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ABSTRACT:

Deforestation is a threat to biodiversity and the world’s climate. As agriculture and mining areas grow, forest loss becomes unbear-
able for the environment. Consequently, monitoring deforestation is crucial for decision makers to create polices. The most reliable
deforestation data about the Amazon forest is generated by the Brazil’s National Institute for Space Research (INPE) through its
PRODES project. This effort is labor and time intensive because it depends on visual interpretation from experts. Additionally,
frequent Amazon’s atmospheric phenomena, such as clouds, difficult image analysis which induces alternative approaches such as
time series analysis. One way to increase the number of images of an area consists of using images from different satellites. NASA
provides the Harmonized Landsat and Sentinel-2 (HLS) dataset solving spectral dissimilarities of satellite sensors. In this paper,
the possibilities of HLS for forest monitoring are explored by applying two deforestation detection methods, Break Detection for
Additive Season and Trend (BFAST) monitor and Random Forest, over four different vegetation indices, NDVI, EVI, GEMI and
SAVI. The SAVI index used as input for BFAST monitor performed the best in this data setup with 95.23% for deforested pixel,
53.69% for non-deforested pixels. Although the HLS data is described as analysis ready, further pre-processing can enhance the
outcome of the analysis. Especially, since the cloud and cirrus cover in the Amazon causes gaps in the dataset, a best pixel method
is recommended to create patched images and thus a continuous time series as input for any land cover and land use classification.

1. INTRODUCTION

The Amazon rainforest is the largest rainforest in the world. It
is not only one of the largest and more diverse ecosystems but
also an important player in the South American hydrological
cycle (Lovejoy and Nobre, 2019). The Amazon returns up to
75% of its rainfall to the atmosphere. However, deforestation
at large scale can transform it into a tropical Savannah, produ-
cing a general loss of moisture and up to 50% of water run-off
(Lovejoy and Nobre, 2019). Although, this fact is well-known
in the scientific literature, the deforestation rate in 2018-2019
increased by 30% according to data collected by Brazil’s Na-
tional Institute for Space Research (INPE) (INPE, 2019a), and
this current trend is to keep increasing during the future (Esco-
bar, 2019).

The same Amazon characteristics of extent, diversity and
abundant rain make it a difficult area for monitoring. Cloud
coverage is a significant problem when monitoring the forest
through satellite images, and cloud cover persist during most
of both wet and dry seasons (Collow et al., 2016). Finding
clear images for a specific date for the whole Amazon is incon-
ceivable. For that reason, most analysis of Land Use and Land
Cover change over the Amazon forest use images of a few dates
of the dry season into what is known as multi-temporal ana-
lysis. One of the issues with this kind of analysis is the poten-
tially long timespan between the deforestation and its detection,
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making it unsuitable for monitoring. The only viable alternat-
ive are the time series analysis of images, where the persistent
cloud coverage is counteracted by increasing the frequency of
the images. However, the revisiting satellite time is measured
in weeks. To solve this problem, the National Aeronautics and
Space Administration (NASA) has recently developed a work-
flow that harmonizes Landsat and Sentinel-2 images resulting
in a high temporal resolution dataset, called the Harmonized
Landsat and Sentinel-2 (HLS) data.

In this paper, we explore the possibilities and restrictions of
using HLS to assess deforestation in the Brazilian Amazon.
Therefore, we compare four different spectral indices, NDVI,
SAVI, GEMI and EVI. After calculating all indices for the given
time period, the images were stacked, creating time series as in-
put for the two image classification methods: Break Detection
for Additive Season and Trend (BFAST) monitor (Verbesselt
et al., 2012) and Random Forest (Breiman, 2001) for Satellite
Image Time Series (SITS).

In the following sections, we review scientific literature, then
we list the materials and the methods we used to test the HLS
dataset. Later, we discuss the outcome of our experiments and
finally, we introduce some conclusions and recommendations
for future works.
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1.1 Background

The most important monitoring systems for the Brazilian Legal
Amazon are the deforestation monitoring program (PRODES)
and near real-time deforestation detection system (DETER);
both of them are run by INPE. On the one hand, PRODES
produces a yearly report of deforestation since 1988 by visu-
ally analysing large sets of Landsat, Sentinel, and CBERS im-
ages (Souza et al., 2019). This labor-intensive task relies on
trained specialists to determine deforested areas based on three
criteria: Color, texture and context. On the other hand, the
DETER alert system uses images from MODIS and CBERS
satellites (Souza et al., 2019). The images provided by the
sensors aboard new CBERS-4A satellite will improve deforest-
ation monitoring as they have a finer temporal resolution of two
or three days. The DETER system automatically analyses im-
ages as soon as they arrive and then proceeds to immediately
alert the authorities (the Brazilian Institute of Environment and
Renewable Natural Resources) and to release a monthly report
of deforestation and forest degradation. Whereas the PRODES
project is more accurate, the DETER system is faster.

As the public awareness of deforestation rises, more research
is conducted and more projects on deforestation monitoring are
initiated (Grinand et al., 2013; Hamunyela et al., 2016; Brown
et al., 2016; Cabral et al., 2018; Yang et al., 2019; Schultz et al.,
2018). A variety of images from several earth observation pro-
jects as well as different combinations of methods and indices
were tested in these studies.

For example, Yang et al. (2019) analysed deforestation and its
driving factors in Myanmar’s rainforest. To determine land use
and land cover classifications, the authors analysed Landsat im-
ages with 30m spatial resolution from 1988 to 2017. They ap-
plied a linear decomposition method on the computed indexes
Normalized Difference Soil Index (NDSI), the Normalized Dif-
ference Vegetation Index (NDVI), and the Modified Normal-
ized Difference Water Index (MNDWI). Later, they trained a
Decision Tree using a sample dataset of land use and land cover
collected through visual analysis. The results were used as
thresholds for each land use and land cover category. They
evaluated the accuracy of their results through a hybrid mat-
rix precision authentication. After successfully extracting the
raster values, they analysed the land cover classification and
conducted a time change analysis of the forest. In this way,
they successfully identified the areas of forest cover reduction
and increase (average accuracy of ca. 88%) and the reasons of
these change (e.g., cropland expansion).

Another example is Grinand et al. (2013), who identified de-
forestation in the Madagascar wet forest using Landsat/TM im-
agery. They calculated the NDVI and the Normalized Infrared
Index (NIRI). They did not remove the clouds from the images
but rather developed different strategies to handle no-data val-
ues. For example, if a pixel was forested at date one and three
but cloudy at date two, it was considered as forested throughout
the whole time period. Hence, using a cloud-mask was only
necessary when a cloud or a shadow was observed at date two,
while forest was observed at date one and deforestation at date
three. To determine the deforested areas, they applied Random
Forest. Their validation revealed that 84.7% was stable land
cover 60.7% was land cover change.

Deforestation in the Amazon was researched, among others,
by Cabral et al. (2018). They used the Global Forest Change
(HD) (Hansen et al., 2013) and PRODES datasets to determine

each type of protected area and to sample outside these areas
to create forest loss maps from 2002 to 2016. They established
a forest fragmentation model using ArcGIS Patch Analyst and
Vector-based Landscape Analysis Tools (V-LATE); later, they
evaluated the levels of fragmentation using Principal Compon-
ent Analysis (Cabral et al., 2018). The outcome was an as-
sessment of the deforestation dynamics in the Brazilian Legal
Amazon.

Since the HLS dataset is fairly new, only a limited amount of
research has been conducted with it (Lei et al., 2018; Pastick
et al., 2018; Franch et al., 2019; Zhou et al., 2019; Griffiths
et al., 2019; Torbick et al., 2018), especially in the context of
Land Use and Land Cover change. Zhou et al. (2019) invest-
igated if the HLS dataset improves the accuracy of the assess-
ment of grassland dynamics compared to the Landsat-8 data-
set. Although running into difficulties like varying observation
frequency and spatial inconsistencies, the HLS dataset consist-
ently lead to better results than using Landsat-8 data (Zhou et
al., 2019). Others were also able to enhance their frameworks.
Pastick et al. (2018) were able to create a continuous time series
with HLS data by filling in gaps with additional satellite im-
ages. Thus, their modelling framework was better able to mon-
itor land-surface dynamics.

2. MATERIAL AND METHODS

Two case studies were conducted using the same dataset. The
two different approaches and the different use of data in these
methods permits making concrete statements about the use of
the data and whether or not it is Analysis-Ready Data (ARD)
(Claverie et al., 2018).

2.1 Study Area

The Amazon forest is the largest rainforest in the world and
spreads across several countries with its biggest area located in
north-west Brazil. It is home to over 14,000 species, of which
6,727 are trees (Cardoso et al., 2017). The Mato Grosso State is
situated in the Brazilian Legal Amazon region and is the third-
largest state of Brazil. The study area lies south-west of the

HLS Tiles

Xingu Indigenous Park
[] Mato Grosso
[] Amazon rainforest

Figure 1. HLS tiles used in this study.
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capital Cuiaba next to the Xingu Indigenous Park, see Figure 1.
From 1988 to 2019, around 33% of the forest has been cut in
Mato Grosso State (TerraBrasilis, 2019), recently getting closer
to the border of the park.

2.2 Orbital data

As deforestation often does not occur on a large scale at one
single location, high spatial resolution data is needed to accur-
ately detect it (Kalamandeen et al., 2018). Additionally, high
temporal resolution helps when dealing with areas with cloud
coverage because it increases the chances of acquiring cloud-
free pixels. Thus, in this study, data from the HLS project is
used.

The HLS project produces long-term surface reflectance data
with high temporal and spatial resolutions so users can explore
each pixel through time (Claverie et al., 2018). Hereto, im-
ages from the European Unions Copernicus project from the
Sentinel-2 satellite are harmonized with images from the Land-
sat program and provided through their website. The resulting
images have a spatial resolution of 30m, are atmospherically
corrected (Claverie et al., 2018) and have a temporal resolution
of two to three days. Additionally, this data provides a quality
analysis layer where each pixel is evaluated and characterized
by the presence of cloud, cirrus, cloud-shadow, water or with a
aerosol quality (Masek et al., 2018). For the case study, the tiles
21LYG and 21LYH were used.

2.3 Training data

The training data for the Random Forest algorithm belongs to
four categories: Agriculture, Pasture, Forest, Deforestation. For
the first three categories, samples were collected visually from
high resolution satellite images by specialists being careful that
the land cover was not changing over the monitoring period.
The deforestation samples were collected from the PRODES
dataset, where the centroids of the polygons were calculated to
avoid border confusion. These points were labeled according
to the years that the deforestation happened. For example, in
2018, a total of 266 samples were used for tile 21LYG and 428
for tile 21LYH. With this point layer and the time series for the
concerning PRODES year, a matrix with training values was
created.

2.4 Validation data

The most accurate data concerning deforestation in Brazil can
be acquired from the TerraBrasilis platform (INPE, 2019b).
Thus, to validate the results of the analysis, the shapefile
”Yearly deforestation increments - Shapefile (2008/2018)” was
downloaded. It shows the yearly deforestation polygons from
2008 until 2018 with sublayers for each year and was produced
by the PRODES project.

2.5 Image Pre-processing and calculation of indices

Trying to avoid the problems of different data frequency as
described by Zhou et al. (2019), only one image per month
is selected for creating a time series. To pick the best suited
image for ever month from 2013 to 2018, the images were
ranked based on their cloud cover and spatial coverage of the
tile. The best ranked image, meaning the least cloud cover-
age and the highest spatial coverage, was then further processed
for calculations. The first processing step was extracting cloud
masks from the quality assessment layer to, then, replace the

cloud pixels with a no-data value. Secondly, indices for the
analysis were calculated with these cloud free images. The
indices tested were selected based on the performance evalu-
ation from Schultz et al. (2016a). Accordingly, the normalized
difference vegetation index (NDVI) a measurement to evalu-
ate photosynthetic activity Tucker (1979), the enhanced vegeta-
tion index (EVI) adjusting the vegetation index in high biomass
regions (Huete et al., 1994), the global environment monitor-
ing index (GEMI) enabling large-scale monitoring (Pinty, Ver-
straete), and the soil-adjusted vegetation index (SAVI) describ-
ing dynamic soil-vegetation systems (Huete, 1988). Whilst cal-
culating, all values were compressed to the indices ranges if not
a no data value to reduce later confusions when running the al-
gorithms. Lastly, the index images were stacked in temporal
order to create a time series as input for the BFAST monitor
and the Random Forest algorithms.

2.6 Deforestation detection using BFAST monitor

Break Detection for Additive Season and Trend (BFAST) mon-
itor is an algorithm that enables near real-time disturbance
monitoring and includes a BFAST seasonal model approach
(Verbesselt et al., 2012). It makes use of a history monitoring
period to create a stable model, thus having the ability to dis-
regard gaps int the time-series. With this model disturbances in
a time-series can be detected during the monitoring period and
in newly arrived data. The most important advantages for this
study are that it can deal with gaps in the time series and that it
takes the full details of the whole time series into account.

BFAST monitor version 0.3 in Python (Gieseke et al., 2019)
was used to detect breaks and in the created time series. It is ac-
knowledged that BFAST and BFAST monitor are meant to de-
tect breaks in the established behavior of time series. However,
in this case it was used as a satellite image classifier taking into
account that PRODES provides masks of primary forest, that is,
forest that remains intact since the beginning of the PRODES
project. Any change to that forest is considered as deforesta-

s
BFASTmonitor Bre

I Aug 16 Ml oct 17
M sep 16 [ Nov 17

w;

Figure 2. PRODES and BFAST monitor breaks with indices
NDVI (top-left), GEMI (top-right), EVI (bottom-left) and SAVI
(bottom-right) at tile 21LYH from August 2016 to July 2018

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII1-B3-2020-705-2020 | © Authors 2020. CC BY 4.0 License. 707



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020
XXIV ISPRS Congress (2020 edition)

e
ASTmDnitDrErEaqu
g16 [l Oct17
p16 M Nov 17 f
ct 16 Ml Dec 17
Jan 18
Feb 18
Mar 18 =
Aprig '+
Mai 18
Jun1g ”
Mai17 [ Jul1s 2

A n17 P
=Jul‘!7 PRODES
B W rug 17 ] 2017

Figure 3. PRODES and BFAST Break Detection with SAVI
Index for 2017-2018 at tile 21LYH.

tion. Even if the forest is removed and it grows again is con-
sidered as secondary forest. Under this premise, any change to
primary forest is deforestation. Since BFAST is able to detect
changes in time series of vegetation indices, it can be assumed
that any disturbance to the regular phenological cycle of the
PRODES’ primary forest is deforestation. Under the aforemen-
tioned assumptions, BFAST can be used as a satellite image
classifier instead of its traditional use as a time series break de-
tector.

For the initial runs, monthly data from 2016 until 2018 was
used. For these runs, the history period was set from Janu-
ary 2016 to December 2017 and the monitoring period, con-
sequently, set from January 2018 until December 2018. The
results of these runs were not meaningful since the algorithm
detected breaks in nearly all pixels. Therefore, different com-
binations of parameters have been tried which, neither, led to
meaningful results. So, data from 2013 until 2015 was ad-
ded and the history period was changed to January 2013 until
July 2016 and, consequently, the monitoring period from Au-
gust 2016 to July 2018 to fit the PRODES year (from August
to July). After several cycles with adjusted parameters and no
significant improvement, the results of the run with the default
variables, k = 3, trend = True, hfrac = 0.25 and level = 0.05 are
evaluated.

2.7 Deforestation detection using Random Forest for SITS
classification

Random Forest is a machine learning algorithm, that randomly
selects a set of training data observations and variables and cre-
ates decision trees (Breiman, 2001). With aggregation and ap-
plying a majority vote rule, the final class for each pixel is es-
tablished.

For this study, the Random Forest algorithm of the sklearn Py-
thon library, version 0.21.3, was used. With the prepared train-
ing matrix, described in section 2.3, and an array containing
the labels for each pixel a Random Forest classifier was created

with 500 trees, default, and using out-of-bag samples to estim-
ate the generalization accuracy. After fitting it to the training
data the time series was classified.

3. RESULTS AND DISCUSSION

The results were evaluated in three steps. Firstly, the deforest-
ation detection layer were visually compared to the PRODES
layer. Secondly, the percentage of correctly classified pixels
were calculated and lastly the Kappa index was determined.

BFASTmonitor
Index | Deforested | Other | Kappa Index
NDVI 0.34% 99.69% 0.0005
GEMI 80.15% 60.16% 0.0236
SAVI 95.23% 53.69 0.0247
EVI 97.84% 5.07% 0.0007
RF
Index | Deforested | Other | Kappa Index
NDVI 14.43% 99.76% 0.2020
GEMI 3.58% 99.25% 0.0341
SAVI 22.97% 99.59% 0.2868
EVI 11.12% 98.97% 0.1028

Table 1. Correctness assessment of pixel classification.
3.1 BFAST monitor

The resulting break detection layer was firstly visually analysed
and compared with the results of PRODES from the concerning
years in a validation process. As seen in Figure 2 and Figure
3, detected changes intersect with the results from PRODES.
Unfortunately, the algorithm not only results in abrupt breaks
of forest land cover and land use but in a lot of noise and also
false positives.

Additionally, the algorithm performed differently with the dif-
ferent indices. Using the NDVI index as input, barely any
breaks were detected, see Figure 2 top left. With the EVI in-
dex, BFAST monitor identified breaks nearly everywhere even
in the regions where forest covers the land throughout the whole
monitoring period. The GEMI and SAVI indices detected, ad-
ditional to deforestation, changes in most areas that are agricul-
tural used.

Comparing the detected deforestation from PRODES to the de-
tected breaks by calculating the Kappa index and the percent-
age of correctly classified pixel, one can find additional evid-
ence on how differently the indices performed. Only 0.34% of
the deforestation pixels were classified correctly as deforesta-
tion when using the NDVI index, as seen in Table 1. In com-
parison to the NDVI the EVI index performed opposite with a
high accuracy in deforested pixels (97.84%) but low accuracy in
other pixel (5.07%). Comparing the Kappa index, it shows little
difference, with 0.0005 for NDVI and 0.0007 for EVI. Notice-
able is, that the GEMI index detects deforestation more accurate
than the NDVI and EVI, which contrasts the results of Schultz
et al. (2016). The GEMI index showed 80.15% accuracy for
deforested pixel, 60.16 % for non-deforested pixel and a Kappa
index of 0.0236. But, agreeing with Schultz et al.(2016), the
SAVIindex resulted in the highest accuracy levels with 95.23%
for deforested pixel, 53.69 % for non deforested pixels and a
Kappa index of 0.0247. The GEMI index turned out to be a less
accurate .
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‘With the SAVI and the GEMI, indices one can find correlations
with the temporal extent of their detection. As seen in the de-
tail view of Figure 3, it is also noticeable that the detection
time of the BFAST monitor method does not always intersect
with the detecting time of PRODES. The difference between
the PRODES deforestation layer and BFAST monitor detected
breaks is also seen in assessing the correctness of the classi-
fied pixel, see Table 1. Thus, detecting deforestation was not
successful with these settings and indices.

3.2 Random Forest

Running the Random Forest Classification with the same data
than BFAST monitor results in less noise and false positives.
As seen in Figure 4, the four indices still performed differently.
For the analysis the Agriculture, Pasture and Forest classes
are summarized as non-deforested. A visual comparison on
the whole classified image rules out the GEMI index due to
too much noise and foggy outlines. This conjecture gets con-
firmed when calculating the accuracy. For deforested pixels,
only 3.58% were detected. A thorough analysis of the distinct
feature showed in the detailed view in Figure 4 leads to the be-
lief that the NDVI index performs the best in combination with
the Random Forest algorithm in this area. Assessing the accur-
acy statistically, it becomes apparent, that the SAVI index cre-
ated slightly better results than the NDVI index, with a Kappa
index of 0.2868 for SAVI and 0.2020 for NDVI, see Table 1 .

Comparing the features detected with Random Forest with the
PRODES dataset, the outlines of the deforestation feature are
clearer and the whole path of deforestation is detected instead
of just pieces of the feature when using NDVI and the SAVI
index, see Figures 5 and 6. It is still clear, that depending on
the area the indices perform differently. After calculating how
many pixel were classified correctly, it shows that the SAVI in-
dex accomplished a better outcome, with around 22% for de-
forested pixels and 98% of non deforested pixels, see Table 1.
Although, the SAVI index detects parts of the deforestation cor-
rectly, it still fails to detect a great amount of deforested pixels.

RF Classification §
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M deforestation

| Prodes Data

Figure 4. PRODES and RF Classification with indices NDVI
(top-left), GEMI (top-right), EVI (bottom-left) and SAVI
(bottom-right) at tile 21LYH of January 2018.
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Figure 5. PRODES and RF Classification with index NDVI at
tile 21LYH of January 2018 with details.
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Figure 6. PRODES and RF Classification with index SAVI at tile
21LYH of January 2018 with details.

The overall outcome of this study contests the result described
in other papers, for example by Torbick et al. (2018). In their
paper dealing with crop type mapping using HLS and Random
Forest they obtained an overall accuracy of 85% in all but one
of their study areas with the NDVI and land surface water index
(LSWI) indices.

4. CONCLUSIONS

The HLS project is a fairly new approach to provide a data-
set with high temporal and spatial resolution as ARD. The data
was tested with the aim to detect deforestation, using two dif-
ferent methods, BFAST monitor and Random Forest algoritm
with four vegetation indices NDVI, EVI, GEMI and SAVI.
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Masking out the clouds based on the quality assessment layer
turned out to be rather inaccurate, which was also described by
Pastick et al. (2018). A visual analysis of a random selection of
cloud-free images showed some fuzzy edges, where either too
much cloud or too little was detected. On other images whole
clouds were not detected at all. This inaccuracy might have led
to inaccuracies in the later analysis.

In the conducted studies, BFAST monitor and Random Forest
were tested under the same conditions. At first glance, the
visual analysis showed that the results of the Random Forest
algorithm were more precise than the results from BFAST mon-
itor. When calculating the fractions of the correctly calculated
deforested pixels, it becomes apparent, that overall the SAVI in-
dex lead to the best results in this study area with the HLS data-
set with both methods. The NDVI, which resulted in second
best results with Random Forest, performed the worst with
BFAST monitor. Besides, the GEMI index generated better res-
ults using BFAST monitor than NDVI and EVI but produced
the most noise using Random Forest. The EVI index resulted
in low performance in both algorithms although seeing overall
better outcomes with the Random Forest algorithm.

Still, the results of the study using BFAST monitor are overall
unsatisfying. This might be due to the holes in the time-series
due to high cloud coverage especially during the months of the
rain season from December to May, although Verbesselt et al.
(2012) describe that data gaps will not effect the outcome. In a
newer paper Schultz et al. (2016b) describe the impact of obser-
vation frequency when using BFAST monitor. They conclude
that data availability is highly correlated to error omission. Ad-
ditionally, the inaccuracy might also be because of other at-
mospheric disturbance. The original study of BFAST monitor
was conducted in Somalia, an area with semi-arid tropical cli-
mate and little seasonal change in temperature (Verbesselt et
al., 2012). Thus, it is possible that the constant air humidity in
the Amazon can create disturbance that is not accounted for in
the BFAST monitor algorithm(Collow et al., 2016). Moreover,
the seasonal change in Mato Grosso State is significantly higher
than in Somalia, in function of the agricultural dynamics. The
agriculture plays not as an important role in Somalia as it does
in the Amazon region.

5. FUTURE WORK

Further investigations of the use of this dataset, especially in
the Brazilian Legal Amazon, should take different aspects into
account. First of all, a more precise cloud mask needs to be
created thus ensuring an accurate time series. An evaluation
of different cloud masks was for example done by Beatens et
al. (2019). Additionally, to fill the wholes in the time series
arising from masking out the clouds, a best pixel method, as
for example described by Griffiths et al. (2019), should be es-
tablished. Evaluating each pixel based on a variety of features,
for example the spatial distance to the next cloud or the tem-
poral distance to the target date, facilitates an image aggrega-
tion based on the best rated pixel. This results in a high quality
patched image, easier processable in time series analysis.

As especially BFAST monitor detected more seasonal change
not only in EVI index but also in GEMI and SAVI indices it is
further to investigate if removing seasonal variance can enhance
the performance of detecting breaks only in the forest region.
Hence, methods like Hamunyela et al. (2016) can be applied

to this dataset. They developed a method to integrate the spa-
tial context into an early deforestation detection method. The
NDVI index derived from Landsat-5/TM and Landsat-7/ETM+
was used in their study case that analyzed dry forest in Bolivia
and wet forest in Brazil. They reduced seasonal variance based
on their spatial context with a moving window approach. Com-
paring their method to a season model-based approach, using
the spatial context resulted in higher accuracy and less temporal
delay.
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