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ABSTRACT:

Pixel-wise classification of remote sensing imagery is highly interesting for tasks like land cover classification or change detection.
The acquisition of large training data sets for these tasks is challenging, but necessary to obtain good results with deep learning
algorithms such as convolutional neural networks (CNN). In this paper we present a method for the automatic generation of a
large amount of training data by combining satellite imagery with reference data from an available geospatial database. Due to
this combination of different data sources the resulting training data contain a certain amount of incorrect labels. We evaluate
the influence of this so called label noise regarding the time difference between acquisition of the two data sources, the amount
of training data and the class structure. We combine Sentinel-2 images with reference data from a geospatial database provided
by the German Land Survey Office of Lower Saxony (LGLN). With different training sets we train a fully convolutional neural
network (FCN) and classify four land cover classes (Building, Agriculture, Forest, Water). Our results show that the errors
in the training samples do not have a large influence on the resulting classifiers. This is probably due to the fact that the noise is
randomly distributed and thus, neighbours of incorrect samples are predominantly correct. As expected, a larger amount of training
data improves the results, especially for the less well represented classes. Other influences are different illuminations conditions
and seasonal effects during data acquisition. To better adapt the classifier to these different conditions they should also be included
in the training data.

1. INTRODUCTION

Automatic classification and analysis of remote sensing im-
agery is highly interesting for current and future applications
in land surveying and related disciplines such as navigation
and city planning. Deep learning techniques, like convolutional
neural networks (CNN) for image data, provide powerful state-
of-the-art methods to solve these tasks, including semantic seg-
mentation, change detection and object delineation. The per-
formance of a contemporary classifier highly depends on the
amount and quality of available training data. These training
data must consist of remote sensing imagery with the corres-
ponding labels.

Since the launch of the first Sentinel mission in 2014 as part
of the European Union’s Copernicus project, image data has
been continuously collected and made available free of charge
(Fletcher, 2012). This data is already used for tasks like land
cover classification and, due to its high temporal resolution, also
for change detection and rapid mapping in case of natural dis-
asters.

While more and more satellite images are freely available, large
amounts of labeled remote sensing imagery, as needed for the
training of a classifier, are not. This is a challenge because
the manual labelling is time consuming and costly and existing
real-world remote sensing training data sets like, e.g. (Daudt et
al., 2018) created for their work, are limited in size if compared
to general image data sets like ImageNet (Deng et al., 2009).
∗ Corresponding author

There are different strategies to avoid manual labelling: Using
domain adaptation (DA) techniques a classifier that was trained
on data obtained under different conditions is adjusted to the
new data (Wang, Deng, 2018). Other approaches, like (Kemker,
Kanan, 2017) or (Kolos et al., 2019) generate synthetic training
data to pre-train the classifier. If there is no available data from
a different domain weakly labeled data can be used as well.
(Kaiser et al., 2017) showed that large amounts of noisy data
from open street map (OSM) can replace a major part of manu-
ally labeled data and can improve the segmentation and gener-
alization performance. (Wegner et al., 2016) use Google Maps
images to classify tree species without any manually labeled
training data. They rely on the learning algorithm to handle
the noise and also achieve good results. Content-based image
retrieval (e.g. (Sumbu et al., 2019)) also has the potential to
alleviate the problem of manual labeling by providing automat-
ically generated labels.

In this work we address this problem by combining Sentinel-
2 imagery with an available topographic geospatial database
(referred to as maps in this paper) to generate a large amount
of training data, which results in two challenges that have to
be considered: the images and the land cover data have to be
compatible with respect to acquisition time, spatial resolution
and class structure, and we have to consider the fact that the
training data may contain a certain amount of incorrect labels.
However, due to the large amount of training data we assume
that the number of incorrect labels is relatively small and that
the resulting effects can be considered as random noise.
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To create training data with a small amount of label noise we
consider different sources of label noise and try to avoid these
in the selection of the training data: First, we combine map in-
formation with satellite images acquired at similar times. Thus,
we minimize label noise caused by changes of land cover over
time. Second, we use Sentinel-2 data with a low cloud cover-
age. Thus, label noise caused by clouds and cloud shadows in-
terfering with land cover objects is reduced. Third, we combine
samples of different classes to define a class structure contain-
ing classes, which are detectable in the given resolution of the
satellite images.

With these training data we train a fully convolutional network
(FCN) for a following classification using the U-net structure of
(Ronneberger et al., 2015). In our experiments we combine the
optical data from Sentinel-2 with data from the German Land
Survey Office of Lower Saxony (LGLN). This database cov-
ers the whole area of Lower Saxony (47 600 km2) and includes
24 different land use types. These 24 land use classes are ag-
gregated to four classes to obtain a suitable class structure for
land cover. The land cover data is rasterized to the resolution of
the satellite images to obtain sensor data and labels in the same
grid.

This paper is structured as follows: Chapter 2 gives an over-
view of pixel-wise classification with deep learning techniques
and the generation of large amounts of training data for remote
sensing images. In chapter 3 we introduce our network architec-
ture and the training procedure. Afterwards we present the pre-
processing of the data and our experimental set-up in chapter 4.
In chapter 5 we present and evaluate the results before summar-
ising and giving an outlook on future work in Chapter 6.

2. RELATED WORK

We start this overview with an introduction of methods for
pixel-wise classification using deep learning techniques. After
that we discuss different possibilities to create larger amounts of
training data for remote sensing images including a short over-
view of domain adaptation and label tolerant classification.

For the classification of satellite imagery (called semantic seg-
mentation in computer vision) every pixel of the image is as-
signed to a class. (Zhu et al., 2017) give an overview of deep
learning techniques for this task using remote sensing data. A
first strategy is the usage of a fully convolutional neural net-
work (FCN) first introduced by (Long et al., 2015). In a FCN
the spatial resolution of the input image is downsampled using
convolution and pooling operations and upsampled again to the
original size to obtain class probabilities for each pixel. FCN
were further developed into symmetrically structured encoder-
decoder networks, that use convolutions and pooling in the en-
coder part and transposed convolutions in the decoder part to
upsample the images again (Noh et al., 2015). Due to the pool-
ing operations in the encoder parts the receptive field is en-
larged and more context information is involved, but the down-
sampling steps also lead to inaccurate object boundaries. One
way to overcome this problem is to employ a conditional ran-
dom field (CRF) at the last layer of the network, see (Chen et
al., 2018a). Another possibility is the usage of skip connec-
tions, which were first introduced by (Long et al., 2015). Skip
connections combine feature maps from different resolutions
to obtain the final classification output with more precise ob-
ject boundaries. Skip connections are now very popular and
different variants exist to integrate them into the network. For

example, (Badrinarayanan et al., 2017) save the indices of the
max-pooling and integrate them in the decoder part of their net-
work. (Chen et al., 2018b) concatenate low-level features from
the encoder part at one point during the upsample process. They
also use spatial pyramid pooling to be able to encode context in-
formation at multiple scales. Also, in the U-Net structure, intro-
duced by (Ronneberger et al., 2015), the corresponding feature
maps from the encoder and decoder part are concatenated for
every spatial resolution, which leads to sharper object boundar-
ies in the result.

The success of neural networks was possible due to the large
amounts of data used for training (Krizhevsky et al., 2012).
However, it is very time consuming and costly to manually cre-
ate sufficient training data for a specific task and in remote sens-
ing existing real-world data sets like (Daudt et al., 2018) are too
limited in size. On the other hand a number of strategies exist
to avoid manual labelling.

In transfer learning (TL), a classifier trained in a source domain
is subsequently transferred to a target domain for which no or
very few training data are available. For TL to work it is import-
ant that the data and the problem do not differ to much between
source and target domain. A particular form of TL is domain
adaptation (DA): A classifier is learned with the training data
of the source domain to predict the labels of the target domain
(Tuia et al., 2016). Again it is important that the joint distribu-
tions of the two domains do not differ to much and, for example,
have the same class structure. (Wang, Deng, 2018) give a recent
overview about DA based on CNNs, see (Vogt et al., 2018) for
an example for DA with aerial images.

For multispectral or hyperspectral images DA is often not pos-
sible due to the lack of large-scale labeled data sets that contain
more spectral bands than RGB. This challenge can be solved by
simulation: (Kemker, Kanan, 2017) use the Digital Imaging and
Remote Sensing Image Generation (DIRSIG) modeling soft-
ware and create a large amount of synthetic multispectral train-
ing data. Subsequently, they fine-tune their model with a lim-
ited amount of real-world data and show a significant improve-
ment of the results compared to a training only on real-world
data. (Kolos et al., 2019) present another method to generate
realistic synthetic remote sensing data: They use the Esri-City-
Engine with cartographic data from OSM for geometry and the
game engine Unity for data rendering. Their results for change
detection, using a Siamese U-Net structure, also improve the
performance and robustness of models for remote sensing ap-
plications with limited training data.

For our experiments a large amount of automatically generated
training data is available that includes some amount of label
noise due to the different data sources that are combined (see
Section 4.1 for details). For that reason, in the following we
give an overview about training under label noise and on how
noisy data can improve classification results.

Training under label noise is important in many fields such
as epidemiology, econometrics and computer aided diagnoses.
Frénay and Verleysen (2014) distinguish three strategies for
dealing with label noise: classifiers that are robust by design,
data cleansing and classifiers that are robust after adaptation to
the presence of noise.

The first strategy uses classifiers that by design are robust
against some degree of label noise or a particular type of la-
bel noise. One example for such a classifier are deep learn-
ing methods. (Drory et al., 2018) show, that the ability of the
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network to deal with label noise depends on the type of dis-
tribution of the noisy labels. If the neighbourhood of a noisy
sample contains mostly correct samples in feature space, e.g. if
the noise is randomly spread across the training set, the influ-
ence of label noise is relatively low. On the other hand, locally
concentrated errors can lead to a deterioration of the result. An
example where this strategy is used is (Wegner et al., 2016).
The authors use Google Maps images of tree species in a fully
automated process relying on the learning algorithm to handle
the noise. The second strategy tries to identify and eliminate in-
correct training samples before the actual training procedure. In
remote sensing, data cleansing seems to be the most commonly
used strategy for coping with label noise, although data cleans-
ing approaches tend to eliminate too many instances (Frénay,
Verleysen, 2014). The third strategy is to use a classifier that
is robust to label noise by adapting it to the presence of label
noise. In probabilistic approaches, e.g. (Bootkrajang, Kabán,
2012), a noise model is used to consider label noise in the train-
ing process. Non-probabilistic methods typically do not estim-
ate the parameters of a noise model, e.g. the label noise tolerant
version of a Support Vector Machine (SVM) (An, Liang, 2013).
(Maas et al., 2019), when classifying remote sensing data us-
ing outdated maps, deal with label noise by adapting a Random
Forest classifier to include a complex noise model. The under-
lying assuption is that pixels with false labels form clusters in
the image, as they are caused by land cover changes over time.

The key question is how much the label noise influences the
classifier and how much any problems can be mitigated by one
of these strategies. Of course the answer highly depends on the
data set, the type of label noise and the classification method.
In the following we present a few approaches that are close to
our field, dealing with noisy remote sensing data and CNNs for
semantic segmentation. In (Kaiser et al., 2017) the authors in-
vestigate the question whether a large amount of noisy data can
replace a major part of the manual labelling process. They ap-
ply different experiments to compare models trained on a large
amount of weakly labeled data from OSM, a smaller amount
of manually labeled data and a combination of both. The res-
ult is that a large amount of noisy training data can in fact im-
prove the segmentation and generalization performance of the
model. Also, training only on noisy data leads to acceptable
results, although these are far from optimal. In the work of
(Maggiori et al., 2017) the authors come to a similar conclu-
sion: They achieve good results using a two-step process: First
they train their model on imperfect training data from OSM and
afterwards fine-tune it with a small amount of manually labeled
images.

For our experiments we have access to a large set of automatic-
ally generated training data in the form of a geospatial database
that includes some amount of label noise (see Section 4.1 for
details). Using this data we follow the first strategy for deal-
ing with label noise: We rely on our classifier to ignore the
noise instead of learning false class representations. We expect
the noise to be distributed randomly, so that samples located
next to an incorrect training sample should contain correct la-
bels. For this reason the the label noise should not influence the
classifier too much like (Drory et al., 2018) showed. For classi-
fication we use the U-Net structure presented by (Ronneberger
et al., 2015) as a simple but effective network, especially to ac-
curately localize object borders which is required in most land
cover applications (Yang et al., 2019).

3. METHODOLOGY

3.1 Workflow

In figure 1 the workflow of the training and the evaluation of a
classifier without using manually labeled data is depicted.

Selected Data

Images

Combination & Selection

Splitting

Map

Input

Images

Input

Map

Evaluation Results

EvaluationClassification Results

Classification

Classifier Training

Test Data

MapImages

Training Data

MapImages

Results

Figure 1. Workflow of training and evaluating a classifier using
two large pools of remote sensing imagery and map data

The input are remote sensing images and topographic informa-
tion of a geospatial database (abbreviated as map in the figure).
We assume that for a given area of interest a large pool of im-
ages with a high temporal resolution and different versions of
database content with distinctly fewer time stamps are avail-
able. In a first step we combine the two data sources. In the
process, first the images with a minimum time difference to the
latest update of the mapare selected.

Afterwards the data is split into training and test data. The train-
ing data is used to learn the classifier, which is subsequently em-
ployed to classify the images in the test phase. For evaluation
we compare the classification result with the database informa-
tion of the test data. For both processes the map data serves as
reference information.

3.2 Network Architecture

For the pixel-wise classification we use the U-Net structure that
was introduced by (Ronneberger et al., 2015). This encoder-
decoder FCN uses skip connections to better preserve the geo-
metric location of object boundaries, which is important for
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land cover applications (Yang et al., 2019). The input patches
have a size of 256 x 256 pixels and contain channels for the ten
spectral bands of the Sentinel-2 images (for more details see
Section 4.1). In the encoder part of the network there are four
layers, each consisting of two 3 x 3 convolutions with zero pad-
ding followed by a Rectified Linear Unit (ReLU) as activation
function (Nair, Hinton, 2010). This is followed by a 2 x 2 max-
pooling with stride 2 for down-sampling. We start with 16 fea-
ture channels and double this number in each of the four layers.
Also in the coarsest resolutioon, two 3 x 3 convolutions are im-
plemented. In the decoder part we have another four layers to
upssample the images again. This is done with 2 x 2 transposed
convolutions. These feature maps are concatenated with the
corresponding feature maps from the encoder part (skip con-
nections). Then, two 3 x 3 convolutions and a ReLU are applied
per layer. In the last layer a 1 x 1 convolution maps the feature
vectors to the number of classes, and we obtain scores for each
desired class via the softmax activation function. The network
is trained from scratch for all experiments. The parameters are
initialized randomly by drawing them from a zero-mean nor-
mal distribution. We also apply dropout for regularization in
each layer with a dropout rate of 0.1 (Srivastava et al., 2014).

3.3 Training

During training the loss function which measures the quality of
the network predictions is minimized by iteratively comparing
the predicted class labels and the ground truth for every training
sample. The belief yk

n of a network with the current paramet-
ers w that a sample xn belongs to the class k results from the
softmax activations:

yk
n(xn, w) =

eȳ
k
n∑K

k eȳ
k
n

(1)

with ȳk
n the output of the last layer of the network and K the

total number of classes. The classification error E of the net-
work can now be calculated with the softmax cross entropy
(Bishop, 2006):

E(w) =
∑
n

En(w, xn) = −
∑
n

∑
k

Ck
n · ln(yk

n) · cwk (2)

In Equation 2 the term Ck
n is equal to 1, if the nth sample be-

longs to class k and equals 0 otherwise. This equation can be
used for any desired number of classes. In order to reduce neg-
ative effects stemming from unbalanced data, we next introduce
weights cwk for each class c that depend on the number of oc-
currences nc in the data set, calculated as follows (Patel, 2020):

cwk = ln(
N

nc
) (3)

with ln the natural logarithm and N the total number of pixels
in all training patches. In the end all class weights are divided
by the maximum of all calculated class weights. This weighting
partly compensates effects from the unbalanced class distribu-
tion of the training data. By minimizing equation 2 the para-
meters w can be determined using stochastic gradient descent
(Bishop, 2006). Details on the implementation are described in
section 4.3.

3.4 Evaluation

To evaluate our results during and after the training process we
calculate different accuracy measures when comparing the pre-
dicted results to the reference. The overall accuracy is the per-
centage of correctly classified samples (in our case the number
of pixels) over all images. Since the class distribution of our
data is unbalanced the F1-score is a better quality measure to
compare the results for the different classes:

F1 = 2 · precision · recall
precision + recall

(4)

with the precision defined as the percentage of samples pre-
dicted as a certain class that actually belong to that class in the
reference and recall defined as the percentage of samples be-
longing to a class in the reference that were predicted as that
class. The F1-score is the harmonic mean of precision and re-
call.

4. EXPERIMENTS

In this chapter the experiments are presented. We investigate
the influence of the following three aspects of the training data:
The time difference between the generation (or the last update)
of the map information and the acquisition of the satellite im-
agery, the size of the training area and the chosen class struc-
ture. Using a small example, we finally assess the effects of
label noise.

In the following the used data is introduced first. It consists of
Sentinel-2 imagery of Northern Germany including the city of
Hannover and a land cover database of the German landscape
model of Lower Saxony. We describe the data characteristics
and how the data sources are combined to generate the different
training data sets. Afterwards the training configuration for the
FCN is described.

4.1 Data

To create the reference data for the area of Lower Saxony,
the official German landscape model ATKIS (Authoritative
Topographic-Cartographic Information System) is used. This
dataset is created, updated and revised by human operators
mainly relying on digital orthophotos (DOPs). The underly-
ing aerial images are updated every three years. The manual
and time-consuming updating process can lead to information
older than five years. For generating the training labels, the
land use information is taken into account. The database con-
sists of 24 different object types and covers the complete area
of Lower Saxony. To serve as class labels for the training of
a CNN the vector data are rasterized to the resolution of the
satellite imagery. Sometimes the map from the LGLN is up-
dated without considering imagery, for instance when there are
major development projects about which geometrical informa-
tion is produced in other ways, e.g. by geodetic survey. This
can also lead to differences between the map and satellite data.

Classification is carried out based on images from the two
Sentinel-2 satellites provided by the European Space Agency
(ESA). The Level-2A products contain bottom-of-atmosphere
reflectance and cloud masks from the top-of-atmosphere
reflectance for every pixel (Fletcher, 2012). From the 13
spectral bands the four RGBI bands with GSD = 10 m and the
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bands with 20 m spatial resolution (six altogether) are used.
The latter are upsampled to 10 m by bilinear interpolation.
The images come in tiles of 100 x 100 km2. In the first step,
they are subdivided into partly overlapping 8 x 8 km2 tiles. By
setting a threshold for the mean value for the cloud cover of
each tile, only tiles with no or very few clouds are selected and
are used further. Another benefit of using tiles instead of the
whole images is the fact that processing for large data sets can
be scaled up by distributed computing.

4.2 Set up

To generate the training data, the satellite images are combined
with the map information. For our experiments we use two
Sentinel-2 images, and we use areas of different size for the dif-
ferent experiments. As mentioned, the time difference between
acquisition of the two data sets should be as small as possible
to minimize the amount of incorrect training labels. The part
of the database we use in the experiments was last updated on
September 30, 2019. The Sentinel-2 images closest in time that
could be used were taken on September 22, 2019. At that date
the whole training area was covered with images exhibiting a
mean cloud coverage of 1.1 %, which is a very good value.
Therefore, we did not add tiles from other dates. The database
provides 24 different land use classes. To obtain useful classes
for our experiments, we combined them to the following four
classes: Building, Agriculture, Forest and Water.

In the following the preparation of different training sets for
the different experiments is described. The first experiment in-
vestigates how the time difference between the acquisition of
the images and the map information influences the training pro-
cess. The map data for a training area of size 24 x 24 km2 is
combined with satellite images of different dates. We use two
images: (a) The image acquired on September 22, 2019, i.e.
eight days before the map was last updated, and (b) an image
from June 29, 2018, i.e. taken 14 months before.

In the second experiment the influence of the size of the training
area is evaluated. We use two different areas: a small one with
a size of 24 x 24 km2, shown in Figure 2, and a larger area of
104 x 104 km2. The class distribution of the two training areas
is shown in Table 1, the differences between the small and the
large area are negligible. Agriculture covers about 56 % of
the area, followed by Forest with more than 30 %. The class
Water has only 1 % and is the least represented class. This un-
balanced data distribution is considered by using class weights
in the training process (see above).

In the last experiment the impact of the number of classes is
evaluated. In order to do so the four chosen classes are com-
pared to a binary classification for each of them, i.e. all other
classes are combined into one background class and the focus
is on the foreground class.

[%] Small area Large area
Building 11,3 11,9
Agriculture 55,7 56,4
Forest 32,1 30,6
Water 0,84 1,1

Table 1. Class distribution in the small and large training area

4.3 Training configuration

As mentioned, the network takes image patches of size
256 x 256 pixels (or 2.56 x 2.56,km2) as input for training. We

Figure 2. Reference for the small training area

subdivide the training tiles (of 8 x8 km2, see above) accordingly
and accept some overlap. During the training process we min-
imize the loss function using stochastic gradient descent, as de-
scribed in Section 3.3. We use the ADAM optimizer (Kingma,
Ba, 2015) with the parameters b1 = 0.9 and b2 = 0.999. We
apply hyperparameter tuning including different batch sizes,
learning rates and stopping criteria. Due to the small amount
of only 144 image patches for the small training area a split of
60 % training data and 20 % validation and test data each, is
chosen. This is due to the fact that the results, especially for
the less well represented classes depend strongly on the split of
the data. We split the data for the small and the large training
area once and use the same training, validation and test split for
all experiments. During the training process we monitor the ac-
curacy measures for the validation data. On this base the best
parameters for the model are chosen.

For the given data we achieved the best results with a batch size
of 4 and a learning rate of 0.001. In all experiments the training
process was stopped if the results did not change for 150 epochs
on the validation data. As stopping criteria the loss worked best
for the multiclass classification and the F1-score achieved the
best results for binary classification.

Finally, after the training process we compare the metrics on
the test data to see how our models perform on data not seen
during the training process.

5. RESULTS AND DISCUSSION

5.1 Impact of the time difference

In Figure 3 the two different satellite images for the training
area are shown. The differences between the images are mainly
due to phenological differences of the agricultural areas and
slight illumination changes. In a visual inspection only minor
changes of land cover, like the enlargement of a lake or property
were found. For both satellite images the classifier is trained on
the small area. Afterwards it is tested on the same and also on
a part the another, larger area to be able to compare the results
independently. The results of both tests are shown in Table 2.

If testing is applied in the same area as the training process, both
classifiers achieve good results with 93.1 % and 94.3 % over-
all accuracy. Especially the classes Agriculture and Forest,
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(a) 29 June 2018 (b) 22 September 2019

Figure 3. Satellite images for the small training area from June
2018 and September 2019 that are used for training

Test area Small Large
Training data 2018 2019 2018 2019
F1-Score [%]:
Building 80.3 81.9 51.6 64.6
Agriculture 94.8 95.3 77.1 84.6
Forest 95.1 96.9 84.7 85.8
Water 75.3 69.0 65.7 78.5
Mean F1-score 86.4 85.8 69.8 78.4
Overall Acc. 93.1 94.3 74.7 82.1

Table 2. Overall Accuracy and F1-score for the classification
with 4 classes trained with satellite data from different dates

which occur most often (see again Table 1), achieve high F1-
scores between 94.8 % and 96.9 %, independent on the Sen-
tinel image used for training. For the less respresented classes
Building and Water the results are considerably lower. Sur-
prinsingly the result for the class Water becomes better with
the classifier trained with Sentinel data from 2018, this may be
due to the split of the small amount of data into training and test
set.

If testing is done on the large area that had not been seen by
the classifiers before, the overall accuracy and F1-score drop
by a large amount. The main reason for this drop is probably
the size of the small training area that leads to overfitting to the
training data. As a result the classifier can not generalize well to
the slightly different data used for testing. The classifier trained
with data from 2019 achieves an overall accuracy of 82.1 % that
is 7.4 % higher than the performance of the classifier trained
with outdated satellite data. The F1-scores for the 2019 image
are also better, especially for the less represented classes with a
difference of more than 12 %.

This result can also be seen in a visual comparison of the clas-
sification results: In Figure 4 the classification results for both
classifiers are shown in comparison to the reference. The clas-
sifier trained with satellite data from 2018 has major difficulties
to correctly delineate the classes, especially the class Building
that covers big areas of the class Agriculture in the classific-
ation result.

Overall, the results show that the classifier is sensitive to
changes in illumination and phenological states of the agricul-
tural land that was shown in Figure 3. Major land cover changes
are not present in this experiment and thus can not signific-
antly influence the results. To make the classifier independ-
ent of the illumination and ground conditions it is important
to generate training data from different satellite images. Here
images from different seasons and thus different illumination
conditions should be included.

(a) Reference (b) Classifier 2018 (c) Classifier 2019

Figure 4. Classification results for the classifier trained with
satellite data from 2018 and 2019, part of the large area

5.2 Impact of the size of the training area

The results for the classifiers, trained on the small (24 x 24 km2)
and the large (104 x 104 km2) area are shown in Table 3.

Training Small Large Small Large
Testing Small Large Large Small
F1-Score [%]:
Building 81.9 86.7 64.6 87.0
Agriculture 95.3 95.5 84.6 96.4
Forest 96.9 94.5 85.8 97.1
Water 69.0 86.9 78.5 83.1
Mean F1-score 85.8 90.9 78.4 90.9
Overall Acc. 94.3 94.0 82.1 95.4

Table 3. Overall Accuracy and F1-score for the classification
with 4 classes for different combinations of training and testing

As in the first experiment both classifiers achieve very good
results with 94.0 % and 94.3 % overall accuracy if testing is
applied in the same area as the training process. Again the
classes that occur most often achieve high F1-scores with val-
ues between 94.5 % and 96.9 %, independent on the size of the
training area. For the less represented classes Building and
Water the results are considerably lower. On the other hand the
F1-scores for these classes increase by 4.8 % for Building and
17.9 % for Water when the larger training area is used.

The impression that especially the classes with less pixels be-
nefit from a larger training area is also confirmed when looking
at the last two columns of the table. When training is run on
the small area and the classifier is tested on the larger one, the
results for all classes decrease, resulting in a mean F1-score of
78.4 % and an overall accuracy of 82.1 %. If the classifier that
was trained on the large area is tested on the small one the res-
ults become better by a small amount of 1.4 % for the overall
accuracy compared to testing on the large area. The only class
whose F1-score drops by 3.8 % is the class Water. But the res-
ult of 83.1 % it is still at a good level.

Overall, our results show that a larger training area significantly
improves the results. For the small area the classifier tends to
overfit to the available training data. Especially for less repres-
ented classes it is important that there are enough data samples
during the training process of the classifier.

5.3 Impact of class structure

The results for the classification with four classes compared to
binary classification for each of them are shown in Table 4. For
the less represented classes Building and Water the results
improve by a small amount of 1.5 % and 1.1 %, respectively.
For the classes Agriculture and Forest the results for bin-
ary classification decrease by a very small amount of 0.2 % and
0.3 %, respectively.
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(a) Reference (b) Classification Result

Figure 5. Classification result for training and classification on
the large training area

4 classes [%] Binary [%] Difference [%]
Building 86,7 88,2 +1,5
Agriculture 95,5 95,3 -0,2
Forest 94,5 94,2 -0,3
Water 86,9 88,0 +1,1

Table 4. F1-score for classification with four classes compared
to binary classification for each of the classes.

Overall the classification with less classes improves the ac-
curacies for the less represented classes by a small amount.

5.4 Incorrect training samples

When combining different data sources to generate a larger
amount of training data, inevitably some label noise is intro-
duced. An example is shown in Figure 6: The lake in the
images was enlarged which can be seen in the satellite image
(Figure 6(a)) but this change is not included in the map yet
(Figure 6(b)). In Figures 6(c) and 6(d) the classification res-
ults of the classifier trained on the small area and on the large
one is shown. Both correctly classify almost the whole lake as
Water. As a result, in this case the label noise does not signi-
ficantly influence the classification results, similarly to (Drory
et al., 2018). Of course the influence of the label noise can
be further reduced by other techniques like the identification of
incorrect data.

6. CONCLUSION

In this paper an approach to combine satellite imagery with data
from a geospatial database to create a large training data set for
pixel-wise classification was presented and tested under differ-
ent conditions.

In our experiments we could demonstrate that with an increas-
ing time difference between image data acquisition and map
update the classification results become worse, which is not
surprising. As within one year the actual land cover changes
in our test area were limited, so was the amount of introduced
label noise due to the higher time difference between the ac-
quisition of the satellite image and the update of the basemap.
Consequently, we attribute the difference in overall accuracy of
more than 7 % to changes in season which include illumina-
tion conditions and the phenological state of vegetation. Other
experiments showed that, as expected, a larger amount of train-
ing data improves the results. Especially for the less represen-
ted classes the classifier can generalize much better with more

(a) Satellite image (b) Reference

(c) Result trained on small area (d) Result trained on large area

Figure 6. Results for trained classifiers on both areas for an area
with outdated ground truth

training samples. The results for these classes were further im-
proved when binary classification was used and the training pro-
cess was adjusted accordingly.

We conclude that the introduced approach to create a large
training data set has great potential to be used for task of pixel-
wise classification. To further improve the results, it is import-
ant to include satellite images from different seasons into train-
ing. The existing label noise, caused by the combination of two
different data sources did not influence the results at a notice-
able scale.

For future work we plan to use the whole area of Lower Sax-
ony for training. Map data from several epochs and satellite
imagery covering the course of a whole year are expected to
further improve the results. Besides, we will increase the num-
ber of classes to provide data for more applications. Finally,
we will investigate the effects of fine-tuning the classifier with
a small hand-labelled training set, and we will explore other
strategies to decrease the influence of label noise.
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