
 

EELGRASS MAPPING IN ATLANTIC CANADA USING WORLDVIEW-2 IMAGERY 
 

 

D. Forsey 1, B. Leblon 1, *, A. LaRocque 1, M. Skinner 2, A. Douglas 3 

 
1 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton (NB), E3B 5A3, Canada  

- (dforsey, leblon, larocque)@unb.ca 
2 Stantec Consulting Ltd., 40 Highfield Park Drive 102-40, Dartmouth (NS), B3A 0A3, Canada - Marc.Skinner@stantec.com 

3 Southern Gulf of St. Lawrence Coalition on Sustainability, Stratford (PEI), C1B 1L1, Canada - Coalition.sgsl@gmail.com 

 

Commission III, WG III/7 

 

 

KEY WORDS: Eelgrass mapping, Atlantic Canada, WorldView-2, Maximum Likelihood, Random Forests 

 

ABSTRACT: 

 

Eelgrass (Zostera marina L.) is a marine angiosperm plant that grows throughout coastal areas in Atlantic Canada. Eelgrass meadows 

provide numerous ecosystem services, and while they have been acknowledged as important habitats, their location, extent, and health 

in Atlantic Canada are poorly understood. This study examined the effectiveness of WorldView-2 optical satellite imagery to map 

eelgrass presence in Tabusintac Bay, New Brunswick (Canada), an estuarine lagoon with extensive eelgrass coverage. The imagery 

was classified using two supervised classifiers: the parametric Maximum Likelihood Classifier (MLC) and the non-parametric Random 

Forests (RF) classifier. While Random Forests was expected to produce higher classification accuracies, it was shown not to be much 

better than MLC. The overall validation accuracy was 97.6% with RF and 99.8% with MLC.  

 

1. INTRODUCTION 

Seagrasses are angiosperm plants that grow in brackish and 

saltwater systems found in coastal areas across the globe. There 

are approximately 60 species of seagrass worldwide. Atlantic 

Canada is within the Temperate North Atlantic bioregion, which 

has only five species: Ruppia maritima L., Zostera marina L., 

Zostera noltii Horneman, Cymodocea nodosa Asch, Halodule 

wright Asch, with Z marina, being the most common (Short et 

al., 2007a, 2007b). Eelgrass beds are the ecological base of many 

nearshore marine ecosystems (Heck, Orth, 2006) and are highly 

sensitive to environmental fluctuations, making them possible 

indicators of nearshore ecosystem health and the effects of 

climate change and other anthropogenic influences on marine and 

estuarine ecosystems (Thom et al., 2013). In facing numerous 

human-driven influences, eelgrass ecosystems have been 

declining globally for at least the last 100 years (Waycott et al., 

2009). Throughout Atlantic Canada, declines of 30% to 95% 

have been reported for several bays in the recent decade (DFO, 

2009). 

 

To properly monitor eelgrasses and to study the impacts of 

anthropogenic disturbances on their distribution, it is important 

to have a reliable method of accurately mapping the extent of 

eelgrass beds (Hogrefe et al., 2014). Acoustic methods have been 

used to create high-quality sonographs on a scale relevant to 

eelgrass mapping (Kenny et al., 2003), but acoustics data are 

acquired with very expensive equipment that cannot be used 

under adverse weather conditions or require specialist knowledge 

to be processed. Also, acoustic surveys are made of transects that 

may provide insufficient coverage on temporal and spatial scales 

and require interpolation methods. The same applies to the 

bathymetric lidar data (Webster et al., 2015, Collins et al., 2016). 

Optical imagery can cover the entirety of a study area and has 

been extensively used to map benthic habitats (Orth, Moore, 

1984). While aerial photographs have been used with success for 

more than 20 years (Mumby et al., 1997), the use of optical 

satellite images has been ongoing only since the launch of the 
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Landsat MSS satellite in 1972 (Lyons et al., 2012). Satellite 

imagery provides a larger level of coverage at a smaller cost 

when compared to aerial photographs (Dekker et al., 2006, 

Hossain et al., 2015) and does not require interpolation like other 

methods. Most published studies that use optical satellite imagery 

have occurred only recently in Canada (O’Neill, Costa, 2013, 

Reshitnyk et al., 2014; Stantec, 2014; 2016; Barrell et al., 2015). 

Temperate water poses additional challenges for mapping 

eelgrass compared to tropical and sub-tropical waters because 

they tend to have lower clarity, which allows for lower resolution 

between features and low light penetration, which allows for 

mapping at shallower depths. (O’Neill, Costa, 2013, Reshitnyk et 

al., 2014). In most of the aforementionned studies, the classifier 

that was employed is the standard supervised Maximum 

likelihood classifier (MLC). Such a classifier has the 

inconvenience of requiring a normal data distributionbut not with 

Random Forests (RF), which is a non-parametric supervised 

classifier (Breiman, 2001). RF was showed to outperform MLC 

in several land cover studies (Pal, 2005, Gislason et al., 2006, 

Waske, Braun, 2009, LaRocque et al., 2014).  

 

The goal of this study is to compare RF and MLC to map eelgrass 

bed distribution in Tabusintac Bay, New Brunswick (Canada), 

using one WorldView-2 (WV-2) image acquired at low tide. One 

of the challenges of mapping eelgrass beds in Tabusintac Bay is 

that it is an estuarine lagoon having a temperate climate where 

light penetration is generally low. To assess the potential change 

in the eelgrass distribution in Tabusintac Bay over time, the 

resulting map will be compared to a previous map produced by 

the interpretation of air photographs (Mahoney, Hanson, 2008). 

 

2. MATERIAL AND METHODS 

2.1 Study area 

Tabusintac Bay (Figure 1) is a 25 km2 shallow estuary and lagoon 

system located on the northeastern coast of New Brunswick (N 

47° 20' 21", W 64° 55' 42"). The adjacent region hosts a diverse 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-685-2020 | © Authors 2020. CC BY 4.0 License.

 
685

mailto:Coalition.sgsl@gmail.com


 

assemblage of habitats, including estuarine flats, peat bogs, saline 

ponds, and wetlands, while the lagoon area itself is dominated by 

extensive eelgrass (Zostera marina) beds that support many 

species of commercial and recreational importance. The wave 

energy within the estuary is generally low, thanks to an extensive 

and dynamic bar of sand dunes and islands which shelters the 

area from wave action from the Gulf of St. Lawrence. The bottom 

consists of fine-grained sediments like mud and sand, making it 

an ideal substrate for eelgrass growth. The estuary is generally 

shallow at 0 to 2 m deep, though a 2 to 5 m deep channel cuts 

through the lower portion of the region, which allows boat access 

to the Northumberland Strait (Webster et al., 2015, Stantec, 2014, 

Stantec, 2016). The site has been identified under the Ramsar 

Convention on wetlands as an international area of importance 

due to high levels of waterfowl visitation and uses during spring 

and fall migration periods, with some of these species depending 

directly on eelgrass for food (Ramsar, 2001). The dune system is 

also the home to one of the largest common tern colonies in 

Atlantic Canada and has been the site of piping plover 

(Charadrius melodus) nests (IBA Canada, 2013).  

 

Figure 1.  Location of the Tabusintac Bay and the eelgrass 

presence/absence GPS points of 2014 collected by 

(Stantec (2014) and used in this study.  

 

2.2 Data 

We utilized one WorldView-2 (WV-2) optical image acquired at 

15h50 AST (18h50 GMT) on September 24th, 2014. The image 

was taken at low tide (0.38 m) and covered an area of 

approximately 13 km long and 3 km wide, centred on Lat. N 47° 

22’ 36”, and Long. W 64° 56’ 08”. The air temperature was 

14.5°C, with a wind speed of 13 km/h and at a direction of 210°. 

The solar azimuth was 179°. The image has nine optical bands: 

panchromatic (450-800 nm), coastal blue (400-450 nm), blue 

(450-510 nm), green (510-580 nm), yellow (585-625 nm), red 

(630-690 nm), red-edge (705-745 nm), near-infrared 1 (770-895 

nm), and near-infrared 2 (860-1040 nm). The satellite sensor has 

a resolution at the nadir of 0.46 m for the panchromatic band and 

1.85 m for multispectral bands. It has a swath width of 16 km 

from the nadir and a dynamic radiometric range of 11 bits per 

pixel.  

 

Field data were collected during a two-day field survey (Stantec, 

2014) between September 24th and 26th, 2014, coinciding with the 

acquisition of the image (Figure 1). The study area was divided 

into an equally sized grid of 1 km wide-tessellated hexagons, and 

a single area of interest was randomly selected within each 

hexagon. This division allowed for the whole study area to be 

sampled while maintaining randomness (Figure 1). A total of 55 

sites were surveyed. At each site, GPS coordinates were recorded 

using a WAAS-enabled chart plotting unit (Garmin GPSmap® 

531s, Garmin International Inc., Olathe, Kansas, USA), and 

pictures were taken using a downward-facing underwater Deep 

Blue Pro© drop video camera (Deep Blue Pro Splash Cam, 

Ocean Systems Inc., Everett, WA, USA) attached to a 0.25 m2 

quadrat frame. Additional samples were collected by Stantec 

(2014) in a specific area of interest, located in the southwestern 

portion of the study area.  

 

2.3 Pre-Classification Image Processing 

All the image processing was performed in PCI Geomatica® 

software (PCI Geomatics, 2018), except the atmospheric 

correction, which was done in ENVI® 5.1 software (Exelis 

Visual Information Solutions, 2013). The digital numbers (DNs) 

of the input image were converted into Top of the Atmosphere 

(TOA) reflectance. First, DNs were converted to radiance by 

applying Equation 1 that uses band-specific calibration gain and 

offset parameters, which were extracted from the image metadata 

(Digital Globe, 2010): 

 

 𝐿λ = 𝑀𝐿 ∗ 𝐷𝑁 + 𝐴𝐿 (1) 

 

where  Lλ = TOA spectral radiance (W. m-2. srad-1. μm-1)  

 ML = Gain (W. m-2. srad-1. μm-1)  

 AL = Offset (W. m-2. srad-1. μm-1)  

 DN = digital number (dimensionless)  

 

The TOA radiance was then converted into TOA reflectance, 

which represents the radiation that has travelled from the sun 

through the atmosphere, reflected off the surface of the earth and 

interacts with the sensor. This conversion uses Equation 2 and 

compensates for the relative position of the sun and the earth, at 

the zenith: 

 

 𝜌𝜆 =
𝐿λ∗∗(𝑑𝐸𝑆)2 

E∗cos (z)
 (2) 

 

where  ρλ = TOA reflectance (dimensionless)  

 Eλ = Solar spectral irradiance (W. μm-1)  

 Lλ = TOA spectral radiance (W. m-2. srad-1. μm-1)  

 dES = distance earth-sun (m)  

 z = solar zenith angle (rad)  

 

TOA reflectance has an atmospheric component that is caused by 

the effect of light reflection and scattering from atmospheric 

particles and by the atmosphere itself and needs to be removed. 

The atmospheric corrections of the TOA reflectance image were 

performed with the Fast Line-of-Sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH) module based on the Berk et al. 

(1998)’s algorithm and embedded in ENVI® 5.1 software (Exelis 

Visual Information Solutions, 2013). We selected the temperate 

atmosphere and maritime aerosol models.  

 

The image was georeferenced and converted to the New 

Brunswick Double Stenographic Projection referenced to the 

North American Datum of 1983 (NAD83) related to the 

Canadian Spatial Reference System (CSRS). The image was pan-

sharpened using the PANSHARP algorithm of PCI Geomatica® 

(PCI Geomatics, 2018) developed by Zhang (2002) to downscale 

the multispectral bands to 0.5 m spatial resolution by combining 

the panchromatic band and the multispectral bands. High spatial 

resolution is key for capturing the spatial variability and 

patchiness of eelgrass meadows due to the potentially complex 

distribution of eelgrass beds in the lagoon. A land mask was 

created to limit the image classification to underwater features 
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using the Normalized Difference Water Index (NDWI), which 

was calculated, as in McFeeters (1996).  

 

Given that the aim of this study is to map eelgrass beds which are 

chlorophyllous elements in the scene, it is advantageous to 

consider vegetation indices in order to exploit the higher 

reflectance in the green and near-infrared bands of 

chlorophyllous elements compared to non-chlorophyllous 

elements. While near-infrared radiation is expected to be readily 

absorbed by water, there are portions of the study area that 

include exposed eelgrass at low tide which can reflect this 

radiation. The vegetation indices considered in this study are 

listed in Table 1. 

 
(1) R = red band; G = green band; NIR = near-infrared band  

Table 1.  Vegetation indices used in this study 

 

Since the two classifiers tested in the study (RF and MLC) are 

supervised classifiers, they require delineation of training areas. 

Small representative training areas for each class (Eelgrass, Deep 

water, and Sand floor) were delineated over the image based on 

the large training areas that were previously defined by Stantec 

(2014) using an object-based segmentation method (Table 2).  

Class 
Training 

Areas 

Area 

[m2] 
Pixels 

GPS 

validation sites 

Eelgrass 430 61924 15481 43 (1) 

Deep water 459 61590 15398  

Sand floor 321 22052 5513 12 (1) (2) 

Total 1210 145567 36392 55 
(1) According to Stantec (2014);  
(2) Has been used for the “eelgrass absent” class 

Table 2.  Number of training areas with the corresponding area, 

the pixel count and the number of GPS validation 

sites for each class, used in this study 

 

When training areas were delineated, care was made to reduce 

spectral variance in each class while at the same, having enough 

pixels to represent each class effectively. Training areas were 

used to compute the class spectral signatures. These spectral 

signatures were then used to assess the separability between 

classes through the Jeffries-Matusita (J-M) distance of each class 

pair (Richards, Jia, 2006). 

 

2.4 Classification 

The first classifier that was tested is the commonly used 

Maximum Likelihood Classifier (MLC). This classifier was 

performed using the MLC algorithm of PCI Geomatica 2018®. 

MLC is a parametric classifier assuming a Gaussian distribution 

of grey level values for each class and the same probability of 

occurrence for each class in the image. It classifies each pixel x 

in class i by maximizing the following discriminant function 

(Strahler, 1980) (Equation 3):  

 

 𝑔𝑖(𝑥) = 𝑙𝑛(𝑝(𝑖)) −
1

2
(𝑋 − 𝑀𝑖)

𝑡  ∑ (𝑋 − 𝑀𝑖)
−1
𝑖 −

1

2
𝑙𝑛[|∑ 𝑖|] −

𝑘

2
𝑙𝑛(2𝜋) (3) 

 

where  gi(x) = discriminant function for class i and pixel x  

 p(i) = a priori probability for class I  

 X = grey level value of pixel x in each input image  

 Mi = mean vector for class i  

 ∑i = covariance matrix for any class 

  = determinant of the covariance matrix   

 
− = inverse of the covariance matrix I  

 (X-Mi) t = transposed matrix of (X-Mi)  

 k = number of input images used in the classification  

 

The second classifier is Random Forests (RF) is a non-parametric 

classification algorithm (Breiman, 2001). Originally designed for 

use by the machine learning community, this algorithm is 

becoming increasingly popular for remote sensing applications 

showing numerous advantages when compared to other classical 

classification methods, such as MLC (Pal, 2005, Gislason et al., 

2006, Waske, Braun, 2009, LaRocque et al., 2014). RF classifier 

generates a series of decision trees, which are predictive models 

that use a set of binary rules to calculate a target value. The 

complexity of the decision tree is directly related to the number 

of sources of data, in our case, the number of image layers being 

used. Each tree uses a randomized subset of the input data, and 

each of the categories produced by each tree is slightly different. 

In the RF algorithm, hundreds of trees are produced, and the 

pixels are classed based on the agreement between trees. Also, 

RF is not sensitive to noise or over-classifying and gives an 

estimate of the importance of each input image for the 

classification (Gislason et al., 2006, Waske, Braun, 2009). The 

specific algorithm used for this study was developed in the R 

programming language (R Development Core Team, 2016). It is 

based on the “Random Forest” code written by Horning (2010) 

and adapted by the third author. The RF code we used has two 

versions: all-polygon and sub-polygon. The all-polygon version 

uses 100% of the training areas to define class training areas, 

while the sub-polygon version randomly selects a user-defined 

number of training area pixels from each class. Following Byatt 

et al. (2018), we used the all-polygon version because it gives a 

higher mapping accuracy using all the training areas in the 

classification method. Another advantage of using RF is that the 

algorithm outputs a variable importance plot. This plot displays 

the weighted mean decrease in error that indicates how much an 

individual variable input is used by the RF classifier to make its 

prediction.  

 

2.5 Classification and Validation Accuracy Assessment 

Classification accuracy was assessed first by comparing Areas of 

Interest (AOI)s with the equivalent class in the imagery. This 

comparison was performed under the form of a “confusion 

matrix” or "error matrix”, where each cell expresses the number 

of pixels classified inside the class defined by the training areas 

(Congalton, 1991). The confusion matrix allows computing 

individual class User’s and Producer’s accuracies and their 

related errors (omission and commission). The User’s class 

accuracy corresponds to the probability that a pixel of the 

classified image is in the correct class, the associated number of 

misclassified pixels being pixels classified in the incorrect class 

(error of omission). The Producer’s accuracy measures the 

probability that a reference pixel is effectively well classified, the 

associated number of misclassified pixels being pixels that 

belong to another class (error of commission). The overall 
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accuracy is the average of individual class User’s or Producer’s 

accuracies, weighted by the size of the class in the classified or 

reference image. The kappa coefficient is defined as a weighted 

measure of agreement between the numbers of well-classified 

pixels, where a value close to 0% corresponds to a classification 

that is no better than what could be expected by chance and a 

value closer to 100% indicates a good classification accuracy 

(Cohen, 1960).  

 

3. RESULTS 

3.1 Spectral Separability 

Table 3 gives the class separability or J-M distances between the 

three classes that were computed with the spectral signatures 

related to the eight original WV-2 bands. The mean J-M distance 

is 1.983. All the classes had a J-M distance greater than 1.95, 

indicating a good spectral separation between classes. The lowest 

J-M distance occurred between the Deep water and Sand floor 

classes (1.952), while the highest occurred between the Eelgrass 

and Sand floor classes (1.999).  

Class Deep water Eelgrass 

Eelgrass 1.997  

Sand floor 1.952 1.999 

Table 3. J-M distances computed for the eight original bands 

of the WV-2 image.  

 

Figure 2 shows the mean TOA reflectance for each class as a 

function of the WV-2 band, as extracted from the images using 

the corresponding training areas. All the classes followed a 

general trend that matches how we would expect the light to be 

absorbed in water, with higher absorption (weaker reflectance) in 

the longer wavelengths, and gradually less absorption (stronger 

reflectance) in the shorter wavelengths. The Deep water class had 

the lowest reflectance in the red-edge, NIR-1, and NIR-2 bands, 

compared to the other two classes. This is likely because the Sand 

Floor and Eelgrass classes were delineated over shallower areas 

where light penetration was higher. The Sand Floor class 

followed a similar decreasing reflectance pattern from the coastal 

to the NIR bands, though the reflectance was generally higher. 

From the coastal to yellow wavelengths, the Eelgrass class 

distinctly had the lowest reflectance among all the classes, 

including the Deep water class.  

 

Figure 2.  Mean TOA reflectance for each class as a function of 

the WV-2 band.  

 

Among all the vegetation indices considered in the study, only 

DVI, RVI and GDVI all showed good separability between 

classes (Figure 3). DVI and RVI were both calculated using the 

NIR-1 and Red bands, while GDVI used both the NIR and Green 

bands in its calculation. The NIR-1 band had a good spectral 

separability between the Deep water class and the other classes, 

while the case of the red band, the Sand Floor class was most 

separated from the others. (Figure 3). In the case of the green 

band, there was relatively little separability between the classes. 

 

Figure 3.  Mean value of the vegetation indices computed with 

the WV-2 band images as a function of the class.  

 

3.2 Classification 

When only the original eight bands were used, the overall 

classification accuracy was 98.55% with the MLC classifier and 

99.86% with the RF classifier. The corresponding kappa 

coefficients were 97.65% and 99.80%, respectively. The 

individual class Producer’s and User’s accuracies for both 

classifiers were also very high and are never below 95%, as 

shown in the confusion matrices (Tables 4 and 5). The Sand floor 

class has the lowest User’s and Producer’s accuracies, and the 

Deep water class had the highest accuracies, the Eelgrass class 

having intermediate accuracies, though the differences were 

minor (Tables 4 and 5). The comparison between the detailed 

confusion matrices of both tables shows that there was a higher 

number of well-classified pixels and a lower number of 

misclassified pixels for the RF classifier (Table 5) than for the 

MLC classifier (Table 4). However, we only show here the MLC-

classified image produced because of the minimal difference 

between both images (Figure 4). 

Class Eelgrass 
Deep 

water 

Sand 

floor 

User’s 

accuracy [%] 

Eelgrass 241798 1858 4037 97.80 

Deep water 3153 243181 25 99.70 

Sand floor 353 0 87856 97.50 

Producer’s 

accuracy [%] 
98.81 99.50 95.26  

Table 4.  Confusion matrix (in terms of number of pixels) and 

associated accuracies when the MLC classifier is 

applied to the 8-band images  

 

Class Eelgrass 
Deep 

water 

Sand 

floor 

User’s 

accuracy [%] 

Eelgrass 247232 310 151 99.81 

Deep water 127 246226 6 99.95 

Sand floor 194 2 86522 99.77 

Producer’s 

accuracy [%] 
99.87 99.87 99.82  

Table 5.  Confusion matrix (in terms of number of pixels) and 

associated accuracies when the RF classifier is 

applied to the 8-band images  

 

The RF algorithm has the advantage of giving a variable 

importance plot that ranks the input features as a function of their 
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importance in the classification (Figure 5). The most important 

bands for the classification were the green (510 - 580 nm), red 

(630 - 690 nm) and coastal (400 - 450 nm) bands, while the least 

important bands were the near-infrared 1 (770 - 895 nm), blue 

(450 - 510 nm), and yellow (585 - 625 nm) bands (Figure 5a). 

The green band allowed some spectral separability between the 

Deep Water and Eelgrass classes (Figure 3) and was the band 

that most distinguishes the two. The green and coastal bands have 

the lowest rates of attenuation in shallow water, especially when 

compared to the longer wavelength bands. 

 

Figure 4.  Eelgrass bed map produced by applying the MLC 

classifier to the eight bands of the WorldView-2 

image. 

 

 

Figure 5.  Variable importance plot computed by RF applied: a) 

to the eight original bands of the WV-2 image; b) the 

combination of the original 8-bands and the related 

vegetation indices.  

 

With the addition of vegetation indices to the image combination 

(Table 6), the overall classification accuracy and the kappa 

coefficient with MLC were very low (42.65% and 0%, 

respectively). According to the confusion matrix of Table 6, the 

misclassification in the case of the MLC because all the pixels 

were classified in the Eelgrass class. This misclassification 

demonstrated how MLC could not be effectively used with a 

variety of different data types. By contrast, the RF classifier 

produced higher classification overall accuracy (99.83%) and the 

kappa coefficient (99.70%) than MLC, but they were not higher 

than when RF used only the eight original bands (Table 5).  

 

The variable importance plot (Figure5b) showed that, among all 

the vegetation indices, the most important ones were the 

Normalized Red (NR) and the Green Difference Vegetation 

(GDVI). This was likely because both used the green band in 

their computation, although another green-based vegetation 

index (NR) did not exhibit a large separability between classes. 

The other vegetation indices did not seem to be very important in 

the RF image classification (Figure 5b).  

Class Eelgrass Deep 

water 

Sand 

floor 

User’s 

accuracy [%] 

Eelgrass 247693 0 0 100 

Deep water 246359 0 0 0 

Sand floor 86714 0 0 0 

Producer’s 

accuracy [%] 
42,65 0 0  

Table 6.  Confusion matrix (in terms of number of pixels) and 

associated accuracies when the MLC is applied to the 

8-band images and the related vegetation indices 

 

3.3 Field Validation 

This validation and the subsequent analysis are done on the 

MLC-classified image based on the eight bands given the 

excellent classification accuracies (Table 7). The validation was 

done by comparing it to the GPS validation sites. We achieved 

excellent values for the overall accuracy (96.36%) and the kappa 

coefficient (91.00%). The related confusion matrix shows that 

only a few sites were poorly classified (Table 7). 

Class 
Eelgrass 

present 

Eelgrass 

absent 

User’s 

accuracy [%] 

   % 

Eelgrass present 40 2 95.24 

Eelgrass absent 0 13 100.00 

Producer’s 

accuracy [%] 
100.00 86.67  

Table 7.  Confusion matrix between GPS field sites collected 

in 2014 by Stantec Consulting Ltd and the MLC 

classified image using the 8-band images 

 

3.4 Comparison with the eelgrass bed extent of 2008 

The eelgrass bed distribution map obtained by classifying the 8 

original bands of the WV-2 image was compared to the one of 

Mahoney and Hanson (2008) established from aerial 

photographs.  

 

Figure 6.  Comparison of the eelgrass extent between 2008 and 

2014.  

 

The total eelgrass bed extent increased slightly of about 2 km2 

between 2008 and 2014. As shown in Figure 6, 9.68 km2 of 

eelgrass were present in both 2008 and 2014. There were 3.57 

km2 of eelgrass present only in 2008 and 5.66 km2 of eelgrass 
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present only in 2014. Figure 6 also shows a difference for the 

sandbar area that could be due to changes in the shape and extent 

of the sandbar over time, as described by CBCL Ltd (2014). 

 

4. DISCUSSIONS  

Our results showed that WV-2 images acquired at low tide are 

suitable for mapping eelgrass beds in shallow bays such as in 

Tabusintac. Indeed, the WV-2 sensor has a number, width, and 

overlap of spectral bands that are suitable for eelgrass bed and 

benthic mapping. The RF outputs shows that the green (506-586 

nm) and coastal bands (396-458 nm) were amongst the most 

important input data in the classification (Figure 5). With the 

MLC classifier applied only to the 8-band WV-2 image, our 

overall classification accuracy (98.55%) was higher than those 

obtained by Stantec (2016) (70%) who used the same image, but 

different training areas and the MLC algorithm of ArcGIS® 

(ESRI, 2014). Our overall classification accuracies are on the 

same order of magnitude as those of Pu et al. (2012), Chen et al. 

(2016), Hossain et al. (2019), and Wilson et al. (2019).  

 

While RF was expected to produce higher classification 

accuracies, it was shown not to be better than MLC when only 

the eight bands of the WV-2 image were used. This result is 

contradictory to other studies comparing MLC and RF (i.e., 

LaRocque et al., 2014; Byatt et al., 2018). One of the major 

discrepancies with these previous studies is the diversity in the 

input data. In our analysis, we only utilized optical data that have 

a normal distribution, while LaRocque et al. (2014) and Byatt et 

al. (2018) used a more complex dataset made of optical imagery, 

radar imagery, and topographic data, with some data having a 

non-normal distribution such as the radar data. 

 

We expected that the inclusion of vegetation indices would 

improve the overall classification accuracy, as it is often the case 

in land studies, but there did not seem to be an advantage of using 

these indices, especially with the MLC classifier. With RF, 

among all the vegetation indices considered in the studies, the 

most important ones were two vegetation indices that use the 

green band in their computation, i.e., the Normalized Red (NR) 

and the Green Difference Vegetation (GDVI), although NR does 

not exhibit a large separability between classes by contrast to 

GDVI. The lack of improvement with the vegetation indices is 

likely because our study deals with water-related ecosystems, and 

these indices were developed for land studies to highlight the 

presence of green vegetation or to assess vegetation water 

content.  

 

The 2014 WV-2-derived map was compared to a map produced 

from the interpretation of aerial photographs carried out by 

Mahoney and Hanson (2008). The comparison showed that in 

some parts of the bay, there was an increase of approximately 6 

km2 of eelgrass, but a decrease of approximately 4 km2 in other 

parts of the bay, resulting in a net increase of 2 km2 for the whole 

bay. This result agrees with Leblanc et al. (2019), who showed a 

positive trend in the total eelgrass area in Tabusintac by analysing 

a temporal series of Landsat images between 1984 and 2017. 

Tabusintac Bay seems to experience a different evolution in 

eelgrass beds compared to several bays in the Atlantic Canada, 

where inter-annual declines ranging from 30% to 95% have been 

reported for the last decade (DFO, 2009).  

 

5. CONCLUSIONS 

This study tested the use of two supervised classifiers applied to 

a WV-2 image for mapping eelgrass beds in Tabusintac to assess 

their respective effectiveness. The classification accuracy of 

eelgrass maps using WV-2 imagery was not improved by using 

the RF classifier when compared to MLC. Also, the addition of 

vegetation indices in the classification did not improve the 

classification accuracies. The classified image was then 

compared with the eelgrass distribution map that was established 

from air photo interpretation (Mahoney, Hanson, 2008). Such 

comparison shows a net increase of the eelgrass bed area in 

Tabusintac Bay, which agrees with the results of Leblanc et al. 

(2019), who mapped changes in eelgrass bed areas between 1984 

and 2017 in Tabusintac Bay using a time series of Landsat 

images. 

 

This study only tested two classifiers (MLC and RF) applied to 

imagery acquired by a commercial satellite WV-2, and there is 

the need for future research to examine and assess freely 

available satellite images such as Sentinel-2. Also, we did not 

correct the images for sun glint effects described in Zimmerman 

and Dekker (2006) and the water column effects. There is the 

need to test if algorithms such as the one of Hedley et al. (2005) 

can be used for removing the sun glint effect. For the water 

column correction, it would be advantageous to test the use of 

models such as the one of Lyzenga (1978, 1981) in the absence 

of bathymetric data or the one of Sagawa et al. (2010), which 

requires bathymetry data. 
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