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ABSTRACT: 
 
With the increasing availability of satellite imagery at several spatial, spectral and temporal resolutions, the choice of the best image 
and the most appropriate method for object detection and classification of a broad range of land surface classes or processes is still a 
difficult task for many users. In order to guide the users, we proposed a user-tailored machine learning method (IMage 
CLASSification - ImCLASS) to detect and classifiy specific landcover classes.  
The method assumes a mono-class approach taking several ill-posed problems (e.g. class imbalance, high diversity inside the studied 
class, similarities with the adjacent samples…) as use cases (landslides, construction works in urban areas, burnt areas, vegetation 
classes…). It is a generalization of the ALADIM processor already validated in the context of landslide mapping and available as a 
service on the ESA GeoHazards Exploitation Platform (GEP). The proposed chain is able to combine optical and radar images, uses 
open source libraries, and is optimized for rapid calculation on HPC environments. The ImCLASS processor is presented and its 
performance is evaluated on three use cases: landslide detection and mapping after disasters in different regions of the World, urban 
classes change detection with a focus on construction works in Strasbourg, and crop mapping (vineyard) in the Grand-Est region. 
First results using either bi-dates or mono-date imagery are presented.  
 
 

                                                                    
*  Corresponding author 
 

1. INTRODUCTION 

In many scientific domains, an increased emphasis is currently 
observed for data mining techniques to extract information from 
large remote sensing datasets (Navalgund et al., 2007; Lu and 
Weng, 2007). However, most of the algorithms and processing 
chains are not yet fully tailored for operational applications and 
thus not operationally exploited by possible non-academic 
users. The reasons for these are: 
• the absence of collaborative development programs between 

non academic users and researchers where the user is fully 
embedded in all steps of the processing chains and 
application development, 

• the necessity of domain/image adaptation to implement 
classification methods fully tailored to the application 
needs, 

• the creation and access to sample/training data fully 
consistent with the application needs and also covering 
large areas, 

• the absence of dedicated infrastructures (calculation 
ressources and data repositories; e.g. IaaS/PaaS) where 
possible "non expert" users may release classification 
experiments. 

 
In order to meet the needs of a wide range of scientific 
disciplines, supervised machine learning is a flexible tool for 
tailoring the processors to different processes, classes, 
environmental conditions and multiple sensors systems. 

However, the use of such techniques is still constrained to the 
analysis of small areas and often to one temporal slice, and 
necessitates domain adaptation. Four bottlenecks are currently 
identified: 
• the difficulty to relate complex environmental objects with 

data-structures resulting from multi-sensor and multi-
temporal image observations,  

• the difficulty to generate consistent samples and to select 
the most appropriate as training data for increasing the 
image classification accuracy,  

• the absence of relevant methods to document and 
communicate the quality of the classification to the users,  

• the scalability of the machine learning techniques to large 
data volumes.  

 
Since 2018, A2S 'Application Satellite Survey' initiated the 
development of the ImCLASS change detection and 
classification processor. ImCLASS targets the supervised 
analysis of optical and SAR remote sensing images and the use 
of a machine learning approach including features extraction, 
feature dimension reduction and feature classification. 
ImCLASS is designed prioritary for the detection of ill-posed 
problematic classes (e.g. class imbalance) though any type of 
classes can be detected based on a sample training set. 
ImCLASS builds on the previous ALADIM image classification 
system (developed at EOST and LIVE; Stumpf et al., 2014) 
available as a service on the ESA GeoHazards Exploitation 
Platform (GEP). The design of ImCLASS invoved operational 
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users (EuroMetropole Strasbourg/EMS, Grand-Est Region). The 
objective of this manuscript is first to briefly present the 
processing chain, and second, to evalute its performance for 
three uses cases.  
 

2. ImCLASS PROCESSING CHAIN 

The main purpose of the ImCLASS processing chain is to be 
able to operate in a big data context, for multi-sensor and time 
series processing, and over large regions of interest. In order to 
facilitate the porting on calculation clusters, ImCLASS is coded 
in Python 3.6, embedded in Docker/Singularity environments. 
and deployed on the HPC hardware of A2S hosted at the 
Datacenter of University of Strasbourg. The part of the code 
dedicated to model prediction is fully parallelized. ImCLASS is 
currently being implemented in an html-based web service. 
 
2.1 Input data 

ImCLASS allows the processing of optical and SAR remote 
sensing images. For the optical images, which are the focus of 
this work, the code offers two processing modes associated to 
the use of either medium spatial resolution/high spectral 
resolution sensors (such as Copernicus Sentinel-2, Landsat-8 or 
mixed-pairs Sentinel-2/Landsat-8) or very high spatial 
resolution/low spectral resolution sensors (e.g. four bands Red, 
Green, Blue and Near Infra-Red, eventually associated with a 
Panchromatic band; such as SPOT6/7 or Pléiades). Pre-
processing steps including spatial resolution resampling, cloud 
detection, and filtering are available. Image fine co-registration 
is currently being implemented. Several use scenarios are 
possible in terms of data availability (mono-date image, bi-date 
images, time series) or application domain. On top of the 
satellite images, ImCLASS uses samples of the thematic class 
(in shape file format) as input.  
 
2.2  Description of the processing chain 

The ImCLASS workflow is presented in Figure 1. First, features 
extraction is realized with the computation of several attributes 
derived from the input image(s) : spectral bands, spectral 
indices and Haralick textural indices (inside a window with a 
size defined by the user), in the case of bi-date application, 
change detection features are also calculated. Topographic 
attributes are also computed using SRTM-30m by default or a 
more accurate exogenous DEM provided by the user. The 
topographic indices are computed at three different resolutions 
(full resolution, a three times lower resolution and a four times 
lower resolution) In total, 146 features are calculated for the 
Sentinel-2 and Landsat-8 version for the bi-date mode (77 for 
the mono-date mode), and 87 for the Spot6/7 and Pléiades 
version for the bi-date (64 for the mono-date mode). In a 
version currently in progress, an option offers the possibility to 
add an exogenous mask provided by the user. 
 
Second, classification of the features is realized using a 
Machine Learning Random Forest classifier (Breimann, 2001). 
The pixels belonging to the training sample are split in two 
training (⅔) and validation (⅓) subsets. The features' vectors of 
the training pixels are extracted and used to build the Random 
Forest model (Stumpf and Kerle, 2011). Within the area of 
interest, the model predicts for each pixel the probability of 
belonging to the class. Options for result filtering (salt and 
pepper noise) using morphological operators are available.  

2.3 Output products 

The ImCLASS outputs consist in an inventory map of the 
studied objects and a probability map expressing the factor of 
confidence for each classified element. It also allows the user to 
modify the probability threshold between the two classes 
depending if more weight is given to the precision or to the 
recall. Options for an automated computation of the optimal 
threshold for result binarization (F-score) are available; by 
default the probability map is binarized with the F1-score 
threshold, which considers both the precision and the recall with 
an equal weight. Two graphs are associated with these outputs: 
a confusion matrix obtained with the default binarization and 
the curves of the precision and recall values with respect to the 
different possible thresholds in the range {0,1}. 

 
Figure 1. Workflow of the ImCLASS generic processor. 

 
3. DOMAIN APPLICATIONS 

In order to evaluate the performance of the processor and test its 
genericity, two use case scenarios are presented: (1) a change 
detection problem applied to two application domains in 
geology (landslides) and territorial planning (urban construction 
works); and (2) an object detection applied to agricultural 
application (vineyard mapping).  
 
3.1 Change detection applications 

3.1.1 Landslide detection: Extreme precipitations 
(typhoons) and earthquakes can trigger thousands of landslides 
on susceptible terrains. As a consequence of climatic changes 
and potential global warming, an increase of landslide activity is 
expected in the future, due to increased rainfalls, changes of 
hydrological cycles, more extreme weather, and concentrated 
rain within shorter periods of time (Kirschbaum et al., 2012). 
Complete event landslide inventory maps are the first source of 
information for identifying the most susceptible zones, 
prioritize the protection measures, and quantify the hazard. 
Visual image interpretation and field surveys are still the 
prevailing methods for inventory mapping but require several 
months or even years of manual labor. The increase availability 
of satellite imagery combined with Machine Learning methods 
give the opportunity to rapidly and efficiently detect and map 
landslides in very short time. 
 
Several sites of interest (Figure 2) were intensively studied 
allowing the improvement of the processor (input images, 
spatial and spectral resolution, features). The zone in Myanmar 
was hit by tropical storm Komen in 2015 and studied with a pair 
of Landsat-8 / Sentinel-2 images; the zone in Haiti was struck 
by Hurricane Matthew in October 2016 and studied using a pair 
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of SPOT-6/7 multi-spectral and panchromatic images. A pair of 
Sentinel-2 images is used to create the landslide inventory map 
in Mozambique where the Idai cyclone causes a lot of landslides 
in March 2019. In July 2019, South of Japan was affected by 
heavy rainfalls and landslides were mapped using a pair of 
Sentinel-2 images; More recently in November 2019, the West-
Pokot province in Kenya was struck by torrential rain, and a 
landslide map was produced with a pair of Sentinel-2 images 
and with a Pléiades image (Figure 3). 
 

 
Figure 2. Landslide sites where ImCLASS has been evaluated 

for the creation of landslide inventory maps  Background: 
global landslide susceptibility map from Stanley & Kirschbaum 

(2015) 
 

 
Figure 3. Study of interest for landslide detection in West Pokot 

County, Kenya 
3.1.2 Urban construction works detection: Urban 
managers need information for urban territorial planning and 
monitoring. Traditional methods are based on the visual 
interpretation of aerial photographs or field surveys. These tasks 
are very time-consuming. Urban changes have been studied for 
several decades with remote sensing images (Herold et al., 
2002; Hussain et al., 2013). With the very high spatial 
resolution images, the user needs consist in detecting and 
monitoring the state of construction of the buildings in order to 
update their database. For instance, the EuroMetropole of 
Strasbourg (EMS) needs to monitor the state of buildings 
currently upgraded or created (250 to 350 building permits per 
year). This information is summarized in a database of 
‘Inventory of Located Building’ (ILB - point shapefile) updated 
by experts twice per year often by ground truth survey. In order 
to provide information to the urban managers, the image dataset 
should have a very high spatial resolution, a high temporal 
resolution (every six months) and should be associated with 
elevation data to detect the beginning and the end of the urban 
changes. 
 

ImCLASS processor is then tested to monitor the urban building 
evolution two times per year with Pléiades imagery (stereo and 
tri-stereo). A set of three Pléiades images acquired in 2016, 
2017 and 2018 were available through the database of Kalideos-
CNES. A pan-sharpened pre-processing step has been applied to 
obtain a finest spatial resolution in a multispectral mode for 
each date. The reference database has been also first pre-
processed to obtain a changes database where each transition 
between 2016 and 2018 is qualified (e.g. bare soil to current 
construction work, current construction work to completed 
construction, bare soil to completed construction). 139 
‘transition’ samples have been identified between 2016 and 
2018. Tests have been performed on a subset of Strasbourg 
covers about 66 km2 within the EuroMetropole of Strasbourg 
(Figure 4).  
 

 
Figure 4. Study of interest for urban change detection in 

Strasbourg 

 
3.2 Agricultural mapping: Classification of crop types with 
remote sensing images has been demonstrated as relevant in 
various recent studies (Belgiu and Csillik, 2018; Immitzer et al., 
2016; Defourny et al., 2019). For instance, in France, the crop 
type database is updated every five years by voluntary farmer’s 
declaration (RPG – Registre Parcellaire Graphique).  
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The vineyard class is used for evaluating the performance of 
ImCLASS for this application domain. Difficulty arose from the 
heterogeneity of the vineyards plots in Alsace on several slope 
morphologies (from the Vosges foothills to the plain lowlands) 
and to the small size of these plots.  

The area of interest covers 119 communes on two French 
departments (Bas-Rhin, Haut-Rhin) with an area of 4444 km2 
and a length of 120 km. Three areas of around 100 km2 have 
been selected (Figure 5) for a preliminary spatio-temporal 
analysis. The spectral band variation (with a particular focus on 
the bands B02-red and B05-NIR) over two years (by selecting 
one image per month without clouds during the 2018-2019 
period) of Sentinel-2 images on several crop types (from the 
RPG database) showed that some couples of dates should be 
interesting to test the ImCLASS chain: (1) May-September in 
2018 or 2019, (2) Mai – July 2018, (3) May 2018-May 2019. 

 
Figure 5. Location of the three subsets for vineyard detection in 

Alsace  (Grand-Est Region) 

 
4. RESULTS  

4.1 Application domain 1: landslide detection in West-
Pokot County, Kenya 

For the landslide application domain, only the example of West-
Pokot The landslides were detected from a combination of high-
resolution Sentinel-2 images and very high-resolution Pléiades 
images with the engagement of the UNOSAT’s rapid mapping 
service which activated the ‘International Charter Space and 
Major Disasters’. ImCLASS is used withcloud-free Sentinel-2 
images acquired on November 28, 2019 (post-event) and 
September 19, 2019 (pre-event). The processing used as input a 
small reference training dataset of a 184 landslides manually 
digitized over a region of interest of ca. 400 km2. The lands 
affected by landslide correspond to an area of 5.2 km2 for a 
density of ca. 1.3% (Figure 6).  

 

 

 
Figure 6. From top to bottom: extract of S2 image before the 

event (19-09-2019), extract of S2 image after  the event (28-11-
2019), landslide detected with ImCLASS 

 
The activation of the ‘Space and Major Disasters’ charter 
protocol and the support of the CIEST ‘Cellule d’Intervention et 
d’Expertise Scientifique et Technique’ from CNES/INSU  
allowed refining the detection with the use of a set of Very-
High-Resolution Pléiades images over the area identified with 
the highest landslide density. For the CIEST processing, only 
one Pléiades post-event image was available. 170 landslides 
were manually digitized over a region of interest of ca. 31 km2 
for training samples and validation. As results, the probability 
map show that lands affected by landslide correspond to an area 
of 1 km2 for a density of ca. 3% (Figure 7). This result produces 
quickly after an event on site with a difficult access is very 
interesting for decision makers. The landslide inventory thus 
generated with ImCLASS allows pointing out the largest 
landslides and most impacted areas, which is fundamental to 
guarantee the supply of humanitarian assistance. Moreover 
ImCLASS detects also smaller landslides on the upper slopes, 
which have to be taken into account in medium term for 
landslide hazard management. 
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Figure 7. From top to bottom: extract of Pléiades image after  

the rain event (28-11-2019), landslide detected with ImCLASS 
 

4.2 Application domain 2: urban construction works 
detection in Strasbourg 

For the Strasbourg site, several tests have been performed using 
Pléiades mono or bi-dates mode. Better results are obtained with 
the bi-date mode. The tests focus on each identified transition 
independently. The presented test focus on the transition from 
bare soil to completed construction between 2016 and 2017. 
The processing used as input a small reference training dataset 
of a 16 urban works from the reference database. A post-
classification process is then applied on the results in order to 
compare final results in a vector format. This step allows the 
analysis of the correctly classified plots, those omitted by the 
model, and those predicted by the model but not present in the 
validation database (reference data).  
 
The processing allows detecting about 140 urban works with an 
individual area upper than 100 m2. This corresponds to a global 
area of 0.1 km2 for a density of ca. 0.15%. About half of 
changes identified in the reference database are well detected, 
however results are very encouraging because some plots of 
changes are well identified while they have not been catalogued 
in the reference database (Figure 8).  
 

 

 

 
Figure 8. From top to bottom: Pléiades image from 2016, 

Pléiades image from 2017, example of a change associated with 
urban construction work between the two acquisitions detected 

with ImCLASS 
 

4.3 Application 3: vineyard mapping in Alsace 

Several tests have been applied on the three coupled of dates 
between 2017 and 2018 with 370 training samples mainly from 
the RPG database (314) and completed by a manual 
digitalisation on the three test sites. The results presented here 
are based on a bi-date analysis of a pair of Sentinel-2 images 
dating back from May 2018 and September 2018. The vineyard 
mapping using Sentinel-2 free images is quite unprecedented 
and challenging because of the apparently insignificant of the 
textural pattern (the vineyard parcels appear homogenous), 
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which is traditionally the distinctive feature for this type of 
crop. However, the resulting classification map showed clearly 
that our algorithm allows completing advantageously the initial 
RPG database (Figure 9). Only a few omissions are observed 
probably associated with young vineyard parcels or turf 
plantation. A few commissions are also observed, vineyard are 
mainly confused with permanent grassland or parcels without 
production. Within the region of interest an area of 190 km2 is 
identified as vineyard crops for a density of 4.3%. 
 
These first results of vineyard mapping in Alsace are very 
promising and some ways of improvement are currently 
investigate in particular a processing in time series mode in 
order to take advantage of the high temporal resolution of the 
Sentinel-2 images. The use of more accurate images is also a 
way to investigate, which is now made possible by the annual 
coverage of the French territory with SPOT (1.5 m and 6 m for 
the panchromatic and the multi-spectral images respectively). 

 

 
Figure 9. Comparison between the vineyard mapping on the 
subset 2 between the RPG database (above) and the Imclass 

results (below). 
 

5. CONCLUSION 

ImCLASS has been tested for three application domains in 
colaboration with end-users. These different studies point out 
the difficulty to achieve an optimal generic algorithm. Indeed, 
each studied case present a specificity in terms of : 
• avaiability of ground truth and / or a reliable initial 

database,  
• requierement of pre-processing (image fusion, temporal 

indice analysis …) and / or post-processing (conversion to 
vector format, morphological operations, stack of a series of 
results, …) 

• choice of the input images (spatial resolution, temporal 
resolution, bi-date or mono-date mode, …) 

These specificities of each use case were the opportunity to 
improve ImCLASS chain and to aggregate and test new 
functions. The version of ImCLASS exploited here shows 

promising results with a direct, relevant interest for end-users. 
The version currently in progress will allow to integrate image 
time series in the processing chain and to design an online-
classification service allowing a user-friendly graphical 
interface for the users to easily label objects of interests and 
visualize on-line the results of classification. 
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