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ABSTRACT: 
 
Remote sensing is a potentially very useful source of information for spatial monitoring of natural or cultivated vegetation. The latest 
advances, in particular the arrival of new image acquisition programs, are changing the temporal approach to monitoring vegetation. 
The latest European satellites launched, delivering an image every 5 days for each point on the globe, allow the end of a growing 
season to be monitored. The main objective of this work is to identify and map the vegetation in the Pays de Brest area by using a 
multi sensors stacking of Sentinel-1 and Sentinel-2 satellites data via Random Forest, Rotation forests (RoF) and Canonical 
Correlation  Forests  (CCFs). RoF and CCF create diverse base learners using data transformation and subset features. Twenty four 
radar images and optical dataa representing different dates in 2017 were processed in time series stacks. The results of RoF and CCF 
were compared with the ones of RF. 
 
 

1. INTRODUCTION 

Environmental vegetation monitoring is constantly increasing 
with a desire to preserve natural habitats and ecosystems. 
However, in the economic context in France, urbanization and 
changes in land use and land cover (LULC) favor the 
degradation of these environments. Regardless of the national, 
regional or municipal scale of action, ecological study requires 
spatially identifying the environments making up the territory in 
order to be able to propose action plans to enhance or conserve 
these spaces. 
 
Remote sensing is a potentially very useful source of 
information for spatial monitoring of natural or cultivated 
vegetation. Many approaches have been developed recently for 
monitoring and mapping of vegetation (Roberts et al., 2015; 
Niculescu et al., 2016 ; Niculescu et al., 2017 ; Shivers et al., 
2018; Muller-Karger et al., 2018; Rapinel et al., 2019). We 
noted the new opportunities for the monitoring of the vegetation 
with the arrival the European multi-sensor images in time series 
and namely with the increasing number of satellites and the 
availability of free data. In the European Copernicus program, 
the constellations Sentinel-1 and Sentinel-2 currently provide 
complete coverage of the national territory every 5 days, at ten 
meter spatial resolution in several parts of the electromagnetic 
spectrum. It is possible to follow the intra- and inter-annual 
evolution of ecosystems at a fine spatial resolution at the scale 
of the territory. This massive flow of earth observation data 
provides a rich and detailed description of ecosystems and 
cultures, allowing control over their state and evolution. The 
high optical data in time series have marked the analysis of 
environmental phenomena, definition of trends and 
characterization of change events. The quality of the optical 
images is dependent on the climatic conditions and especially 
on the cloud cover on the day of the shooting. This explains 

why the series of optical images can be incomplete and 
irregular, which can hamper the recognition of cultures when 
the gaps are located at key dates vis-à-vis the phenology of 
cultures. Conversely, radar data is not dependent on 
atmospheric conditions and can be acquired day and night. 
Radars are used for various purposes, mainly for surface 
measurements or even environmental monitoring. It is possible 
to analyze of vegetation thanks to its sensitivity to the 
roughness of the surface layer of the cover and to humidity. 
Detection of the type of crop is also possible depending on the 
parameters of the wave emitted. In addition to polarization, very 
important information in the field of radar imagery is the angle 
of incidence with which the images are acquired, because this 
has a direct influence on the discrimination of cultures. Bargiel 
(2010, 2011, 2014), Ferazzoli (2002) and Bagdhdadi (2008, 
2009) have shown that cultures stand out better for strong 
angles of incidence (around 40 °). The use of intra-annual time 
series of satellite images acquired by sensors like Sentinel-2 and 
Sentinel-1 with a high revisit capacity and a high spatial 
resolution makes it possible to acquire a larger number of 
images on a same area and therefore improve the identification 
and characterization of different classes of vegetation and 
cultures.  
 
The joint use of radar and optical satellite data has already 
shown a certain interest in identifying the natural, semi-natural 
vegetation, the crops and agricultural practices on a fine scale at 
a given date. Many very recent studies include the fusion of 
optical and SAR for the characterization of vegetation (Hosseini 
et al., 2019; Niculescu et al., 2018; Orynbaikyzy et al., 2019 ; 
Dymond et al., 2019 ; Mendes et al., 2019 ; Stendardi et al., 
2019). Several researchers study the fusion like a concept for 
combining data from different sensors (Lu et al., 2007; Joshi et 
al., 2016), with the aim of generating information of “greater 
quality” than the individual input datasets (Vivone et al., 2015). 
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There are three categories of methods of image fusion related to 
the level where the integration is performed: data fusion (pixel-
level); feature fusion; and decision fusion. In this study we used 
the pixel-level method (data fusion). Pixel-level image fusion is 
widely used in remote sensing (Li et al., 2017) and the fusion 
methods are applied often in remote sensing. The fusion 
methods are easy to implement and fast to compare with other 
transform methods based on the pixel-level. The first 
consequence of this method is its influence on the accurate 
estimation of the optimal weights for different pixels. In other 
cases, the fusion performance should be quite limited. Among 
the most used machine learning for classification high-of 
dimensional data algorithms is Random forest (Cutler et al., 
2007 ; Breiman, 2001 ; Belgiu et al., 2016). Random Forest 
creates what are called decision trees. A decision tree under RF 
is developed from a sample chosen at random from a training 
set. The potential of Random Forest is in the creation of a large 
number of trees (the forest), which statistically increases the 
possibility of obtaining an optimal tree where the separators at 
each node will be adapted to the chosen classes. The main 
advantages of RF are the lower computational complexity and 
the lower correlations between the trees (Gislason et al., 2006 ; 
Chan et al., 2008 ; Liu et al., 2018). In order to further improve 
the performance of RF, Rotation forests (RoF) and Canonical 
Correlation  Forests  (CCFs) are proposed to use in this study. 
Principal component analysis (PCA) and canonical correlation 
analysis (CCA) are respectively used in RoF and CCF in order 
to generate the rotation feature space for the training samples 
for the obtention of the certain diversity. These methods were 
used with hyperspectral data with the very good results by Xia 
et al., 2015 and Xia et al., 2017. In this paper, we applied RoF 
and CCF to classify times series images Sentinel-1 and  
Sentinel-2 and found that its performances are better than 
bagging, AdaBoost, random subspace, and random forest.  
 
The objective of the study is the detection and mapping of the 
vegetation at the Pays de Brest using Sentinel-1 and Sentinel-2 
satellite images using and RoF and CCF. This objective implies 
an identification of the natural, semi-natural vegetation and of 
the levels of the plant formation class and identification of the 
artificial vegetation (summer crops and winter crops).  
 

2. STUDY SITE 

The country of Brest is an association of 7 intercommunalities 
created in 2012, located northwest of Finistère (Brittany), for a 
total of 103 municipalities. This territory groups 43.5% of the 
Finistère population over a quarter of the area of the 
department. (Figure 1). 
 
 
 
 
 
 
 

 
 
 

 Figure 1. Localization of the Pays of Brest 
Source : geo.pays-de-brest.fr 

The Pays de Brest is organized around the Brest urban center, 
which centralizes most of the country's activities and jobs. The 
country is strongly impacted by the sea, with its 599 km of 
coastline for its 2102 km² of area. It includes many remarkable 
natural environments with great biodiversity, including in the 
Armorique Regional Natural Park, which is partly integrated 
into the territory. The country is also characterized by its 
agricultural and agrifood dimension, in fact, agriculture 
represents 54% of the surface of the territory. The territory has a 
rather heterogeneous landscape. Three groups form the Pays de 
Brest: i) BMO (Brest Métropole Ocean), where artificial areas 
are very important, agricultural land occupies only half of this 
area. Peri-urbanization is important in the municipalities around 
Brest. ii)  The Leon plateau to the north where agricultural land 
dominates. The coastlines are densely populated in this area. 
Even if certain portions are protected, the proportion of natural 
and semi-natural areas is rather low; these environments are 
confined to the bottom of the valleys least suitable for 
agriculture and in the process of landlocked. iii) Southern Elorn 
where the proportion of agricultural land is lower. The 
proportion of natural and semi-natural areas is higher than in 
the rest of the country, thanks to the presence of wooded areas 
and, and in the Crozon peninsula, large areas of coastal moor. 
 

3. DATA SET 

The Sentinel-1 A and B (Synthetic Aperture Radar) satellites 
were launched into orbit on April 3, 2014 and April 25, 2016 
respectively. The European Space Agency (ESA) with Copernic 
program in continuity with the ERS and ENVISAT satellites. 
the have developed the constellation of the two satellites. The 
objective of the program is to monitor the environment. S1 data 
is recording in C bands (5.6 cm). A temporal resolution of 12 
days as well as the same geographic area to be observed every 6 
days so the orbit of the two satellites is quasi-polar. Sentinel-1 
images are available in SLC (Single Look Complex) or GRD 
(Ground Range Detected) formats and in different acquisition 
modes. For this study the mode chosen is: Interferometric Wide 
swath (IW) which is a mode where the images are acquired 
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according to a swath of 250 km and with a spatial resolution of 
5 m X 20 m. The polarization of images available are VV 
parallel and VH cross polarization in GRD format. 
All the satellite data used in this study were recorded during the 
year 2017 on 4 orbits (table 1). 
  
Table 1: Sentinel-1 images available 
 
 

 
 
 
 
 
 
 
 
 
 

 
The MSI (Multi-Spectral Instrument) is the optical instrument 
of the satellite since June 2015 for Sentinel-2A and since March 
2017 for Sentinel-2B. With a 10-day orbital cycle, and a 
sunsynchronous polar orbit, data are acquired in 13 spectral 
bands, with a spatial resolution ranging from 10 to 60 meters. 
Sentinel-2 is particularly useful for mapping vegetation, thanks 
to the presence of two new spectral bands between 705 and 740 
nm (B5 and B6). We have 12 optical images in 2017, with a 
cloud cover rate sufficiently low to distinguish our study area. 
We have selected 12 optical images for our study presented in 
the following table (Table 2). 
 
Table 2. Sentinel-2 images available 

 
 
 Several levels of correction are used in this study (1C and 2A). 
This level of correction are available on the website of the 
European Space Agency. The image 1C has been ortho-rectified 
and one image 2A was corrected from an atmospheric point of 
view.  
 
 

4. METHODOLOGY 

In this study, we use two machine learning approaches, RoF and 
CCF, applied to Sentinel-1 and Sentinel-2 time series. Three 
different models were built for each of these algorithms. A set 
of models combined the S-1 and S-2 features. The classification 
results were compared. The methodology implemented aims to 
improvethe accuracy of identification and mapping a few 
vegetation classes in Pays de Brest. We applied this 
methodology a total of 24 data set with of combined radar and 
optical data and we tested several different subsets of the data.  
 
 
 

RoF constructs various training sets with the following steps. 
The first step concerns the features which are split to the subsets 
without any intersection. Then, a rotation matrix is produced by 
using a data transformation on each subset with 75% 
bootstrapped samples.  In the last step, we construct the 
classifier by using the new features projected by the rotation 
matrix. The final output is generated by integrating the 
classifiers’ results by repeating the above steps several times. 
 
For the CCFs, CCA is performed on the features and labels of 
the bootstrapped training set to find the projections. Then, the 
projections are used to rotate the features to produce very 
diverse classification results achieved by the decision tree, 
which is beneficial for the ensemble. The general principle of 
RF is to create a set of decision trees from randomly selected 
subsets of training data. In this work, the number of trees is set 
to be 40, and the number of features in subset is set to the 
square root of number of features used in this study.  
 
The evaluation of these models was based on overall accuracy 
(OA), class-specific accuracies and Kappa coefficient. The 
validation of the classification was carried out by calculating a 
contingency matrix and a Kappa index. The contingency matrix 
is used to assess errors produced by omissions as well as 
commission errors. Omission errors correspond to pixels that 
have not been assigned to the class to which they belong. These 
errors indicate the underestimates. Commission errors 
correspond to pixels that have been assigned to a class to which 
they do not belong. These errors denote overestimates. The 
contingency matrix is used to calculate an overall classification 
assessment index, the Kappa index (Congalton 1991). 
 
 

5. RESULTS 

Eight classes of main plant formations have been labeled: 
summer crops, winter crops, forest/ undergrowth, water, 
grassland, moors/lawns, no vegetation and sand dunes. These 
classes were selected based on the multiples observation in situ 
(photointerpretation) conducted by Conservatoire National 
Botanique, Brest (France), various study of the vegetation in 
Pays of Brest (Ali et al., 2017) and on the classifications of 
Cesbios in 2016 (figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Vegetation classes and No vegetation. 
 
In general, agricultural land covers more than half of the surface 
(61.5%), and forests and natural and semi-natural environments 

Data Sentinel-1 

 
Orbit 

Type of 
orbit 

Angle 
of 

incide
nce 

Polari
zation 

Acquisit
ion 

mode 

1 Ascending 42° 
VV/V
H 

IW 
52 Descending 33° 
103 Ascending 33° 
154 Descending  42° 

Data Sentinel-2 
Date of 
acquisition 

25/0
1/17 

14/0
2/17 

16/0
3/17 

04/0
5/17 

05/2
5/17 

06/1
4/17 

Level of 
correction 

1C 1C 1C 1C 2A 2A 

Date of 
acquisition 

07/0
4/17 

08/1
8/17 

09/2
2/17 

11/0
6/17 

12/0
1/17 

12/1
6/17 

Level of 
correction 

2A 1C 2A 1C 2A 1C 

1: Summer crops 
 
2: No vegetation  
 
3: Forest/ undergrowth 
 
4: Water 
 
5: Grassland 
 
6: Moors / Lawns 
 
7: Winter crops 
 
8: Sand dunes 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-727-2020 | © Authors 2020. CC BY 4.0 License.

 
729



 

21.3%. The rest is represented by urbanized areas (16,4%). The 
classes (natural, semi-natural vegetation and culture vegetation) 
mapped in this work correspond as follows according to the 
description of the National Conservatory Botanical of Brest: No 
vegetation - Environments where there is an absence of 
vegetation. This corresponds to uncultivated land, sandy areas, 
rocky areas, estuaries, the sea and built-up areas (homes, 
parking lots, roads ...). Crops are represented by cultivated plots 
(crops and market gardening). The forest includes three types of 
forest: mesophilic forests (deciduous), hygrophilous forests 
(deciduous), coniferous forests. The undergrowth includes 
shrub thickets (Mesophilic and mesohygrophilous thickets, 
Hygrophilic thickets). The grassland class includes herbaceous 
vegetation dominated by grasses with two formations: 
mesophilic grassland and hygrophilous grassland. The class 
moors includes moors and scrubland dominated and therefore 
structured by generally evergreen frutescent chamephytes 
developing in a contiguous manner (the individuals touch each 
other). The lawns include two formations: lawns on loose sand 
and lawns on fixed sand. The sand dunes are mainly composed 
of fixed dunes. The artificial vegetation includes the cultures 
(summer culture and winter cultures). In summer, it is the corn 
crops are present, as well as the spring barley. The winter 
cultures are: winter barley, rapeseed and soft winter wheat.  
 
The total of samples for training and testing are listed in the 
table 3. 
 
Table 3. Number of train and test samples 
 

Class No.train No.test 
1 12250 13218 
2 9435 9815 
3 12802 8415 
4 184980 263817 
5 16233 12559 
6 6194 9711 
7 13149 14318 
8 5874 10519 

 
Table 4. Classification accuracies of RoFs and CCFs when 
compared to RF for all Pays of Brest (S1). 
 

Class RFs RoFs CCFs 
1 56.91% 59.36% 65.06% 
2 64.52% 69.19% 71.10% 
3 93.92% 95.61% 96.08% 
4 99.99% 99.99% 99.99% 
5 70.67% 70.58% 78.45% 
6 58.36% 57.21% 63.12% 
7 39.28% 40.68% 43.22% 
8 75.97% 73.77% 78.68% 
OA 91.63% 91.85% 92.86% 
AA 69.95% 70.80% 74.46% 
Kappa 78.99% 79.56% 82.08% 

 
Table 5. Classification accuracies of RoFs and CCFs when 
compared to RF for all Pays of Brest (S1 + S2). 
 

Class RFs RoFs CCFs 
1 80.16% 80.04% 85.12% 
2 70.33% 79.23% 82.51% 
3 95.60% 96.40% 97.15% 
4 99.99% 99.99% 99.99% 

5 82.25% 84.36% 85.21% 
6 65.40% 65.85% 72.10% 
7 57.14% 58.68% 61.30% 
8 88.71% 85.50% 90.43% 
OA 94.32% 95.38% 96.21% 
AA 75.34% 75.80% 77.21% 
Kappa 88.65% 89.02% 90.28% 

 
      Identification and visualization of main vegetation classes in  
      Pays of Brest (figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Machine Learning Models with stacking of Sentinel-1 
and Sentinel-2 data. 
 
The results show very good classification performance for the 
two algorithms (3 applications): over accuracy - high precision 
over 90% (table 4 and table 5). With the application of the S1 
and S2 features, the CCFs classifiers producing the highest 
accuracies for all of the classes. The forest classification in the 
three algorithms was excellent (more than 90% of pixels well 
classified). The grassland had a good classification accuracy for 
the three versions (more 80% precision) with a better result for 
the classifications CCFs (85.21%). Similar results present the 
classification of sand dunes, more than 80% of accuracy always 
with better results for CCFs classification (90.43%). Artificial 
vegetation (summer crops and winter crops) are less well 
classified. The summer crops were better identified and 
classified with percentages between 80% and 85% with the 
same trend as for the other classes (better results for CCFs). The 
winter crops were the last identified and classified with a 
maximum of 61.30% always for CCFs classifications. Crops are 
mostly confused with non-vegetation class, grassland and 
moors. However, we can see an increase in error rates for the 
moors / lawns classes. The spectral and textural similarity 
between certain mesophilic grassland and cultures generated 
classification errors. The class No vegetation was well 
classification for the three versions. All of the classifiers proved 

Time series 
stacking: 

RFs 

Time series 
stacking: 

RoFs 

Time series 
stacking: 

CCFs 
ZONE 1 ZONE 1  

 

ZONE 2 ZONE 2 ZONE 2 

ZONE 3 
 
 
 
 
 
 

ZONE 3 ZONE 3 
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that the S1 and S2 are performing in the discrimination of the 
major classes of vegetation. 

6. CONCLUSION 

Different feature extraction methods were tested for the 
operation of Rotation Forests. Rotation Forests in this study is 
proposed with spatial contextual information. This methodology 
can substantially improve the results. The classification 
accuracies obtained in this study (more 90% for the best 
classification) show that the staking Sentinel-1 and Sentinel-2 
data was able to produce reasonably accurate classifications of 
medium-scale vegetation namely used the algorithm of Rotation 
Forests. This algorithms was able to identify and to monitoring 
the the main natural and semi-natural plant formations and also 
the artificial vegetation (summer crops and winter crops) of the 
Pays of Brest. This studie shows the potential of multi-temporal 
imagery be scaled to regional level and the results can be 
expend in the another coastal zones vegetation. 
 
The accuracy of the classifications of the vegetation is also 
improved by multiplying the number of images. The interest of 
S2 satellite images, produced regularly for the identification of 
vegetation classes, is based on the possibility of having several 
dates during the year and of being able to study the evolution of 
the environment. The most suitable images to identify the plant 
formations of Pays of Brest are those that were acquired at the 
start of the year, namely at the end of winter and in spring. We 
can also note that the images acquired in the spring are, in all 
cases, among the best combinations of images selected. 
 
The contribution of the dual polarization of the on-board sensor 
on Sentinel-1 coupled with the high temporal repeatability of 
Sentinel-2 optical images offers interesting perspectives for 
monitoring coastal zones and identifying the vegetation present. 
Using multiple images acquired on different dates was 
improved the discrimination and characterization of cultures. As 
at certain times of the year, it is very difficult to discriminate 
cultures from one another due to their very close phenology, 
which gives them similar spectral characteristics, it is most 
often necessary to use several images acquired in the same year. 
For agricultural environments, the C band of the Sentinel 1 
satellite has shown an ability to assess the dynamism of 
rapeseed, corn, sunflower and soybean crops. The methodology 
Time Series stacking improves the results for the identification 
and mapping of differents class naturel, semi-naturel and 
cultures in Pays de Brest.  The final classification proved to be 
very precise. Such a map could therefore serve as a basic 
document for monitoring and managing the natural vegetation, 
semi natural vegetation and crops. 
 
These algorithms used in this study were very stable. The RF, 
RoFs and CCFs algorithms are robust and not very sensitive to 
fine-tuning of most parameters. Only the parameters number of 
features in a subset, have an impact on the quality of the 
classification.  
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APPENDIX (OPTIONAL) 

Any additional supporting data may be appended, provided the 
paper does not exceed the limits given above.  
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