduced the Local Energy model to
detect image features in 1D based on the postulate that edges
and corners are located on points, where the Fourier compon-
ents of a signal are in phase. (Kovesi, 2003) presented two ma-
jor contributions to the model. First, a normalization to the local
energy function known as a PC measure that identifies in-phase
points as edge/corner points. Second, using of wavelets instead
of Fourier transformation for local frequency analysis at differ-
ent scales and orientations. The wavelets act as a bank of filters
to select particular frequencies of the signal for analysis. This
ensures a high spatial localization of frequency change, so that
features are more associated to their neighbours in the analysis
rather than being separately analyzed (Kovesi et al., 1999).

The PC model has been implemented with promising results
in several studies that serve various applications. (Estépar et
al., 2006) detected airway wall in tomographic images in an at-
tempt to better understand the genetic pathways for the chronic
obstructive pulmonary disease development, (Rijal et al., 2012)
localized zones in chest X-ray images infected by pulmonary
tuberculosis, (Štruc, Pavešić, 2009) extracted line features from
palm-print images for individuals identification in biometric se-
curity systems, and (Zhang et al., 2012) identified local fea-
tures in finger-knuckle-print images as a promising biometric
identifiers in personal authentication systems. In remote sens-
ing context, (Ahmed et al., 2009) successfully employed the
model in extracting step and line features from satellite image.
However, the data required smoothing in prior to accommod-
ate atmospheric noise. (Fan et al., 2014) used the model in
registering SAR (Synthetic Aperture Radar) images. They used
nonlinear diffusion scale space along with the ratio of expo-
nential weighted average operator to reduce noise and preserve
fine details in the image. Then, they calculated PC information
at each key point as a cue for rejecting false key points. (Ye,
Shen, 2016) achieved satisfactory results in registering optical-
to-SAR and optical-to-LiDAR data. They emphasized the sig-
nificance of filter orientations as complementary feature de-
scriptive information, which the modified PC model does con-
sider.

2. METHODS

Figure 1 illustrates the workflow applied for a 2D-2D LiDAR
and optical data integration. It includes eight steps. Step (1):
resampling LiDAR and optical images to larger pixel sizes to
build a data pyramid. The remaining steps are applied to each
resolution. Step (2): filtering both images in the spatial domain,
by running the PC model as a band-pass filter. It calculates a PC
measure for cells’ center-points in different directions (Kovesi
et al., 1999). The values of the measure and the filter’s orient-
ation angle contribute into computing maximum and minimum
moments for each point. The higher the moments’ values, the
more inclination for a point towards representing an edge or
a corner, respectively (Kovesi, 2003). Step (3): adjusting a
moment threshold range to isolate edge/corner points as CCPs
(Candidate Control Points) on both images. Step (4): visually

investigating the likeness of the two sets of CCPs. This step de-
termines whether the process continues automatically or semi-
automatically. If an adjusted threshold range is visually found
to properly segregate interrelated sets of CCPs, the approach
remains automatic, and CCPs are paired-up directly in step (6).
Contrarily, the methodology requires some interactivity through
step (5), and, thus, turns to a semi-automatic approach. Step (5):
abstracting the two scenes to their main elements, which com-
monly exist in both, and targeting points overlaid their bound-
aries as CCPs. This is achieved by clustering the images based
on their moment values, refining output patches (i.e. merge, de-
letion), extracting their outlines, and selecting points located on
them. Step (6): matching CCPs from LiDAR and optical im-
ages into corresponding pairs of FCPs (Final Control Points),
by applying the SCD (Shape Context Descriptor) method. It
is a graph-matching algorithm that correlates a pair of points
belonging to two different sets, based on their distances and
azimuth angles with respect to remaining points in the same set
(Belongie et al., 2006). Pairs with a correlation larger than a
predefined threshold value are considered FCPs. Step (7): ap-
plying Least Squares to estimate the transformation parameters
of four empirical registration models: first, second, third order
polynomials, and DLT (Direct Linear Transformation). Step
(8): validating the registration models based on a set of check-
points obtained separately from FCPs.

Figure 1. Methodology

3. EXPERIMENTAL WORK

3.1 Study Area and Datasets

The developed approach is tested on data acquired for a 33000
m2 residential urban area in Toronto, Canada (Figure 2). It is
part of West Rouge; a small community neighbourhood within
the former suburb of Scarborough, in the south-east corner of
Toronto, where Lake Ontario exists. Figure 3 shows the aer-
ial and LiDAR data obtained for the study zone. The image
has a 20 cm SR, and four radiometric bands; R, G, B, (Red,
Green, Blue) and NIR (Near Infrared). It was downloaded from
the Geospatial Map and Data Centre on Ryerson University lib-
rary website (GMDC-RU, 2014). Airborne LiDAR points were
collected by Teledyne Optech, and their properties are given in
Table 1. Since both datasets have the same projected coordinate
system: NAD 1983, UTM zone 17N, the aerial photo’s geore-
ferenced file was deleted to ruin the pixels’ geolocation, in order
to later be able to test the model registration capabilities.
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Figure 2. Study area - (Google Earth, 2020)

a- Aerial photo - RGB (20 cm)

b- LiDAR point cloud - height values
Figure 3. Datasets

Sensor Titan
Point count 2007015
Point spacing (m) 0.13
Upper left coordinates (m) 650490.92, 4849681.77
Lower right coordinates (m) 650701.79, 4849525.14
Max returns 4
Active beams: 532, 1064, 1550 nm
Generating software: OptechLMS
Acquisition year: 2015

Table 1. LiDAR characteristics

3.2 Model Implementation

Computations were carried out using Python programming lan-
guage v 3.7.4, on Spyder IDE (Integrated Development En-
vironment) v 3.3.6, embedded in Anaconda Enterprise v 3.0.

ArcScene v 10.5 was used for the visualization of 3D LiDAR
points. ArcMap v 10.5 was used for 2D data visualization,
in addition to some minor geo-processing tasks (i.e. buffer-
ing, clustering). Besides, LAStools were applied for LiDAR
data conversion and metadata extraction. Data processing was
performed on a workstation with the following specifications:
Windows 10 Pro for Workstations OS 64-bit, 3.2 GHz processor
(16 CPUs), and a memory of 131072MB RAM.

3.2.1 Image Production: The “lasinfo” tool in LAStools
was used to generate the metadata file from the LiDAR LAS
file. The latter was converted to a text file by the “las2txt” tool,
to be read by Python. The PC model runs on a single 2D image;
hence, an individual discriminative radiometric band from each
data type had to be selected for edge detection. Since the land-
scape consists of elements variant in material intensity; build-
ing roofs, asphalt roads, driveways, land markings, curbs, side-
walks, and grass, the NIR layer was the selected input imagery
band for the model. On the other hand, these elements were
found to have a narrow height difference in the LiDAR data;
consequently, an intensity-based image (C2, 1064 nm) was the
other input for the PC model. This image was generated by the
“LAS Dataset to Raster” tool in ArcScene, with the same res-
olution of the aerial image; 20 cm. The tool applies a binning
interpolation, where the value assigned to each cell is the aver-
age of all points’ within it. Values of empty cells are determined
by linear interpolation (Esri, 2016b).

3.2.2 Feature Detection: The PC model implementation and
moment calculations were performed according to the set of
equations illustrated in (Kovesi et al., 1999) and (Kovesi, 2003).
The bank of filters were Gabor wavelets as described in (MacLen-
nan, 1991). They were designed at five different scales and
eight orientations; starting from 0o and increasing by 45o. K-
parameter; the scaling factor, was altered to 0.01 and 0.05 while
processing the aerial and LiDAR images, respectively. These
values resulted in distinct moment patterns. The model was ap-
plied on five lower SRs: 40, 80, 120, 160, and 200 cm. The
resampling was carried out using the cubic technique, which
determines the resampled cell value from its 16 nearest input
cells (Esri, 2016c).

3.2.3 CCPs Selection: The scene abstraction was achieved
by clustering the moment points -after being converted to an
image- to the minimum number of classes that were seen to
be identified in both images. The clustering was carried out
through “Iso Cluster Unsupervised Classification” tool in Ar-
cMap. It functions in an iterative manner after defining the
number of desired classes. Pixels are grouped to clusters of
a close mean value. The trials terminate when a maximum
number of iterations or a convergence is achieved (Esri, 2016a).
These clusters were converted to polygons, which were conver-
ted to polylines via the “Raster To Polygon” and “Polygon To
Line” tools in ArcMap, respectively, to extract the clusters’ out-
lines. Moment points located in a buffer distance (half the SR)
around these boundaries were targeted as CCPs.

3.2.4 FCPs Selection: The SCD method matched the two
sets of CCPs; from aerial and LiDAR images, as given in (Be-
longie et al., 2006). In each set, a log-polar diagram was cre-
ated for each CCP, based on its 2D geometric relations with the
rest of CCPs, in terms of distances and azimuth angles. They
are the diagram’s X and Y axes, which range from 0 to max-
imum normalized distance, and from 360o to 45o, respectively.
The diagram graphically plots these relations by dividing each
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axis range into bins to form a grid, where each cell contains
the number of CCPs that are within the same bin’s distance and
angle boundaries. The correlation between log-polar diagrams
of both CCPs sets were calculated, and pairs were matched on a
one-to-one basis, to eventually have a CCP in one set, paired-up
with a single CCP of a maximum correlation, in the other set.
Number of bins for distances and angles were set to five and
eight, respectively, and only pairs with correlation ≥ 95% were
selected as FCPs.

3.2.5 Data Registration and Model Validation: Polyno-
mial models of first, second, and third orders (Nielsen et al.,
2004), in addition to the DLT model (Chen et al., 1994) were
used in the registration of LiDAR and imagery data. A set
of checkpoints that were collected manually on both images
was used for model validation. The model development error
compares the calculated versus the observed coordinates of the
CCPs on the aerial data. Whereas, the model validation error
compares the calculated versus the observed coordinates of the
checkpoints on the aerial photo. The parameters of the model
with the highest and most consistent accuracies, and least pro-
cessing time were used to associate the 3D LiDAR points to
their corresponding cells on the aerial photo.

4. RESULTS AND DISCUSSIONS

Figure 4 illustrates the LiDAR intensity data converted into an
image and the aerial image in the NIR at the original SR, versus
a version of the same data resampled at 200 cm, as an example
of a SR tested in this study. Some features show up on one data
type and do not in the other one. For example, the roof details
and shadow on the imagery data, and the tree crowns to the left
side of the LiDAR image. These variations are mainly due to
the data being acquired by different techniques, and at different
times. However, the remaining elements are consistent enough
for registration.

a- Aerial and LiDAR images (20 cm) - NIR

b- Aerial and LiDAR images (200 cm) - NIR
Figure 4. Original and resampled images

Figure 5. Maximun moment - aerial and LiDAR images (200 cm)

a- Aerial and LiDAR clusters (200 cm)

b- Aerial and LiDAR cluster outlines in red (200 cm)

c- Aerial and LiDAR CCPs in yellow (200 cm)
Figure 6. Scene abstraction for CCPs detection

The results show that the PC model did not yield an edge-
differentiating pattern when run on the original SR, at which the
filter looks for a change in a slim range of frequencies, where a
point appears significant, while it is not, with respect to the en-
tire image. The maximum moment gave more definite feature
detection than the values of the minimum moment, since the
scene is richer in edges than in corners, as a typical residential
urban morphology with abundance of manmade elements. Fig-
ure 5 shows the moment values of both data, with high values
concentrated around the features’ edges. Nevertheless, it was
infeasible to detect interrelated edge points by directly adjust-
ing a threshold moment range, because of the PC model noise
sensitivity. Despite a noise compensation term has been intro-
duced to the PC’s normalized equation (Kovesi, 2003), noise in
the context of this study is quite different. It implies the dis-
similarity between some features in both datasets in regards to
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existence (as discussed earlier) and reflectance. For instance,
the oval sidewalk at the upper left corner of the area (Figure
2) is more highlighted in the LiDAR image (Figure 4); con-
sequently, in its output moment (Figure 5). (Megahed et al.,
2020) collaborated further in addressing other sources of noise,
such that aerial and LiDAR data are originally different in terms
of collecting sensors, acquisition mechanisms, and data dimen-
sions. Additionally, shadows in aerial photos are usually mis-
interpreted as ground features that is why they appear in the
moment output. Moreover, there are no LiDAR pulses return-
ing from water surfaces, if they exist in a scene, which prevents
those bodies from appearing in LiDAR images, while they are
presented clearly in corresponding aerial photos. Hence, the
model turned to be semi-automatic due to the interactivity re-
quired to get over this drawback. Figure 6 illustrates the clus-
tering and edges extraction applied to eventually identify CCPs
sets. Final clusters, clusters’ outlines in red lines, and CCPs in
yellow dots are shown in Figures 6.a, 6.b, and 6.c, respectively.

The size of the CCPs data at each SR is given in Figure 7.
The higher the SR, the larger the number of points targeted as
CCPs are. This is more pointed out at a SR of 40 cm that has
a serious size of CCPs compared to the second lower SR; 80
cm. Running the proposed model on fine SRs significantly in-
creases the time required for the SCD method to produce FCPs.
The algorithm of the SCD method implicitly builds a correla-
tion matrix that has a number of rows and columns equals to the
size of CCPs on imagery and LiDAR data, respectively. Such
massive computations consumes hardware and time resources.
The workstation used in this study could not process the size
of CCPs at SRs 40 and 80 cm. Consequently, they were down-
sampled to 1748 and 1987 CCPs at 40 cm, and 1684 and 1754
CCPs at 80 cm, for aerial and LiDAR data, respectively. Figure
8 illustrates the processing time at the five SRs. The worksta-
tion is capable of handling a set of CCPs around 2000, which
is close to the 120 cm SR case. However, the processing time
exceeded one hour and a half, which is too long for a relatively
small study zone. It is worth to mention that the processing
times at SRs 40 and 80 cm, in Figure 8, are calculated based on
the downsampled CCPs sets.

The number of CCPs in this study is directly proportional to the
SR. However, downsampling the size of CCPs for more effi-
cient computations in terms of processing times should not im-
pact the registration itself, as long as redundant, well-distributed,
and interrelated control points are maintained. To illustrate, a
third order polynomial, as registration model example, has 20
unknown parameters and mathematically requires at least ten
pairs of control points to solve the system, in general. Never-
theless, this is an overdetermined system of equations that has
no exact solution; rather, Least Squares looks for a solution with
the smallest error.

First, downsampling does not affect the redundancy essential
for obtaining an optimal solution, as the system remains over-
determined after downsampling. Second, downsampling was
carried out evenly on the points located along the boundar-
ies. At every two or three points, one point was eliminated,
which decreases the crowd of points on one hand, and keeps a
non-clustered point distribution on the other hand (Figure 6.c),
which is vital in order to avoid distortion at areas that lack con-
trol points. Finally, the SCD ensures a correlated set of FCPs
as an input to the registration process. It is worth to mention
that downsampling reduces the size of CCPs prior to running
the SCD, and the latter is the mechanism that determines the
FCPs, which contribute to the registration, and by default have

a drop in size in comparison to the CCPs’ size, regardless the
downsampling step.

Figure 7. CCPs’ size at different SRs

Figure 8. Processing time at different SRs

Figure 9. Aerial and LiDAR FCPs in yellow (200 cm)

SR (cm) FCPs
40 239
80 132

120 400
160 219
200 201

Table 2. Number of FCPs at different SRs

The SCD method produced FCPs that are 95% correlated, at
least. This threshold was set to provide associated FCPs that
are evenly distributed over the area, to ensure decent registra-
tion. Figure 9 shows the distribution of the FCPs on the optical
imagery and the LiDAR intensity images at a 200cm SR, in yel-
low dots. Information about FCPs at the remaining SRs is given
in Table 2.
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The coordinates of 55 checkpoints (Figure 10) were collected
on the original SR version of both datasets, and were used to
assess the registration models at each SR. It is worth to men-
tion that the errors mentioned below are RMSE (Root Mean
Square Error). The model development error is plotted versus
the model validation error for each registration model, at each
SR (Figure 11). Generally, both errors are consistent to each
other with the decrease of SR, which is an indication of a rep-
resentative model. In centimetre units and with respect to the
corresponding SR, the model development and validation errors
do not change significantly. The value is acceptable for the data
at a 200 cm SR registered by the third order polynomial model,
since it is equivalent to one pixel. However, the model devel-
opment errors for the datasets processed at the remaining SRs
even with different registration models are not promising. A
justification for this is the poor performance of the PC model in
filtering images at fine SRs, as the effect of the aforementioned
noise that falls off with the decrease in level of details. Indeed,
these are vital gains behind applying the proposed methodo-
logy in the integration of LiDAR and imagery data. First, the
model yields edge/corner patterns on versions of input images
resampled at lower SRs, which significantly speeds up the pro-
cessing times. Second, accuracy results do not differ from their
counterparts at higher SRs. Additionally, acquisition of points
as registration primitives is no longer limited to conventional
locations; such as roof corners and land markings, which are
limited to residential urban images obtained at fine SRs. In fact,
(Megahed et al., 2020) confirmed the potentiality of the model
in identifying control points as primitives for the registration of
imagery and LiDAR data obtained for various urban morpholo-
gies; industrial, residential, and coastal shore. They suggested
that data of large size can be divided and processed into tiles, to
accommodate long execution times.

The parameters of the third order polynomial model which re-
gistered the data at a 200 cm SR were eventually chosen to re-
gister the 3D LiDAR points to the original RGB aerial image
(Figure 12), due to the model’s lowest processing time and er-
ror, beside the consistency between both accuracies; model de-
velopment and model validation. The qualitative validation of
the colored LiDAR points is very satisfactory, as the points in-
herited their corresponding radiometric characteristics from the
aerial image. This is obvious by zooming in and out, scanning
the scene, and examining its small details. To visually sup-
port this outcome, another registration was performed using the
parameters of the poorest findings resulted from an affine poly-
nomial at a SR of 40 cm. Figure 13 shows both registrations
versus each other at three different zoomed-in positions, where
misalignments of inherited RGB properties take place at roof
edges and tree crowns in the second registration.

Figure 10. Check points - Aerial and LiDAR data (20 cm)

a- Affine

b- Second order polynomial

c- Third order polynomial

d- DLT
Figure 11. Registration models’ evaluation at different SRs
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Figure 12. Registered LiDAR points - RGB

Figure 13. Qualitative Evaluation

5. CONCLUSIONS

Urban sprawl has begun to be a serious challenge for govern-
ments. Working out its consequences requires the integration of
remotely sensed data obtained by different sensors, for more ac-
curate classification of different urban features. Such classific-
ation contributes in the precise evaluation of current situations,
and, thus, designing appropriate future plans to deal with the ex-
pected shortage in resources and services. This study integrated
LiDAR and aerial data obtained at a 20 cm SR for a residential
urban land-use in Toronto, Canada, using a semi-automatic ap-
proach. The proposed methodology tested the accuracy of the
PC model, as an edge/corner filter, against five lower SRs of
the data input (40, 80, 120, 160, and 200 cm), registered by
various empirical models. The corresponding processing time
was recorded as well. The following procedure was applied for
each SR. Aerial and LiDAR data were input to the PC model.
The filter outputs were clustered into a number of classes that
ensures mutual patches on both datasets. Clusters’ boundaries
were extracted, and points located around them were targeted as
CCPs. Afterwards, the SCD algorithm matched the two sets of
CCPs; on aerial and LiDAR data. It resulted in pairs of FCPs,
each with a correlation higher than 95%. Four registration mod-
els were used to register both sets of FCPs; affine, second and
third order polynomials, beside the DLT model. The transform-
ation parameters were estimated by Least Squares. Finally, the
models were validated by a list of 55 checkpoints collected on
both images.

Applying the presented methodology on lower SRs of the ori-
ginal imagery and LiDAR data was found to be beneficial for
multiple reasons. The PC model yielded no edge pattern at
fine SRs (20 cm). Additionally, running the proposed method
on high SRs (120 cm) significantly increased the processing

time (102 minutes). Furthermore, registration accuracies at low
SRs (200 cm, third order polynomial registration model, RMSE
equivalent to one pixel) did not significantly differ from those
resulted from higher SRs, which suggests the poor performance
of the PC model in feature detection when performed on fine
SRs. The third order polynomial model at a 200 cm SR gave
the lowest and most consistent model development and valida-
tion errors. On the other hand, variations between both datasets
in regards to acquisition technique and time did not allow for a
direct selection of CCPs by applying a threshold range on the
filter outputs. Alternatively, the model switched to be semi-
automatic by proposing a scene abstraction solution to over-
come this problem. Nevertheless, this bypass when applied at
lower SRs does not limit the collection of CPs to the traditional
types (i.e. at roof corners and road intersections).
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