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ABSTRACT:

In the remote sensing imagery, spectral and texture features are always complex due to different landscapes, which leads to mis-

classifications in the results of semantic segmentation. The object-based Markov random field provides an effective solution to this

problem. However, the state-of-the-art object-based Markov random field still needs to be improved. In this paper, an object-based

Markov Random Field model based on hierarchical segmentation tree with auxiliary labels is proposed. A remote sensing imagery

is first segmented and the object-based hierarchical segmentation tree is built based on initial segmentation objects and merging

criteria. And then, the object-based Markov random field with auxiliary label fields is established on the hierarchical tree structure.

A probabilistic inference is applied to solve this model by iteratively updating label field and auxiliary label fields. In the experi-

ment, this paper utilized a Worldview-3 image to evaluate the performance, and the results show the validity and the accuracy of

the presented semantic segmentation approach.

1. INTRODUCTION

Semantic segmentation is defined as a multi-label classification

problem (Hu et al., 2018), which aims to assign category labels

to each pixel on the image. It contains two tasks, image seg-

mentation and target recognition. Semantic segmentation is of

great significance to the understanding and analysis of the im-

agery and is widely applied in various fields, such as automatic

driving, land-use and land-cover classification. Semantic seg-

mentation of remote sensing imagery can be regarded as a typ-

ical multi-class image classification (Chen et al., 2013) by as-

signing predefined semantic classes to a remote sensing image.

With the development of remote sensing satellite technology,

the temporal, spatial and spectral resolution of remote sensing

image have improved gradually, which makes the information

obtained from remote sensing image more and more abundant.

Due to a large number of categories in the natural scene, some

show a high degree of similarity in the spectral or texture fea-

tures, so how to accurately recognize and distinguish different

landscapes is still a challenge in the research of remote sensing.

The semantic segmentation of remote sensing image provides

an effective solution for image retrieval and analysis.

There are two groups of semantic segmentation methods for

the remote sensing imagery, traditional method and deep learn-

ing method (Hu et al., 2018). The deep learning method

mainly utilizes Convolution Neural Network (CNN) (Pedro

H. O., Collobert, 2013, Yu et al., 2018), Fully Convolutional

Network (FCN) (Long et al., 2014, Chen et al., 2018) and

other improved neural network methods (Paszke et al., 2016,
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Kampffmeyer et al., 2016) to extract features and obtain se-

mantic segmentation results. Traditional methods include Sup-

port Vector Machine (SVM) (Gupta et al., 2013, Huang, Zhang,

2013), Random Decision Forest (RDF) (Gupta et al., 2013,

Hermans et al., 2014), Markov Random Field (MRF) (Zheng,

Wang, 2015, Zheng et al., 2017, Zheng et al., 2019) and Condi-

tional Random Field (CRF) (Volpi, Ferrari, 2015, Thøgersen et

al., 2016), etc.

Compared with the deep learning method, the application of

the traditional method in remote sensing imagery semantic seg-

mentation is more conducive to analyze the physical informa-

tion of landscapes. MRF is an effective method for semantic

segmentation in traditional methods. One of the classic prob-

lems of the MRF is the Maximum a Posterior (MAP) (Kollar,

2014) estimation of the state vector. Based on the given para-

meters of model and data sets, the most likely state of the se-

quence is estimated through the posterior distribution. In the

application of image semantic segmentation, the algorithm ob-

tains the optimal result by solving MAP estimation of the label

field. In semantic segmentation, the MRF model makes full use

of spatial information constraints, which is suitable for spectral

and texture processing of remote sensing imagery.

The classical method of semantic segmentation based on the

MRF model is Pixel-based Markov Random Field (PMRF) (Ge-

man, S, 1984, Besag, 1993). This method is defined on pixels

and is utilized to measure the similarity between pixels. The

most advantage of the model is its regular context, which is

convenient for spatial relationship description and model solu-

tion. However, due to the improvement of spatial resolution of

remote sensing imagery, the classical model is not suitable for
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capturing complex macroscopical features, and the calculation

is time-consuming (Zheng, Wang, 2015). The Multi-resolution

Markov Random Field (MRMRF) (Noda et al., 2002, Zheng

et al., 2010) defined on the image pyramid structure extends

the classic PMRF model. The method improves the compu-

tational efficiency and extends the descriptive spatial features

to a certain extent, but it is still a pixel level Markov Random

Field. With the application and development of Object-Based

Image Analysis (OBIA) in remote sensing image, the Object-

based Markov Random Field (OMRF) (Yu, Clausi, 2008, Wang,

Zhang, 2009, Blaschke, 2010, Zhang et al., 2017) has been

widely used. A image is divided into several over-segmented

regions, then the relationship between regions is expressed as

Region Adjacency Graph (RAG), and finally the semantic seg-

mentation is completed by the MRF model. The OMRF model

is defined based on RAG, which breaks through the limitation

of the pixel level model in the description of spatial features,

and can better capture the macroscopical features of the image.

The OMRF used in the semantic segmentation of remote sens-

ing imagery still faces many challenges. For example, there will

be some misclassification if the OMRF does not fully emphas-

ize spatial relationships. On the contrary, if spatial relations

are overemphasized, the OMRF model will lead to oversmooth

results. Hierarchical processing provides an effective strategy

for spatial relationship analysis (Marfil, Bandera, 2015). With

the application of multi-scale strategy and object-based method

in remote sensing imagery segmentation, the OMRF and the

MRF model based on hierarchical information is widely used

in the process of remote sensing imagery semantic segmenta-

tion. Zheng et al. (Zheng et al., 2019) established the prob-

ability graph with a multilayer structure, integrates pixel label

and object label to build the hybrid label field, and utilized joint

distribution to capture the isotropy of the same layer and the

anisotropy of different layers. In the iterative update of hy-

brid label field, multiple-granularity is integrated and interac-

tion between different granularity layers is achieved. In the

other article (Zheng et al., 2017), they defined two auxiliary la-

bels in different categories, and built the conditional probability

distribution of label field and auxiliary label fields.

Inspired by the interaction between layers based on the con-

ditional probability distribution model (Zheng et al., 2017),

this paper establishes the Object-based Markov Random Field

based on hierarchical segmentation tree with auxiliary labels

(OMRF-HA) to realize the semantic segmentation. In the hier-

archical segmentation tree, there is a good corresponding rela-

tionship between objects in different layers, hence the classific-

ation reference of the segmented objects between adjacent lay-

ers is more reliable. When the model updates the label field and

auxiliary label fields for the iterative probabilistic inference, the

auxiliary label fields will have a more positive impact on the la-

bel field.

The remaining of this paper is organized as follows: Section

2 introduces the details of the proposed approach. The experi-

mental results, analysis and evaluation are presented in Section

3. Finally, the conclusion is given in Section 4.

2. METHODOLOGY

This paper proposes an object-based Markov random field

model with auxiliary label fields based on hierarchical segment-

ation tree structure. This algorithm first segments the remote

sensing imagery into objects and establishes the object-based

hierarchical segmentation tree. Based on the hierarchical tree

structure, the OMRF model with auxiliary label is built. The

result of semantic segmentation is obtained by iterative updat-

ing the label field and auxiliary label fields. Post-processing is

applied to remove noises. An illustration is shown in Figure 1.

Figure 1. Flow diagram of Object-based Markov Random Field

based on hierarchical segmentation tree with auxiliary labels

(OMRF-HA).

2.1 Object-based Hierarchical Segmentation Tree

Considering the homogeneity of regions and edge features, the

watershed algorithm (Li et al., 2010) is utilized to divide the

remote sensing image I into initial over-segmented regions.

The initial segmentation set is recorded as R and the num-

ber of objects is n. Each segmentation region is recorded as

Ri(i = 1, 2, . . . , n) and there is no intersection between divided

objects. The initial segmentation regions are gradually merged

to build a hierarchical segmentation tree (Wu et al., 2019) by

using a merging criteria (Hu et al., 2013) combining color and

textural features with spatial constraint. The level set of the

hierarchical segmentation tree is H , the number of levels is m

and the level is recorded as Hj(j = 1, 2, . . . ,m).

Figure 2. The hierarchical segmentation tree and the

corresponding objects.

Each node on the hierarchical segmentation tree corresponds to

each segmentation object on the remote sensing imagery. The
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nodes of H1 corresponds to the objects of the initial segmenta-

tion result. Each node in the upper layer corresponds to a seg-

mentation object obtained after j − 1 times merging. As shown

in Figure 2, (b-1)-(b-3) corresponds to the segmentation image

at node i-iii respectively. The position of the segmented ob-

ject(I) corresponding to the upper node i on the image will fully

cover the segmented objects (II and III) corresponding to the

lower nodes ii and iii. After m − 1 merging, the initial seg-

mentation objects will be merged into one object covering the

whole image, corresponding to the node on the top level of the

hierarchical segmentation tree.

2.2 OMRF Model

The OMRF model first initializes the label field X and assigns

a random label field Xi(i = 1, 2, . . . , n) for each region Ri.

x = {xi|i = 1, 2, . . . , n} is marked as the realization of X .

MRF model uses the MAP estimation to transform the prob-

lem of semantic segmentation into the optimal realization of

the given observation image (Xia et al., 2006). The optimal

result of semantic segmentation is obtained through the estim-

ation of P (x|I) for the optimal realization x̂. The posterior

probability is solved by Bayesian formula and the optimal real-

ization (Zheng, Wang, 2015) is simplified as follows:

x̂ = argmax
x

P (x|I)

= argmax
x

P (I|x)·P (x)

P (I)
= argmax

x
P (I|x)·P (x)

(1)

In the Equation 1. the likelihood function P (x|I) shows the

conditional probability of the image which belongs to a realiza-

tion x. The joint distribution P (x) is utilized to model the spa-

tial interactions between objects and possesses the Markovian-

ity property in the MRF model.

P (xi|xj , ∀j∈V/{vi}) = P (xi|xj , ∀j∈Ni) (2)

where Ni is the adjacent objects set of Ri. According to the

Hammersley–Clifford theorem (Kollar, 2014), P (x) obeys the

Gibbs distribution,

P (x) =
1

Z
exp(−U(x)) (3)

where, Z is the normalizing constant Z =
∑

x exp(−U(x)),
and U(x) denotes the energy function which is equal to the sum

of the clique potentials U(x) =
∑

c∈C Vc(x) over all possible

cliques C. Based on multilevel logistic(MLL) model defines

Vc(x):

V (xi, xj) =

{

−β, if xi = 0

β, otherwise
(4)

Ii denotes a vector composed by the spectral value of pixels

in Ri. P (Ii|xi) is assumed to obey the Gaussian distribution.

µl and
∑

l(l∈{1, 2, . . . , k}) denote the mean and variance, re-

spectively.

P (Ii|xi = l) =
∏

Ii∈I

P (Ii|xi = l)

=
∏

Ii∈I

(2π)−n/2|Σl|
−1/2

× exp[−
1

2
(Ii − µi)

TΣl
−1(Ii − µi)]

(5)

2.3 OMRF-A Model

OMRF-A model (Zheng et al., 2017) defines two auxiliary la-

bels AX1 = {AX1
i |1≤i≤n} and AX2 = {AX2

i |1≤i≤n} to

participate in probability inference. The optimal realization x̂
of the label field X is given by:

x̂|(AX1 = ax1, AX2 = ax2)

= argmax
x∈Ω

P (X|I, ax1, ax2)

= argmax
x∈Ω

P (X|I, ax1, ax2)

P (I|ax1, ax2)

= argmax
x∈Ω

P (I|X, ax1, ax2)P (X|ax1, ax2)

P (I|ax1, ax2)

= argmax
x∈Ω

P (I|X, ax1, ax2)P (X|ax1, ax2)

= argmin
x∈Ω

E(I|X, ax1, ax2) + E(X|ax1, ax2)

(6)

OMRF-A model proposes an approximate method to simplify

the solution of MAP, which will realize the iterative local op-

timization.

x̂i|(AX1 = ax1, AX2 = ax2)

= argmin
xi=l,l∈Λ

{−
1

2
ln(det |Σl|)

−
1

2
(Ii − µl)

TΣ−1

l (Ii − µl)

+ β · [
∑

j∈Ni

V (xi = l, xj)

+ V
′

(xi = l, ax1

i ) + V
′

(xi = l, ax2

i )]}

(7)

OMRF-A model develops a semi-supervised method to iterat-

ively optimize auxiliary realizations.

ax̂u
i |(X = x̂, AX3−u = ax3−u)

= argmin
axm

i
u=l,l∈Φu

{−
1

2
ln(det |∆u

l |)

−
1

2
(Ii −Θu

l )
T (∆u

l )
−1(Ii −Θu

l )

+
k

k′

u

β·[
∑

j∈Ni

V (axu
i = l, axu

j )

+ V
′

A(ax
u
i = l, ax3−u

i ) + V
′

A(ax
u
i = l, x̃i)]}

(8)

where Θu
l and ∆u

l are the mean and variance of Gaussian dis-

tribution for auxiliary label field axu
l (l ∈ Θu, u = 1, 2).

2.4 OMRF-HA Model

OMRF-HA model selects segmentation objects for the label

field and auxiliary label fields based on hierarchical segment-

ation tree structure. The proposed model chooses a layer in

hierarchical segmentation tree as the label field, and the upper

and lower levels near it as the auxiliary label fields. If we build

too many layers in the hierarchical segmentation tree, there will

be little difference between the label field and auxiliary label

fields, which will weaken the constraint of auxiliary label fields

to the label field. On the contrary, if the number of layers is

small, there will be great differences between adjacent levels.

Once the regions of different categories are merged in the high-

level, large errors will be produced in the corresponding auxil-

iary label, which will also have a negative impact on the label
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Figure 3. The hierarchical segmentation tree(a) and The

corresponding segmentation images(b) for label fields.

field. In this paper, we select an appropriate segmentation layer

and control the number of segmentation layers to obtain a sat-

isfied label field and auxiliary label fields. As shown in Figure

3, the red lines i, ii and iii in (a) are shown as the selected lay-

ers corresponding to the segmentation images (b-1), (b-2) and

(b-3), respectively. The black dotted lines are shown as the cor-

responding relations of the orange objects between these layers.

(b-1) and (b-3) are selected as auxiliary label fields and (b-2) are

selected as the label field. Our approach uses the same number

of classes for three fields. Pixels in auxiliary label field lay-

ers and the label field layer get labels from the same label set

Θ = {1, 2, . . . k}, (in the Figure 3, k = 3).

For the auxiliary label field corresponding to highest level in

three selected layers, each object is randomly assigned at frist,

that is, the initial value of the pixel in each object is the same.

The other auxiliary label field and the label field are marked as

same value with it. The optimal realizations of the label field

and the auxiliary label fields are calculated iteratively according

to Equation 7 and Equation 8, respectively. Due to the weak-

ening of randomness for MRF by object-based method, in the

process of iteration, pixel-based operation is carried out. The

semantic segmentation results are finally produced after post-

processing.

3. EXPERIMENT

Sub images captured from a Worldview-3 image were used

to evaluate the effectiveness of the proposed approach. The

Worldview-3 image was acquired on 5 January 2017, and it

covers part of urban areas in Shenzhen City and Hong Kong

City, China, with different types of land covers, like residential

areas, roads, mangroves and water. It has multispectral band

(1.2m/pixel) with eight spectral channels (coastal blue, blue,

green, yellow, red, red edge, near-infrared 1 and near-infrared

2). 3339 pixels were labeled identified manually as seven cat-

egories (artificial structure(including ships, cars and buildings),

shadow, road, lawn, wood, water, mud).

Through experiments for remote sensing images, OMRF-HA

model could not only highlight the details on the image, but

also remove noises to some extent. We compared the semantic

segmentation results of PMRF, OMRF and OMRF-HA models

before post-processing with the same bands, iteration times and

classification numbers.

As shown in Figure 5, Compared with the classification of

PMRF on the shadow of buildings, OMRF and the proposed

method could get shadow with more complete shape, and the

extraction effects of vegetation and shadow are also better.

Compared with OMRF, PMRF and OMRF-HA are more com-

plete on road classification with less noises. In the red box at

the lower-left corner, PMRF and OMRF-HA could show the

differences between shadows of wood and water, while PMRF

produces more noises.

The experimental results show that the average accuracy of the

method is 90.44% for the classification of the artificial struc-

ture. In Figure 6(a) and Figure 6(b), there is a large homo-

geneous building area, so that the classification accuracy of the

artificial structure is high (98.48%). In Figure 6(c), although the

buildings are dense and incoherent, they are arranged regularly

and the difference of spectral values is small with the accuracy

of classification results as 92.45%. In Figure 6(d), the spectral

values of buildings at the sunny side and shade are quite dif-

ferent and ships may carry mud and sand in Figure 6(c), and

thus the classification precision of artificial structure are lower

which are 89.93% and 72.13%, respectively. The spectral tex-

ture values of mud and water are relatively single, so they can

be distinguished accurately (97.67% for mud and 94.20% for

water).

The results of lawn and wood show well. In the Figure 6(b),

the lawn in the middle of the road can also be correctly classi-

fied. The average accuracies of these two classes are all more

than 90% on test images, and the highest accuracy of wood is

99.33%. However, at the edge of woods, with the decrease of

the leaf density, the spectral and texture characteristics decrease

as well, so that the misclassification appears.

Compared with other categories, shadow and road detection

results show common. In Figure 6(e), there are many obvious

characteristics of woods under the shadow which causes many

errors. Some misclassifications of road and shadow appear in

Figure 6(b). However, it’s remarkable that the method can dis-

tinguish roads with long and thin shape in Figure 6(d), and also

get results of road detection with less noises in in Figure 6(c).

3.1 Conclusion

This paper establishes the Object-based Markov Random Field

based on hierarchical segmentation tree with auxiliary labels

(OMRF-HA) to realize the semantic segmentation. This al-

gorithm first segments the remote sensing imagery into ob-

jects and establishes the object-based hierarchical segmenta-

tion tree. Based on the hierarchical tree structure, the object-

based Markov Random Field model with auxiliary label is built.

Then the iterative updating process of Markov random fields is

implemented. The results are finally obtained, after the post-

processing combining geometric morphology, spectral features

and texture features.

We build the label field layer and auxiliary label field layers on

the hierarchical segmentation tree which can enhance the posit-

ive effect of auxiliary field labels on the label field layer via the

constraint relationship of objects on the hierarchical segmenta-

tion tree. Considering the influence of object-based segmenta-

tion method on the reduction of sample size for Markov Ran-

dom Field, this paper combines the PMRF with the OMRF se-

mantic segmentation. Through experiments for seven different

categories landscapes on remote sensing image, the perform-

ances of the method for high-resolution remote sensing image

semantic segmentation were analyzed and compared.
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Figure 4. False color composite images with sample points.

Figure 5. Comparison of semantic segmentation results before post-processing. (a) False color composite image. (b) Results of

PMRF. (c) Results of OMRF. (d) Results of OMRF-HA.

Figure 6. The results of experiments. (a)-(e) False color composite image. (a-1)-(e-1) The results of the proposed method.
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