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ABSTRACT: 

Land Cover (LC) plays a key role in many disciplines and its classification from optical imagery is one of the prevalent applications 

of remote sensing. Besides years of researches and innovation on LC, the classification of some areas of the World is still challenging 

due to environmental and climatic constraints, such as the one of the mountainous chains. In this contribution, we propose a specific 

methodology for the classification of the Land Cover in mountainous areas using Sentinel 2, 1C-level imagery. The classification 

considers some specific high-altitude mountainous classes: clustered bare soils that are particularly prone to erosion, glaciers, and 

solid-rocky areas. It consists of a pixel-based multi-epochs classification using random forest algorithm performed in Google Earth 

Engine (GEE). The study area is located in the western Alps between Italy and France and the analyzed dataset refers to 2017-2019 

imagery captured in the summertime only. The dataset was pre-processed, enriched of derivative features (radiometric, histogram-

based and textural). A workflow for the reduction of the computational effort for the classification, which includes correlation and 

importance analysis of input features, was developed. Each image of the dataset was separately classified using random forest 

classification algorithm and then aggregated each other by the most frequent pixel value. The results show the high impact of textural 

features in the separation of the mountainous-specific classes the overall accuracy of the final classification achieves 0.945. 

 

 

1. INTRODUCTION 

Land Cover (LC) plays a key role in many disciplines, such as 

sustainable land management, land resource monitoring, urban 

vegetation mapping landscape ecology and climate-related 

researches (Feng et al., 2015; Rizeei et al., 2016; Sekertekin et 

al., 2017; Shelestov et al., 2017; Turner and Gardner, 2015). This 

makes the land cover, and land use, maps highly demanded 

(Carrasco et al., 2019; Delalay et al., 2019; Sekertekin et al., 

2017; Thanh Noi and Kappas, 2018). LC maps are commonly 

derived from machine learning classifications of optical imagery, 

which represents one of the prevalent applications of remote 

sensing and it has been described by many authors (Carrasco et 

al., 2019; Delalay et al., 2019; Rizeei et al., 2016; Sekertekin et 

al., 2017; Shelestov et al., 2017; Sidhu et al., 2018; Thanh Noi 

and Kappas, 2018). During the last years, LC classification has 

done great steps forward: a wide range of free satellite medium-

high optical imagery, specific classification algorithms, many 

processing platforms and machines with more and more high 

computational power are now available (Carrasco et al., 2019; 

Rizeei et al., 2016; Sidhu et al., 2018). Besides today's 

achievements, we still face some major constraints in LC 

classification, which can be distinguished in environmental 

constraints and technical constraints. Among the technical 

constraints, the poor temporal resolution of satellites is one of the 

most popular, but it has been partially overcome with the 

introduction of medium-high resolution satellites that increase 

the free data available and make possible integrating the datasets 

from different acquisitions. Although, data integration and high-

spatial resolution requires to manage a large amount of data, but 

also a large amount of storage, as well as significant computing 

power and time (Carrasco et al., 2019). Managing satellite dataset 

requires considerable data storage capability and the high spatial 

resolution further increase this requirement. Indeed, the antinomy 

between spatial resolution and computational power is another 

very common technical constraint. During the last few years, 

some geographic cloud computing platforms that allow the 

analysis and storage of geographic data were born. These services 

(such as Google Earth Engine) decrease the computational and 

storage limits related to the satellite data processing (Kumar and 

Mutanga, 2018). The atmospheric disturbance and the high 

seasonal variability are some of the main environmental 

constraints in LC classification along with the topography 

variation. The topography strongly influences the spectral values 

in satellite imagery, especially in the case of steep areas. Indeed, 

the strong variability in the reflectance and the spread shadows 

are the main effect of the topography on satellite imagery, which 

may complicate the classification (Dorren et al., 2003). This is 

particularly true in narrow valleys of mountainous areas, where 

some mountainside are permanently shadowed in winter months. 

The LC classification of mountainous areas is affected by other 

major environmental constraints due to climatic conditions. For 

example, the snow cover prevents the classification in the winter 

season and the orographic rains and clouds, which mechanisms 

are influenced by the terrain (Houze, 2012), lower the possibility 

of accurate classifications. The combination of these factors 

makes the generation of the land cover maps of mountainous 

areas particularly challenging and generally recognized as fairly-

low accurate (Dorren et al., 2003; Itten and Meyer, 1993).  

In this contribution, we propose a specific methodology for the 

classification of the Land Cover in mountainous areas using 

Sentinel 2, 1C-level imagery. The classification considers some 

specific high-altitude mountainous classes: clustered bare soil 

areas that are particularly prone to erosion; glaciers; and solid-

rocky areas. The methodology tries to overcome the above-

mentioned environmental limitations and it consists of a pixel-

based multi-epochs classification using random forest algorithm. 

We chose to perform the analysis using Google Earth Engine 

(GEE) because of its high computational speed and the large 

dataset of satellite imagery it makes easily available. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-663-2020 | © Authors 2020. CC BY 4.0 License.

 
663

https://context.reverso.net/traduzione/inglese-italiano/toughen


 

2. MATERIAL 

2.1 Test study 

The study interests the Wester Alpine arch between France and 

Italy and it extends for approximately 340000 hectares (Figure 

1). The town of Cesana Torinese (44° 57′ 0″ N, 6° 48′ 0″ E) in 

Italy is the reference site of this study. Two Sentinel-2 tiles cover 

the study area: 31TGK (K) and 32TLQ (Q). 

 

 
Figure 1. Study area. The Blue square covers the K tile, while 

the red one covers the Q tile. The yellow pointer indicates 

Cesana Torinese (TO). 
 

2.2 Google Earth Engine 

The main steps of a semi-authomatic classification workflow 

(topographic correction, extraction of training points, training of 

the classifier, classification) were realized on Google Earth 

Engine (GEE). GEE is a web-based platform for geospatial 

analysis lunched in 2010, and it is free for research and education 

purposes (Gorelick et al., 2017; Kumar and Mutanga, 2018). The 

GEE data catalog is composed of continuously updated 

geospatial datasets provided by different national and 

international programs, such as NASA and ESA (Hu et al., 2018; 

Kumar and Mutanga, 2018; Shelestov et al., 2017; Sidhu et al., 

2018). The datasets included some already elaborated satellite 

data. The true innovation of GEE is the possibility of interacting 

with very large datasets and computing basic geospatial analysis 

directly on GEE servers through JavaScript/Python-based API 

(GEE API) (Goldblatt et al., 2017; Google Earth Engine, 2020). 

GEE makes available the imagery captured by Sentinel 2. 

Sentinel 2 is a mission of the European Space Agency (ESA) and 

it is composed of twins satellites (Sentinel-2A and Sentinel-2B) 

that carry multispectral optical sensors. Sentinel 2 products are 

images of 13 spectral bands that are published with two possible 

levels of processing (ESA, 2020). The dataset for the 

classification is composed of 31 scenes (epochs) filtered with 

GEE from Sentinel 2 level-1C representing the Top-Of-

Atmosphere (TOA) reflectance scaled by 10000 (it includes 

radiometric and geometric corrections including ortho-

rectification and spatial registration on a global reference system 

with sub-pixel accuracy (ESA, 2020)). 

 

2.3 Training and Validation Datasets 

The 1260 points that compose the training dataset were randomly 

selected. This process was sped up by randomly sampling 

(stratify samples) a training layer generated from already existing 

land cover classifications. This phase, besides accelerating the 

training points positioning, also ensured the minimization of the 

subjectivity in the identification of the training points (Gromny 

et al., 2019). The information of ESA High-resolution Layers 

(VHR) 10m  (Forest cover, Imperviousness, Grassland and Water 

and Wetness, http://land.copernicus.eu/) (Lefebvre et al., 2016), 

CORINE Land Cover (CLC) (Copernicus, 2020), and RUSLE 

2015 at 100 m  from ESDAC (Panagos et al., 2015) constitute the 

training layer. The classed of CORINE land cover, as well as 

other input data, were reassigned based on the classes of interest, 

as Table 1 shows. Finally, the training points were visually 

checked. This phase was carried out outside GEE environment. 

The accuracy assessment is based on 1260 points identified using 

the same methods for the definition of the training points. 

 

Reference classes 
VHR mosaics 

2015 

ESDAC 

2015 
CLC  

Coniferous forest 
Forest Type - 

312 

Broadleaves forest 311 

Grasslands Grassland - 321-231 

Water 
Water and 

Wetness 
- 511,512 

Clustered bare soil 

areas 
- 

RUSLE 
(> 20 t/he/yr) 

323-331 

Solid-rocky areas -  332 

Urban areas 
Imperviousness 

Density 
- 111-133 

Glaciers -  335 

Agricultural lands -  211-244 

Table 1. Input datasets for the training layer and the translation 

to the reference classes. 

 

2.4 Satellite images dataset 

The classification was realized on Q tile and then its replicability 

checked on tile K. The images regarding the entire Sentinel-2 

activity of sensing were filtered according to two parameters: the 

cloud cover percentage, data must have less than 10% the scene 

covered by clouds; and by the sensing period. Only images 

sensed during summertime (from June to August) were selected 

to minimize the effect of the shadows. The filter reduced 

considerably the data available from Sentinel 2 level 2A (Sentinel 

2 highest level of processing product that geometrically and 

atmospherically corrected): only 16 images that satisfied the filter 

criteria were available. Therefore, to ensure a larger classification 

dataset, 1C level data were used. (Table 2).  

 
Tile year No. Sentinel Image identification code 

K 

2017 

0 20170704T103019_20170704T103637_T31TGK 

1 20170714T103019_20170714T103022_T31TGK 

2 20170818T103021_20170818T103421_T31TGK 

3 20170823T103019_20170823T103018_T31TGK 

2018 

4 20180619T103019_20180619T103559_T31TGK 

5 20180719T103019_20180719T103020_T31TGK 

6 20180719T103019_20180719T103820_T31TGK 

7 20180729T103019_20180729T103815_T31TGK 

8 20180828T103019_20180828T103013_T31TGK 

2019 

9 20190604T103029_20190604T103616_T31TGK 

10 20190629T103031_20190629T103537_T31TGK 

11 20190704T103029_20190704T103317_T31TGK 

12 20190714T103029_20190714T103635_T31TGK 

13 20190719T103031_20190719T103715_T31TGK 

14 20190729T103031_20190729T103230_T31TGK 

15 20190803T103029_20190803T103728_T31TGK 

16 20190808T103031_20190808T103026_T31TGK 

17 20190818T103031_20190818T103539_T31TGK 

Q 

2017 

0 20170704T103019_20170704T103637_T32TLQ 

1 20170714T103019_20170714T103022_T32TLQ 

2 20170818T103021_20170818T103421_T32TLQ 

3 20170823T103019_20170823T103018_T32TLQ 

2018 

4 20180619T103019_20180619T103559_T32TLQ 

5 20180704T103021_20180704T103023_T32TLQ 

6 20180719T103019_20180719T103020_T32TLQ 

7 20180828T103019_20180828T103013_T32TLQ 

2019 

8 20190604T103029_20190604T103616_T32TLQ 

9 20190619T103031_20190619T103536_T32TLQ 

10 20190704T103029_20190704T103317_T32TLQ 

11 20190729T103031_20190729T103230_T32TLQ 

12 20190803T103029_20190803T103728_T32TLQ 

Table 2. Sentinel 2 level 1C images of the classification dataset. 
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31 tiles constitute the final dataset: 13 images for Q and 18 for K. 

Sentinel 1C level products are georeferenced and geometrically 

corrected, but the atmospheric disturbance and the topographic-

derived distortions are not rectified. Thus, the imagery was pre-

processed before the classification. 

 

3. METHODS 

In this paragraph is described the methodology applied for this 

classification. It consists of a machine learning classification 

based on random forest algorithm, realized using 1260 training 

points on 9 classes: Coniferous forest, Broadleaves forest, 

Grasslands, Water, Clustered bare soil areas, Solid-rocky areas, 

Urban areas, Glaciers, and Agricultural lands (Table 3).  

 

No. Class Description 

1 Coniferous forest Coniferous trees areas 

2 
Broadleaves 

forest 
Broadleaves trees forests 

3 Grasslands Includes pastures and moors 

4 Water Internal waters 

5 
Clustered bare 

soil areas 

Clustered rocks and bare soil, 

generally in high slope 

mountainsides. Highly prone to 

erosion. 

6 Solid-rocky areas 

Continuous non-clustered rocky 

cover. Typical of Alpine 

mountain peaks.  

7 Urban areas 
Buildings, roads, artificial 

infrastructures. 

8 Glaciers 

Perennial snow/ice cover. In 

Alpine zone, only in areas above 

3000 m a.s.l. 

9 Agricultural lands 

Areas interested by agricultural 

activities that require tillage, or 

present rows of fruit 

trees/bushes.  

Table 3. Classes of Land Cover considered in this work. 

 

3.1 Pre-processing 

Sentinel 2 1C-level products are georeferenced, but the 

atmospheric disturbance and the topographic-derived distortions 

are not corrected. Thus, the imagery was pre-processed phase 

preceded the classification and consists of the cloud masking, the 

atmospheric correction, and the topographical correction. 

 

3.1.1 Cloud masking  

The dense clouds and the cirrus were masked in each epoch using 

the QA60 band. The QA60 band is provided as an additional 1C-

level product and represents the cloud mask computed by ESA 

through the analysis of the blue spectral region (B2), the SWIR 

reflectance in B11 and B12 (ESA, 2020). Only cloud-free pixels 

were maintained, while dense clouds and cirrus were classified 

as no data values. 

 

3.1.2 Atmospheric correction 

The atmospheric correction of satellite imagery is considered 

fundamental in remote sensing applications, especially in the 

case of multi-temporal analysis (Hadjimitsis et al., 2004; 

Lantzanakis et al., 2017; Martins et al., 2017; Sola et al., 2018). 

The atmospheric correction removes the scattering effect of the 

Earth’s atmosphere and it can be based on Radiative Transfer 

Models (Specific mathematical models that consider latitude, 

season and atmospheric conditions) or on Image-Based 

Correction Techniques (that estimate atmosphere scattering 

using information and data within the image) (Hadjimitsis et al., 

2004; Lantzanakis et al., 2017; Martins et al., 2017). Usually, the 

Radiative Transfer Models are more accurate and therefore more 

applied. For example, ESA for the production of atmospherically 

corrected imagery of Sentinel 2 (level-2A), applies the Sen2Cor 

Radiative Transfer model. For the time being, there is no 

atmospheric correction model to be applied to Sentinel 2-level 

1C implemented in GEE. This means that Sentinel 2 at 1C 

processing level cannot be easily atmospherically corrected using 

Radiative Transfer Models in GEE environments. This is a severe 

limit to the performing of multi-temporal analysis. To overcome 

this limitation, in this work, we applied a linear model for the 

atmospheric disturbance reduction: Dark Object Subtraction 

(DOS) (Chavez, 1988), which performs similarly to radiative 

transfer models on homogeneous surfaces such as grass, water, 

and bare soil (Lantzanakis et al., 2017). The application of the 

DOS did not negatively affect the final results because the 

method we propose classify separately each epoch of the dataset, 

as discussed in paragraph 3.3. 

 

3.1.3 Topographic correction 

The topographic correction allows the variation in the reflectance 

derived by the inclination of the terrain and the sun elevation 

(Poortinga et al., 2019; Shepherd and Dymond, 2010). This pre-

processing phase is crucial in mountainous areas, because of the 

steep mountainsides and the consequent alteration of reflectance 

values. The entire dataset was corrected by applying a semi-

empirical correction. The code was originally implemented in 

GEE by Patrick Burns and Matt Macander, and then adapted to 

the dataset. The correction is based on a semi-empirical method 

that takes into consideration not only the topography of the area 

(as for the empirical methods), but also the solar angle (both 

zenith and azimuth) (Shepherd and Dymond, 2010). The 

topographic correction is based on sun-canopy-sensor with a 

semi-empirical moderator (c) (SCSc) method (Poortinga et al., 

2019; Soenen et al., 2005). A Digital Elevation Models (DEM) 

to detect the slopes of the area and the solar position information 

(i.e. the sun inclination and sun irradiance) are the input data. 

These data are available from the metadata of the satellite images, 

while elevation information was extracted from the Shuttle Radar 

Topography Mission (SRTM) digital elevation data with 30m 

spatial resolution that is available in the GEE catalog (Farr et al., 

2007). 

 

3.2 Derivative features 

Some additional bands were calculated to improve the final 

accuracy of the classification. The diversification of the input 

information is crucial for a good classification. For example, 

textural elements can facilitate Land cover classes discrimination 

(Lewiński et al., 2015), as well as the histogram-based ones 

(Drzewiecki et al., 2013). First, 10 radiometric features were 

added (Table 4). Secondly, 5 histogram-based features, 19 

textural and 1 edge-detector features were computed. 

Particularly, the texture metrics from the Gray Level Co-

occurrence Matrix in the 7x7 neighborhood of each pixel of band 

8 (Near InfraRed, NIR) were computed (Table 4) (Conners et al., 

1984; Haralick et al., 1973; GEE, 2020).  The derivate features 

improved the goodness of the classification, but required high 

computational power. Indeed GEE exceeded the memory limit 

by running the entire code: the filtering of the Sentinel-2 data 

catalog, the topographic and atmospheric corrections of the 

filtered features, the derivative bands computation for each epoch 

and the classification itself. Thus, to slim out the classification 

process and to reduce the computational time of the classification 

a correlation analysis and the importance of the layer in the 

classification analysis were realized. 
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 Feature Formula/note 
R

ad
io

m
et

ri
c 

Alteration B11/B12  

Chlorophyll 

IndexRedE
dge 

CRE 

(B9/B5)−1 

Enhanced 
Vegetation 

Index 

EVI 

2.5*((B9−B5)/((B9+6*B5−7.5*B1)+1)) 

HUE Arctan((2*V5−B3−B1)/30.5)*(B3−B1)) 

Normalized 

Difference 

Vegetation 
Index 

NDVI 

(B8−B4)/(B8+B4) 

Soil-
Adjusted 

Vegetation 

Index 
SAVI 

((B8−B4)/(B8+B4+L))*(1+0.5) 

Soil 

Compositio

n Index 
SCI 

(B11−B8)/(B11+B8) 

Specific 

Leaf Area 
Vegetation 

Index 

SLAI 

B9/(B5+B12) 

Wetnss 

Index 

WET 

(0.1509*B2)+(0.1973*B3)+(0.3279*B4)+(0.03
406*B8)-(0.7112*B11)-(0.4572*B12) 

Triangular 

Vegetation 

Index 

TVI 

0.5*(120*(B8-B3))-(200*(B4-B3)) 

E
d

g
e 

 

Sob Sobel edge extractor 

H
is

to
g

ra
m

-b
as

ed
 Var Variance 

Mean Mean 

Skew Skewness 

Kurt Kurtosis 

Contr 
Contrast; measures the local contrast of an 

image 

T
ex

tu
ra

l 
G

L
C

M
 

Entr Entropy 

Asm 
Angular Second Moment; measures the 

number of repeated pairs 

Corr 
Correlation; measures the correlation between 

pairs of pixels 

Var 
Variance; measures how spread out the 

distribution of gray-levels is 

Idm 
Inverse Difference Moment; measures the 

homogeneity 

Savg Sum Average 

Svar Sum Variance 

Sent Sum Entropy 

Ent 
Entropy. Measures the randomness of a gray-

level distribution 

Dvar Difference variance 

Dent Difference entropy 

Imcorr1 Information Measure of Corr. 1 

Imcorr2 Information Measure of Corr. 2 

Maxcorr Max Corr. Coefficient. 

Diss Dissimilarity 

Inertia Inertia 

Shade Cluster Shade 

Prom Cluster prominence 

Table 4. Derivative features calculated for each epoch. They are 

divided into 4 groups: histogram-based, radiometric, edge 

extractor and textural. 

3.2.1 Correlation analysis 

The slimming out workflow was designed to reduce the 

computational time without losing accuracy. First, a correlation 

analysis was performed between the radiometric derivative 

features and the original bands to avoid information redundancy. 

The correlation between bands was analyzed using July 2017 as 

reference. The analysis was based on the DN values randomly 

sampled within the classes. Band 4 was used as reference band. 

Correlation coefficients equal to 1 indicate total correlation. This 

analysis considered highly-correlated variables greater or equal 

to 0.85 (dark green in Table 5). Then, the correlation analysis 

between textural bands was carried out. Since the textural bands 

resulted to be much less correlated to each other compared to the 

radiometric bands, the importance of textural predictors in the 

classification was computed by running the classification each 

time excluding one different predictor. The Overall accuracies of 

these classifications were considered as the importance value of 

the removed predictor. This indirect strategy to estimate the 

importance of each feature within the classification was 

necessary because the evaluation of predictors’ importance is not 

implemented in GEE. The importance analysis was performed on 

July 2017 tile. The OA of the classification computed with all 

textural features is 0.825. The features which exclusion caused 

the increasing on the OA of 0.01 points were considered as less 

important (negatively affecting the classification). To further 

reduce the computational effort, the bands were normalized and 

then transformed in integer values (int16). Since running the 

normalization on GEE required too much memory was realized a 

“pseudo-normalization”. For each band was identified the 

multiplicative factor that allows to obtain integer values no 

bigger than 32767 (max values for signed integer data format). 

The pseudo-normalization does not affect the classification. 

 

3.3 Classification  

Each image was separately classified using the machine learning 

algorithm random forest with 50 rifle decision trees per class and 

4 as the minimum size for terminal nodes. The same training 

dataset was used for each image. This means that for one image 

were sampled 37 DN values in correspondence of every training 

point. This datum was used to train the classifier and finally to 

apply it to the starting image. The results are 13 classifications 

that were aggregated according to the most frequent pixel value 

between 1 and 9 (no data values excluded) to obtain the final 

classification of the area. The aggregation allowed us to minimize 

the mistakes of the single classifications and to take out from the 

final result the no data values of the cloud masking (Nowakowski 

et al., 2017). 

 

3.4 Accuracy assessment 

The accuracy assessment is based on 1260 defined by the same 

method adopted for the identification of the training dataset. It 

consisted of the computation of the error matrix and the derived 

accuracy measures for each single classification and the final 

aggregated one. The error matrix-derived measures are the 

overall accuracy, the producer’s accuracy, the user’s accuracy, 

and the F1 score.  

 

 

4. RESULTS 

4.1 Correlation and importance Analysis 

Table 5 shows the results from the correlation analysis between 

radiometric-based derivative features. The correlation coefficient 

ranges between 0 (no correlation, light green) and 1 (total 

correlation, dark green), (Table 5, Table 6). The radiometric 

derivative features with a correlation coefficient larger than 0.85 
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were excluded from the classification dataset: SLAI, NDVI, 

Alteration, and SAVI. The correlation between the original bands 

was not taken into consideration. Nevertheless, Sentinel bands 1, 

2, 9, 10 were excluded from the analysis as too influenced by the 

atmospheric component. The final bands considered were: B4, 

B2, B3, B5, B6, B7, B8, B8A, B11, B12, CRE, EVI, SCI, HUE, 

WET, TVI. The correlation between the textural features is not 

particularly remarkable (Table 6): only GLCM Contrast feature 

appears highly correlated to Dissimilarity, Variance, and Shade.  
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NDVI 
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EVI 
                    

SCI 
                    

HUE 
                    

SAVI 
                    

SLAI 
                    

WET 
                    

TVI 
                    

Table 5. Correlation analysis of radiometric-based features. The 

dark green cells indicate a correlation coefficient >0.85. 
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Asm                   
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Corr 
 

                 

Idm 
 

                 

Maxcorr 
 

                 

Var 
 

                 

Svar 
 

                 

Dent 
 

                 

Imcorr2 
    

 
 

 
 

          

Savg 
 

       
 

         

Imcorr1 
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Dvar 
 

       
 

         

Shade 
 

       
 

         

Prom 
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Table 6. Correlation analysis of textural and edge-detector 

features. The dark green cells indicate a coefficient >0.85. 

 

The importance of textural features in the classification was 

computed and Table 7 reports the results: only the Shade and 

Shade and Prominence negatively affect the classification, as 

they removal  increased the overall accuracy of 0.01. They were 

excluded from the classification dataset. The correlation and the 

importance of the predictors analysis on the bands resulted in 7 

highly-correlated and low-importance bands that were removed 

from the dataset (2 textural-based). The final results are 37 bands 

in each one of the 13 images. The following bands used: 'B3', 

'B4', 'B5', 'B6','B7', 'B8', 'B8A', 'B11', 'B12', 'CRE', 'EVI', 'SCI', 

'HUE', 'WET', 'TVI', 'entr', 'sob', 'var', 'mean', 'skew', 'kurt', 'asm', 

'contrast', 'corr', 'idm', 'maxcorr', 'var', 'svar', 'dent', 'imcorr2', 

'savg', 'imcorr1', 'diss', 'sent', 'ent', 'dvar',  'inertia'. 

 
Excluded features OA value  

All features  0.825 

entr 0.829 

sob 0.826 

asm  0.824 

contrast  0.819 

corr  0.822 

var  0.822 

idm  0.823 

savg  0.822 

svar  0.824 

sent  0.827 

ent  0.825 

dvar  0.826 

dent  0.822 

imcorr1  0.824 

imcorr2  0.829 

maxcorr  0.825 

diss  0.828 

inertia  0.825 

shade 0.834 

prom  0.835 

Table 7. Importance analysis of the textural features. The 

features which exclusion cause increasing on the OA of 0.01 

points were considered as less important (negatively affecting 

the classification). 

 

4.2 Classification  

It was not possible to perform the entire classification in one GEE 

script. Thus, it was carried out using some expedients. First were 

performed the filtering and the correction. The pre-processed 

dataset was then exported in the GEE personal Asset. A new 

script was written for the computation of the classifications in 

which was imported the pre-processed dataset. The slimming out 

tests were realized in a separate script. Finally, the single 

classifications were converted into int8 data format, stacked in a 

single image and exported (Figure 2). Figure 3 provides some 

examples of the classification results in high-altitude areas (left) 

and lowlands (right). 

 

4.3 Accuracy 

The overall accuracy for single date classification varied from 

0.661 to 0.747 in the case of only radiometric derivative features 

and from 0.791 to 0.900 for the radiometric and textural 

derivative features. Table 8 reports the results of the accuracy 

assessment deriving from the classification of i) the Sentinel 

radiometric bands and the radiometric-based features, and ii) the 

Sentinel radiometric bands, the radiometric-based features, and 

the textural features. The F1 scores of clustered bare soil areas 

along with the OA accuracy values rapidly increase. The 

classification with the derivative features shows the overall 

accuracy of 86%. The OA of 94% deriving from the dataset with 

radiometric and textural features is the result of the aggregation 

of 13 images. 
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Radiometric bands and radiometric-based features 

PA 0.986 0.979 0.965 1.000 0.636 0.520 0.949 0.938 
 

0.863 
UA 0.986 0.979 0.993 0.971 0.250 0.829 0.936 0.964 

F1 0.986 0.979 0.979 0.986 0.359 0.639 0.942 0.951 

Radiometric bands, radiometric-based features and textural features 

PA 1.000 0.986 0.898 1.000 0.812 0.915 0.993 0.995 
 

0.945 
UA 0.993 1.000 0.993 0.979 0.957 0.771 0.950 0.946 

F1 0.996 0.993 0.943 0.989 0.879 0.837 0.971 0.970 

Table 8. Producer's and User's accuracies and F1 score for the 

classification with and without textural features. 
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Figure 2. Classification of tile Q. 

 

 
Figure 3.  Some detail of the classification on tile in high-

altitude mountainous areas ( left, scene 1) and lowlands (right, 

scene 2). Images a.1 and a.2 show the RGB orthophoto (Source: 

Bing Satellite); b.1 and b.2 shows the classification; c.1 and c.2 

shows the overlapping of the orthophoto and the classification 

(low opacity). 

Figure 4 reports the accuracy and the F1 score for each single 

classification. The accuracy values have very unstable results 

within the classification scene. This is partially due to the 

incorrect classification of the areas covered by clouds (no data) 

and the pixels in the immediate surroundings of the masked area 

that may suffer from radiometric alteration for cloud proximity, 

but not detected by Sentinel cloud masking. 

 
Figure 4. The changes in F1-score for each class through the 

epochs (tile no., on the abscissae). 

 

4.4 Replicability 

The replicability of the classification methodology was tested on 

the dataset of tile K and the overlapping area of tiles Q and K. 

The accuracy assessment from tile K Table 9 shows very similar 

results to the one of tile Q. It appears that on both tiles the classes 

that describe the mountainous areas have lower F1 value. The 

accuracy assessment based on 700 test points (placed ad hoc) was 

realized for the overlapping area, to check the stability of the 

classifications of tiles K and Q in most challenging areas 

(mountains peaks). Only 7 classes are present in the scene, but 

the rocky areas classes dominate the scene (Table 10).  
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P

A 
0.993 0.943 0.927 0.914 0.824 0.727 0.899 0.905 1.000 

 

0.907 

U

A 
0.979 0.950 0.907 0.993 0.771 0.836 0.829 0.886 0.974 

F

1 
0.986 0.947 0.917 0.952 0.797 0.777 0.862 0.895 0.987 

Table 9. Producer's and User's accuracies and F1 score for the 

classification on tile K. 
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PA 0.990 1.000 0.990 1.000 0.855 0.750 0.961 
  

0.928 
UA 1.000 0.980 1.000 0.970 0.949 0.870 0.730 

F1 0.995 0.990 0.995 0.985 0.900 0.806 0.830 

Table 10. Producer's and User's accuracies and F1 score for the 

classification on the overlapping area between tiles Q and K. 
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5. DISCUSSION 

The filter for selecting only the summertime images with a very 

low percentage of cloud cover, on one hand, ensured uniform 

illumination and atmospheric conditions; but on the other hand, 

impeded the use of Sentinel 2 highest processing level (2A). 

Besides, the classification of the 1C-level dataset achieved 

interesting results. The independent classification of each image 

and the frequency-based aggregation minimized the distortions 

and the errors derived from the topography and the atmosphere. 

Moreover, the summertime filter reduced the variability in the 

meteorological and atmospheric conditions allowing the 

application of a linear model of correction. Even if the pre-

processing phase is consistent, it had a low impact of the 

methodology thanks to GEE cloud computing and the ease with 

which it is replicable in GEE. Although, we faced some major 

constraints in GEE related to the memory available for single 

users, the poor information regarding the available functions and 

the lack of some useful functions (like layers importance). 

Nevertheless, it is a relatively young service that is constantly 

enriched with new functions and features and our analysis was 

quite ambitious from the computational point of view.  

Considering the results in detail, the derivative features 

considerably increased the goodness of the classification. It is 

interesting to note the role of textural bands in the discrimination 

of confusion between clustered soil class and solid-rocks class. 

Indeed, F1 scores of clustered bare soils jumped from 0.359 to 

0.879 by adding the textural features to the classification (Table 

8). Figure 4 clearly shows that the clustered bare soil and the 

solid-rocky areas are the classes with a lower F1 score in every 

single classification as evidence of the difficulty of separation of 

the two classes. Generally, the accuracy of a single classification 

shows a similar trend throughout the classes, such as image 6 

(low F1 values) and classification no. 7 (high F1 values for all its 

classes) from Figure 4. Regarding the aggregated classification, 

the overall accuracy achieves 0.945 with a clear improvement 

also in clustered-rocky and solid-rocky areas (respectively F1-

scores 0.827 and 0.890) proving the validity of the aggregation 

method to reduce the main errors from the single classifications 

(Table 8). The replicability analysis on tile K reported in Table 

9, show trends in clustered and solid rock classes close to the ones 

of tile Q. The overall accuracy of K is 0.907. The difference 

between K and Q overall accuracy can be caused by the training 

dataset and it is negligible. It is worth mentioning that in tile K 

there is one class more: glaciers. Indeed, the land cover by 

glaciers is relatively small and present only in K tile (in the Écrin 

National Park, FR). Even if the glaciers classification is very 

good some small glaciers were not detected. The overlapping 

area between K and Q provides promising results if we consider 

the fact that the most confuse classes clustered and rocky areas 

are the dominant LC (Table 10). On the other hand, the few 

classes present in the area provide better values of Overall 

accuracy. Generally, the solid-rocks are frequently misclassified 

as urban areas. This is attributed to the high spectral similarity of 

the classes and their similar textural characterization. A frequent 

error in Alpine areas is the classification of buildings with rocky 

roofs as solid-rocky areas, the same for the small rivers in which 

the water flow during the summertime is reduced. Also, some 

pixels classified as water are detected in mountainous areas, 

probably due to the presence of shaded rocky/snowed areas. 

 

 

6. CONCLUSION 

This study proposes a simple method for the classification of 

Land cover in mountainous areas in GEE platform, which 

includes some steps to reduce the computational effort and the 

time for the classification. The methodology minimizes the error 

introduced by the atmospheric component and the terrain 

inclination using only images captured during a short time range 

in limited cloud cover conditions and by applying atmospheric 

and topographic corrections. The textural derivative features 

played a key role in distinguishing the most challenging classes 

(clustered bare soil and solid-rocky areas). An additional positive 

value of the methodology is the aggregation method, indeed, by 

considering the modal value of the single classifications, the final 

accuracy significantly raised. All the aspects allowed us to reach 

good accuracies in mountain areas. Since the entire classification 

is performed in GEE, it can be easily modified and updated.  
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