
AEROSOL PLUMES CHARACTERIZATION BY HYPERSPECTRAL IMAGES COUPLED
WITH SENTINEL-2 PRODUCTS

G. Calassou1, P.-Y. Foucher1, J.-F. Leon2

1 ONERA-DOTA, University of Toulouse, FR-31055 Toulouse, France
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ABSTRACT:

In this paper, we focus on the retrieval of microphysical and optical properties of industrial aerosol plumes through a process
using airborne hyperspectral and Sentinel-2 multi-spectral images. The process allows first to perform atmospheric correction and
second to determine background aerosols thanks to a comparison between hyperspectral and Sentinel-2 reflectances. Hyperspectral
methodologies use the radiance differential between the measurement in the plume and the corresponding measurements out of the
plume to estimate plume properties. To retrieve the surface reflectance under the plume, a principal component analysis coupling
hyperspectral and multispectral data class by class is achieved. The developed method aims to compare the difference between
measured and estimated reflectance with a radiative transfer model accounting for plume properties (particle radius and aerosol
optical thickness of the plume). We have applied the method to a steel plant in the south of France. The retrieved plume show an
aerosol mean radius between 0.05 and 0.2µm with a mean aerosol optical thickness about 0.05 along the plume.

1. INTRODUCTION

Human activities are responsible for large emissions of
particulate matter. Atmospheric particulate matter (also called
aerosols) is responsible for air quality degradation and the
exposure to ambient fine particulate matter (PM2.5) is a global
health concern (World Health Organization, 2006; Burnett et
al., 2018).

The industrial sector is the second largest source of primary
PM10 emissions (Guerreiro et al., 2014) representing 20 to
25% of the global emissions in Europe between 2003 to
2012. The industrial inventory for particle matter emissions is
updated each year according to specific guidelines (European
Environment Agency, 2019; Andre et al., 2019). Emissions are
reported by industries and depends on manufacturing process,
fuel consumption, emission factors and abatement technology.
As emission are reported yearly, the instantaneous emission
fluxes are subject to large uncertainties. The monitoring of
atmospheric concentrations in the vicinity of industrial sources
can provide a constrain on the estimation of emission fluxes.

Ground-based remote sensing techniques are commonly used
for fine particles monitoring (Amaral et al., 2015) and provide
a precise measurement of the physical and optical particle
properties. For large areas without a dense network of
instruments, airborne and satellite remote sensing techniques
may be considered as an alternative for ground-based systems.
To this end , hyperspectral imagers can be used to analyse
particulate matter. A large number of spectral channels
at a high spatial resolution can provide information on the
particle properties like size distribution on the one hand and
absorbing and scattering ratio on the other (Alakian et al.,
2008; Deschamps, 2012). Hyperspectral methodologies use
the differential between the radiance or surface reflectance
modified by the plume, respectively Lplume

sensor and ρplume
soil and

the corresponding radiance or reflectance without the plume,
Lsensor and ρsoil, to estimate plumes properties. Commonly
Lplume

sensor is the measured hyperspectral data and Lsensor is

estimated from pixels out of the plume (Philippets et al., 2018)
or multi-temporal data (Foucher et al., 2019).

This paper focus on airborne hyperspectral images at 2m
resolution over a steel factory in southern France. A three
steps process has been applied to a selected image over the
factory in 2016. First, we simulate a database of atmospheres
containing different plume types. Second, we retrieve the
surface reflectance under the plume ρcorrectedsoil thanks to a
coupling between the Sentinel-2 reflectance product and the
hyperspectral reflectance image. At the end, we retrieve plume
properties thanks to a differential model. Differential model
consists in comparing the simulated reflectance differential
with the measured reflectance differential. The best matching
between the simulation and the measurement is performed with
the Cluster-Tuned Matched Filter (CTMF) criterion.

2. DATA

2.1 Airborne hyperspectral data

The study focuses on a single plume on a radiance
W/(m2.sr.µm) image taken the 17 February 2016 over the
ArcelorMittal steel plant. The Fos-sur-Mer ArcelorMittal site
is the second biggest steel plant in France to product steel,
coils and tubes. According to the IREP1 database, this site is
respectively the first and the second transmitter of PM10 and
CO2 in France in 2018 with respectively emissions of 1.230
t/year and 7.460.000 t/year.

The studied plume (see figure 1) comes from the stack sinter
plant. According to Philippets et al. (2018), the main releasing
materials belong to the scattering aerosol family defined by
Quinn et al. (1995). The plume image was measured with

1 IREP - Resgistre français des Émissions Polluantes, available
on https://www.georisques.gouv.fr/dossiers/

irep-registre-des-emissions-polluantes

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020 | © Authors 2020. CC BY 4.0 License.

 
791



the HYSPEX hyperspectral camera aboard the SAFIRE ATR-
42 research aircraft. HYSPEX camera has a spectral range
between 0.41 and 2.5 µm with by 160 spectral channels in
the VNIR (410 - 996 nm) and 262 in the SWIR (970 - 2500
nm). HYSPEX spatial resolution is 1 meter in the VNIR and
2 meters in the SWIR. The georeferencing of the hyperspectral
image in UTM zone 31N is performed with QGIS2 by using
a 50cm spatial resolution ortho-rectified picture of the scene
from the IGN website 3. A change in scale is realised from 1
meter resolution to 10 meters resolution on the geo-referenced
hyperspectral radiance image to match the Sentinel-2 spatial
resolution.

2.2 Sentinel-2 product

The method is based on the coupling with a Sentinel-2
reflectance product from THEAI website4. The Sentinel-2
image is a level-2A surface reflectance product produced by the
MAJA algorithm Hagolle et al. (2017). The Sentinel-2 image
was taken the 5 February 2016, 15 days before the hyperspectral
measurement. This product is the closest picture in the time
which is operable.

2.3 Atmospheric correction and spatial matching

An atmospheric correction is performed in order to obtain
a surface reflectance image from the hyperspectral image.
First, the method uses an atmospheric correction algorithm
named COCHISE. COCHISE is an iterative algorithm allowing
to apply an atmospheric correction to a radiance image
in W/(m2.sr.µm) in order to retrieve a surface reflectance
map. Second, the coupling with Sentinel-2 surface reflectance
product allows to help to choose the “best” background aerosol
to compute the atmospheric correction.

Figure 1. Hyspex hyperspectral image (opaque) superposed on
the Sentinel-2 image (transparente).

2 https://www.qgis.org/en/site/
3 https://geoservices.ign.fr/documentation/

diffusion/telechargement-donnees-libres.html\

#bd-ortho-50-cm-sous-licence-ouverte
4 THEAI website : https://theia.cnes.fr/atdistrib/rocket/

#/home

At the end, a spatial matching between the HYSPEX reflectance
map and the Sentinel-2 is then applied thanks to the GEFOLKI
algorithm (Brigot et al., 2016; Plyer et al., 2015). GEFOLKI
algorithm allows to realise a pixel matching through a flow
optic calculation and a resampling steps if needed between two
images. At the end, we have a hyperspectral picture which
spatially matches pixel-by-pixel with the Sentinel-2 picture (see
figure 1).

3. METHODS

The retrieval method is divided into three parts : (i) the
definition of the direct model, (ii) the estimation of ρcorrectedsoil

and (iii) the plume characterisation by the differential method.

3.1 Direct model : Plume simulations

The first step of the process is the simulation of the radiative
terms of an atmospheric column with the presence of a plume
in the lower part. We compare this simulation with the
measurements in the plume (see section 3.3)). The simulated
atmospheres described by different radiative terms are: the
atmospheric radianceLatm, the total solar irradianceEsurf , the
atmospheric transmittance Tatm and the atmospheric spherical
albedo Satm. All these radiative terms are computed with
COMANCHE (Poutier et al., 2002), a radiative transfer model
which is a frontend of MODTRAN. The computation of the
radiative terms depends on the flight altitude, the sensor spatial
and spectral specifications and the background aerosols.

The method used a Look-up Table (LUT) computed with
COCHISE algorithm of reflectance images computed with
the same hyperspectral radiance image resulting for different
atmospheric corrections. Reflectance images are computed
for visibilities ranging from 10 to 100km−1 and several
background aerosol types. Visibility is a MODTRAN
parameter associated to the aerosol concentration in the
atmosphere. Background aerosols used are defined in
MODTRAN as rural, urban and marine aerosols. The best
background aerosol is obtained thanks to a comparison between
the mean spectra out of the plume in surface reflectance for
each class for the hyperspectral and the Sentinel-2 images.
The hyperspectral surface reflectance map associated to the
best background aerosol is chosen as a first guess for the
reflectance estimation under the plume (see section 3.2). In the
hyperspectral image, the best background aerosol is a marine
aerosol (as defined in MODTRAN) with a 18km−1 visibility.
For rural aerosols the surface reflectances computed are too
low, contrary to the urban aerosols which generate a signal too
strong.

Aerosol optical properties of the plume are simulated using
Mie theory for scattering and absorbing aerosols. The plume
is represented as a local layer with an 100 meters thickness
located 10 meters above the ground. The aerosol optical
thickness (AOT) of the plume, τ550ref , is defined at 0.1 at
550nm. Philippets et al. (2018) and Alakian et al. (2008) have
considered the plume as an infinite layer. In this case all the
radiative terms of the radiative equations are modified. When
the plume is considered as punctual, the direct and diffuse solar
irradiance are not modified. The figure 2 shows the plume
signature under different hypothesis: an infinite plume, a semi-
punctual and a punctual plume. In this paper we use the
punctual plume hypothesis.
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Figure 2. Signature of plume scattering residual aerosols
according to several plume modellings compared to the plume

measured signature over water. The hypotheses 1, 2 and 3
correspond respectively to an infinite plume (yellow), a
semi-punctual plume (red) and a punctual plume(green).

3.2 Reflectance Estimation

In order to apply the differential model described in the section
3.3, the surface reflectance under the plume, ρcorrectedsoil is
required. The existing methods used by Alakian et al. (2009)
or Bojinski et al. (2002) suppose that the plume is transparent
beyond 1.5 µm. For each pixel it is possible to compare ρplume

soil

beyond 1.5 µm with ρcorrectedsoil in the same class. The nearest
value is assigned to the pixel. This method was adapted in
the VNIR (0.4 to 1.0 µm) by Deschamps (2012) for the CASI
(Compact Airborn Spectrography Imager) images. Philippets
et al. (2018) have adapted once again the Deschamps’ approach
by assigning to each plume pixel the mean spectrum of the class
with the highest correlation.

For our study, we decide to associate the hyperspectral data
with the Sentinel-2 reflectance product to compute ρcorrectedsoil .
The use of the Sentinel-2 product allows first to already have
a classification of the ground under the plume. This method
is based on the description of the intraclass variability by
eigenvectors and their associated weights.

The Sentinel-2 reflectance image is classified with a Random-
Forest method according to user-defined classes: water, sparse
vegetation, dense vegetation , concrete soil, dark soil and bright
soil (see figure 3).

Second, Sentinel-2 reflectance allows to compute the weights
associated to hyperspectral eigenvectors for each pixel to
rebuild the hyperspectral signal.

We assume that the intraclass variation can be described by a
few principal components. For a given N-dimensional spectrum
dataset Si(λ), it is possible to define the mean spectrum by class
SA as follow.

SA(λ) =
1

N

N∑
i=1

Si(λ) (1)

The Principal Components Analysis (PCA) is applied on a
standardised spectrum defined as S∗

i = Si - SA. The PCA returns

Figure 3. Random Forest classification map of the Sentinel-2
image.

a set of eigenvectors Vj(λ) describing the spectrum variability.
In fact, this spectrum variability can be expressed as a weighted
sum of the eigenvectors:

S∗ ≈
M∑
j=1

αjVj (2)

where M is the number of eigenvectors and αj is the
eigenvector associated weights.

This method is linear and can be applied to pixels containing
“pure” or “mixed” surface types. Next, the aim is to choose
a vector with weights minimizing the distance between the
measured and the estimated spectra. The optimum weight
vector is obtained by the following equation:

[α] = (DTD)−1DT (F − FA) (3)

where D is the matrix of the M eigenvectors sampled on the
Sentinel-2 wavelengths, FA is the mean spectrum SA sampled
at the same wavelengths and F is the Sentinel-2 spectrum of
the studied pixel. The optimum weights vector formulation
allows us to suppose that the Sentinel-2 intraclass variability
is the same as the hyperspectral intraclass variability.

For each pixel in each class, a weight vector is computed and
the hyperspectral spectrum can be reconstructed as :

Shyp = SA +

M∑
j=1

αjVj (4)

The use of 4 eigenvectors is sufficient to describe from 90 to
99% of the class variance. The PCA is applied on a dataset
without the plume and after removing the first and the last
percentiles of spectra sorted by norms. This removal criteria
is applied empirically in order to delete spectra which were
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Figure 4. Estimated reflectance spectrum (blue) compare to the hyperspectral reflectance spectrum (orange) and the Sentinel-2
reflectance spectrum (green). The estimated reflectance, the measurements and the Sentinel-2 spectra are respectively associated to the

left, the middle and the right panels.

not properly classified. The figure 4 shows an example of a
below plume estimated reflectance and the hyperspectral image
corrected by the plume impact at 550nm. We are able to delete
the impact of the plume on the reflectance image.

Figure 5. Surface reflectance error of the estimated reflectance.

The figure 5 shows the approach to estimate ρcorrectedsoil out of
the plume to compute the estimated reflectance error δ∆Rmes.

3.3 Retrieval of the plume aerosol properties : Differential
model

Foucher et al. (2019), Alakian et al. (2009) and Philippets et al.
(2018) have used the differential radiance or surface reflectance
defined as the products of the aerosol optical depth (AOT) and
the aerosol signature to retrieve the plume properties, In this
study we use the differential surface reflectance described by
the radiative transfer equation. It consists in comparing ρsoil
and ρplume.

Assuming a flat, homogeneous and Lambertian surface and for
a monochromatic radiance acquired by a hyperspectral sensor,

the surface reflectance can be expressed by the following
equation in the reflective domain Chandrasekhar (1960):

ρsoil(λ) =
π(Lsensor(λ) − Latm(λ))

Esurf (λ)T atm(λ) + Satm(Lsensor(λ) − Latm(λ))π
(5)

where Lsensor = at-sensor radiance in (W/(m2.sr.µm))
Latm = atmospheric radiance,

without interactions with the ground
Esurf = total solar irradiance
T atm = total atmospheric transmittance

All these radiative terms are computed with COMANCHE
(Poutier et al., 2002) algorithm.

In the presence of a plume, all of these terms are modified.
Assuming an infinite plume layer, the surface reflectance
equation can be written as follow :

ρplume
soil = ρcorrectedsoil + ∆ρplume

soil =
Lsensor

plume − Latm
plume

Esurf
plumeT

atm
plume

(6)

where Lsensor
plume = Lsensor + ∆Lsensor

plume

Latm
plume = Latm + ∆Latm

plume

Esurf
plume = Esurf + ∆Esurf

plume

T atm
plume = T atm + ∆T atm

plume

with ∆Lsensor
plume , ∆Latm

plume, ∆Esurf
plume, ∆T atm

plume are respectively
the at-sensor radiance differential, the upwelling atmospheric
radiance differential, the downwelling irradiance differential
and the upward transmittance differential. ∆ρplume

soil is the
differential signal containing the desired aerosol signature.

The aerosols signature can be expressed as:
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Figure 6. Surface reflectance theoretical error for a 0.15µm
modal radius plume for different types of ground.

∆ρplume
soil =

∆Latm
plume

EsurfT atm
+ ρsoil

∆(Esurf
plumeT

atm
plume)

EsurfT atm
(7)

The reflectance differential is computed for measured spectra
inside the plume and plume simulations. The best simulated
aerosol signature can be retrieved thanks to the higher Cluster-
Tuned Mached Filter (CTMF) score of the simulation with the
measurements. The CTMF was developed and used by Funk et
al. (2001) to retrieve gas thermal signatures (CO2, SO2, N2O
and O3) in the thermal infrared. The CTMF was adapted by
Thorpe et al. (2012, 2016) and Dennison et al. (2013) for other
gases in the reflective domain. Most recently, Philippets et al.
(2018) used this method on aerosols.As opposite to gases that
are characterised by well-defined absorption bands, aerosols
have an impact on the entire reflective signal (reflective and
infrared domains). The objective of this section is to determine
the best correlation between the hyperspectral reflectance signal
with the aerosol signature ∆ρplume

soil .

For a given hyperspectral image of N pixels with m spectral
bands, the CTMF model can be described as the combination
of ρsoil with the spectral reflectance signature of the plume
aerosol ∆ρplume

soil . Both of these parameters are m dimensional
vectors. After a classification of the image, the mean reflectance
spectrum ρsoilj and the inverse of the correlation matrixC−1

j are
computed for each class.For each class, an optimal filter qj can
be computed as :

qj =
C−1

j b√
bTC−1

j b
(8)

With the optimal filter qj , it is possible to obtain the detection
score fi,j for each pixel of the hyperspectral image :

fi,j = qTj ∆ρplume
soil (9)

This approach by classes allows to not be impacted by the
modification of the aerosol magnitude signature according to
the ground type. The figure 6 shows the different aerosol
signature magnitudes for a scattering plume with an AOT of
0.1 over different ground types.

Additionally, with a computation of the Root Mean Square
Error (RMSE) of the reflectance differentials, it is possible to
characterise at which wavelengths the plume signature will be
detected (see figure 5)). For water, dark soils, sparse vegetation
and dense vegetation, the aerosol signal can be studied on the
whole wavelength band (0.4 to 0.9 µm). For the bright soil
class, the reflectance surface estimation error δ∆Rerr is too
high compared to the aerosol signals. Finally, for the concrete
soil class, just the spectral domain from 0.4 to 0.7µm can be
used.

4. RESULTS

4.1 CTMF application for plume properties retrieval

The retrieval process is applied to the HYSPEX hyperspectral
image over Fos-sur-Mer and provides a set of CTMF maps.
Each map represents the correlation of the measurement with
an aerosol signal computed thanks to the atmospheric database.
On the different CTMF maps, the plume is clearly visible for
aerosol signatures with a modal radius from 0.05 and 0.2 µm.
For higher modal radius the plume is undetectable.

Figure 7. CTMF scores for plume spectral signatures of 0.1µm.

The figure 7 shows the CTMF map corresponding to a 0.1µm
aerosol radius. We can easily detect the plume above water
due to the low surface reflectance. Bright soils data are flagged
(see figure 5) due to an higher error on the surface reflectance
estimation compared to the aerosol signal. A part of the plume
is visible above sparse dense vegetation classes. Over concrete
soils, its footprint detection is more complex. The major part of
pixel signal is lower than δ∆Rmes.

By selecting the best CTMF score for each pixel, we can build a
modal-radius aerosol map. This map represents the contribution
of the major mode inside the plume. For the Fos-sur-Mer
image, the plume major aerosol mode is a 0.1 to 0.15µm modal
radius scattering aerosol.

4.2 The AOT map estimation

We retrieve the AOT by computing the optical thickness
ratio. The optical thickness ratio is obtained by comparing the
reflectance differential of the measurement with the reflectance
differential of the simulation. The optical thickness ratio can be
expressed by the following expression :
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α(τ550) =
τ550

τ550ref

=
∆ρsensor

plume (τ550)

∆ρsimulation
plume (τ550ref )

(10)

where τ550ref = referenced optical thickness at 550nm
τ550 = optical thickness,
∆ρsimulation

plume (τ550ref ) = surface reflectance differential
of the plume simulation

∆ρsensor
plume (τ550) = surface reflectance differential

Figure 8. Aerosol optical thickness of the plume.

The figure 8 shows the AOT map associated to the aerosol
radius corresponding to the best CTMF score. For the studied
plume, the total plume AOT varies between 0.02 to 0.08.

4.3 Conclusion and perspectives

We have developed a method based on hyperspectral
measurements coupled with a multi-spectral data (Sentinel-
2) at 10 meters spatial resolution. The proposed method
allows first to perform the image atmospheric correction
thanks to the retrieving of background aerosols with a
comparison between hyperspectral and Sentinel-2 reflectance.
Second, the rebuilding of the hyperspectral signal under the
plume ρcorrectedsoil is possible by computing the hyperspectral
eigenvectors and their associated weights obtained with the
Sentinel-2 reflectance.

We compute first for each pixel a measured differential
spectrum defined as the difference between the measured
surface reflectance and the surface reflectance estimation. This
differential represents the measured plume signature. We

compare this signature to a differential model to retrieve plume
parameters.

To retrieve the best aerosol modal radius and to estimate the
AOT, we use the CTMF algorithm with the differential method.
The CTMF compares the simulated aerosol plume signature
with the measured plume signature from the reflectance image.

However, the Sentinel-2 product seems to underestimate the
surface reflectance, especially over dark surface (ex : water).
Using another dataset with Sentinel-2 products to retrieve the
background aerosols should be a possibility in order to improve
the atmospheric correction step. More, for classes with a high
spectral variability as the “concrete soils” class, the reflectance
reconstruction method is hard to apply. The reconstruction
errors are too large compare to the aerosol plume signature.

As a future work, in order to improve the plume
characterisation, we should develop first a multi-modal
retrieval method for the radius. Second, a 3-dimensional
representation of the plume is planned in order to better model
the radiative impact of a plume according to the studied pixel
location. At the end, we intend to use this process to compute
a priori of radiative parameters for the use of an optimal
estimation approach in order to characterise plumes.
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report, CIPETA.

Bojinski, S., Schlaepfer, D., Schaepman, M. E., Keller, J.,
2002. Aerosol mapping over rugged heterogeneous terrain
with imaging spectrometer data. S. S. Shen (ed.), Imaging
Spectrometry VIII, SPIE.

Brigot, G., Colin-Koeniguer, E., Plyer, A., Janez, F.,
2016. Adaptation and Evaluation of an Optical Flow
Method Applied to Coregistration of Forest Remote Sensing
Images. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 9(7), 2923–2939.
https://doi.org/10.1109/jstars.2016.2578362.

Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B.,
Pope, C. A., Apte, J. S., Brauer, M., Cohen, A., Weichenthal,
S., Coggins, J., Di, Q., Brunekreef, B., Frostad, J., Lim,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-791-2020 | © Authors 2020. CC BY 4.0 License.

 
796



S. S., Kan, H., Walker, K. D., Thurston, G. D., Hayes, R. B.,
Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur,
S. M., Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L.,
Martin, R. V., Peters, P., Pinault, L., Tjepkema, M., van
Donkelaar, A., Villeneuve, P. J., Miller, A. B., Yin, P., Zhou,
M., Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W.,
Tsang, H., Thach, T. Q., Cannon, J. B., Allen, R. T., Hart,
J. E., Laden, F., Cesaroni, G., Forastiere, F., Weinmayr, G.,
Jaensch, A., Nagel, G., Concin, H., Spadaro, J. V., 2018.
Global Estimates of Mortality Associated with Long-Term
Exposure to Outdoor Fine Particulate Matter. Proceedings of
the National Academy of Sciences, 201803222.

Chandrasekhar, S., 1960. Radiative Transfer. Courier
Corporation.

Dennison, P. E., Thorpe, A. K., Pardyjak, E. R., Roberts, D. A.,
Qi, Y., Green, R. O., Bradley, E. S., Funk, C. C., 2013.
High spatial resolution mapping of elevated atmospheric
carbon dioxide using airborne imaging spectroscopy:
Radiative transfer modeling and power plant plume
detection. Remote Sensing of Environment, 139, 116–129.
https://doi.org/10.1016/j.rse.2013.08.001.

Deschamps, A., 2012. Industrial plume characterization using
hyperspectral imagery. Theses, Université Pierre et Marie
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