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ABSTRACT:

This paper proposes a model suitable for predicting the ionosphere delay at different locations of receiver stations using a temporal
1D convolutional neural network (CNN) model. CNN model can optimally addresses non-linearity and model complex data through
the creation of powerful representations at hierarchical levels of abstraction. To be able to predict ionosphere values for each visible
satellite at a given station, sequence-to-sequence (seq2seq) models are introduced. These models are commonly used for solving
sequential problems. In seq2seq models, a sequential input is entered to the model and the output has also a sequential form.
Adopting this structure help us to predict ionosphere values for all satellites in view at every epoch. As experimental data, we
used global navigation satellite system (GNSS) observations from selected sites in central Europe, of the global international GNSS
network (IGS). The data used are part of the multi GNSS experiment (MGEX) project, that provides observations from multiple
navigation satellite systems. After processing with precise point positioning (PPP) technique as implemented with GAMP software,
the slant total electron content data (STEC) were obtained. The proposed CNN uses as input the ionosphere pierce points (IPP)
points coordinates per visible satellite. Then, based on outcomes of the ionosphere parameters, the temporal CNN is deployed to
predict future TEC variations.

1. INTRODUCTION

Ionosphere variability is an intense and spatio-temporal varying
phenomenon. Each global navigation satellite system (GNSS)
signal is affected by the ionospheric variability in a different
way, depending on signal’s frequency (Hoque, Jakowski, 2007).
As result, performance degradation in GNSS positioning is cau-
sed. Proper combination between the different signal frequen-
cies or external ionospheric information, is useful to eliminate
the ionospheric error and improve the performance in GNSS
positioning. Applying external ionospheric information would
be useful in a precise point positioning-real time kinematic (PPP-
RTK) processing scenario to enhance the integer ambiguity res-
olution (IAR) (Psychas et al., 2018) and improve both the per-
formance and convergence time (Aggrey, Bisnath, 2019). In
most cases, external ionosphere information is provided by the
center for orbit determination in Europe (CODE) sparse iono-
sphere maps with spatial granularity of (2.5◦ × 5.0◦), and 2-h
temporal granularity, at global level (Schaer, 1997). Even if the
corrections applied improve the accuracy achieved in position-
ing, an amount of noise caused by the ionosphere still remains.
Hereby, we propose a Convolutional Neural Network (CNN)
to create regional autoregressive total electron content (TEC)
models. The proposed models referring to an area, could be
applied to near the reference area stations or roving users, to
correct the error caused by ionosphere variability.

CNN is a powerful tool for various computer vision and ma-
chine learning applications (Voulodimos et al., 2018). Unlike
traditional shallow learning models, CNNs with their hidden
layers and hyper-parameters, can successfully model complex
data through the creation of powerful representations at hier-
archical levels of abstraction. Nevertheless, a properly trained

network is required with a large amount of data, in order to suc-
cessfully learn suitable representation. CNNs have unique abil-
ities for various applications such as image classification, seg-
mentation and object detection for 2D images or 3D videos. On
the other hand, recurrent neural networks (RNN) are popular
for time series analysis and modelling (Kaselimi et al., 2020a).
However, recent research has shown CNN’s to be efficient at
time series problems. Particularly, 1D CNN (Kiranyaz et al.,
2019) is very effective in extracting important features. The 1D
CNN configuration is applicable to the analysis of sensory (such
as gyroscope or accelerometer) data time sequences, or to the
analysis of any kind of signal data, such as audio and speech
signals. 1D CNNs have recently been proposed and immedi-
ately achieved the state-of-the-art performance levels in various
application domains such as detection early diagnosis in med-
ical applications (Kiranyaz et al., 2019), anomaly detection,
structural health monitoring and identification in power elec-
tronics and energy related applications (Kaselimi et al., 2019).
They have simple and compact configuration, as they perform
1D convolutions, thus, they are excellent solution for real-time
and low-cost applications.

1.1 Background

Among the empirical approaches, the broadcast NeQuick (Nava
et al., 2008) and Klobuchar (Klobuchar, 1987) models are well-
known for estimating the ionospheric TEC parameters. GPS
satellites broadcast the parameters of the Klobuchar ionospheric
model for single frequency users. NeQuick is three-dimensional
and time-dependent ionospheric model adopted by the European
global navigation satellite system Galileo, in order to help its
single-frequency users to compute the ionosphere parameter
corrections. Additionally, the international reference ionosphere
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(IRI) model, provides monthly averages of various ionosphere
parameters, at global scale (Jiang et al., 2019). The global iono-
sphere maps (GIM) are provided by the international GNSS
service (IGS) in the IONospheric EXchange (IONEX) format.
The ionosphere associate analysis centers (IAACs) compose the
GIM products using TEC measurements derived from a world-
wide network of hundreds of GNSS receiver stations. In ad-
dition, measurements using very long baseline interferometry
(VBLI) and satellite altimetry techniques are also deployed among
with other data, such as GNSS data, to obtain the ionosphere
parameters (Alizadeh et al., 2013). The aforementioned mod-
els are global representations of TEC values, however, their ac-
curacy imposes a crucial restriction arising, for instance, from
the adoption of a simple Klobuchar model or the inadequacy of
the NeQuick model to handle successfully extreme ionospheric
conditions and predict the irregular TEC behavior. Most of
these global maps fail to model accurately the high level of de-
pendencies needed when down sampling is necessary to move
from global to regional level.

There are various attempts focusing on mapping the ionosphere
at local level, using tomographic-based methods (dos Santos Prol
et al., 2018). In addition, refractive gradients in the ionosphere
derived from the GNSS low earth orbit (LEO) satellites are
used for accurate determination of atmospheric parameter pro-
files, using radio occultation (RO) technique (Norman et al.,
2018). Multi-GNSS receivers can also contribute to accurate
ionosphere modelling (Zhao et al., 2018). Using autoregress-
ive models is a common approach towards enhancing the mod-
elling of the ionospheric delays at a regional level (Kong et
al., 2017). However, linear methods for the approximation of
ionospheric delays are insufficient in describing the real iono-
sphere conditions, therefore, applying machine learning tech-
niques for modelling the highly non-linear and complex iono-
sphere conditions is becoming imperative. Artificial neural net-
works (ANNs) techniques can successfully deal with short-term
forecasting (Baliyan et al., 2015), (Doulamis et al., 2003). Due
to the recent widespread advancements in machine learning,
various studies introduce these methods to develop the suitable
TEC prediction methods. Among these studies, techniques in-
cluding shallow learning methods, such as support vector ma-
chine (SVM) (Zhang et al., 2019b), the nonlinear radial basic
function (RBF) neural network (Huang, Yuan, 2014), (Yilmaz
et al., 2009) and neural network (Ou et al., 2012), (Feng et al.,
2019) have been introduced. RNNs can sufficient handle TEC
observations and are able to be adapted in order to learn the
temporal dependencies from context (Kaselimi et al., 2020b)
and monitor the irregular ionospheric structure. The recurrent
networks “memorize” previous term correlations in a timeser-
ies, thus, they model sequences of data, as in (Su et al., 2019),
(Sun et al., 2017), (Tang et al., 2020), where parameters such
as 10.7 cm solar flux and magnetic activity indices are anti-
cipated, to achieve better modelling accuracy. Most of them
targeted in analysis and prediction based on traditional autore-
gressive models (i.e., the autoregressive (AR) and the autore-
gressive moving average (ARMA) model), or recently in deep
learning schemes, for instance the recurrent neural networks
(RNN), which are straightforward applicable to the detection of
various patterns in timeseries data. However, relevant studies
applying CNN structures for timeseries ionosphere prediction
are limited. To our knowledge, the studied methods in literat-
ure, focus on TEC prediction based on estimates derived from
TEC models, such as GIM maps. In contrast to this approach,
our method predicts ionosphere delays for each visible GNSS
satellite individually.

Table 1. The stations’ information (names, location (longitude
and latitude) and country) for six selected sites of the IGS

network.

Site Latitude◦ Longitude◦ Country
bor1 52.27695 17.07345 Poland
ganp 49.03471 20.32293 Slovakia
graz 47.06713 15.49348 Austria
leij 51.35398 12.37410 Germany
pots 52.37929 13.06609 Germany
wtzz 49.14421 12.87890 Germany

1.2 Contribution

The ionosphere varies with latitude, longitude, universal time,
season, solar cycle and magnetic activity (Schunk, 1983). The
advantage of our proposed model lies in ability of adapting all
these variables as inputs to the network and in addition, easily
expand the input features if necessary.

Furthermore, sequence-to-sequence (seq2seq) models (Sutskever
et al., 2014) are introduced to successfully catch the sequential
character of TEC values and thus predict them for each visible
satellite at a given station. In seq2seq models, the input is a
time sequence of data, and the output is also a time sequence.
Adopting this structure help us to predict ionosphere values for
all satellites in view at every epoch.

This work is further attempts:

• to define the characteristics of the GNSS ionospheric delays,
especially at mid-latitudes, using multiple frequency ob-
servations,

• to derive potentially suitable models which can eventually
be used to apply ionosphere corrections for single station
and single frequency techniques,

• propose an efficient model for constructing dynamic chan-
ging, regional TEC models.

2. GNSS AND IONOSPHERIC VARIABILITY

The ionosphere is that part of the earth’s upper atmosphere (ex-
tending roughly between 70 and 600 km) with sufficient con-
centration of free electrons to affect the pro-pagation of elec-
tromagnetic waves. Its existence is primarily the result of the
absorption of solar ultraviolet radiation in that part of the atmo-
sphere which in turn reacts to produce free electrons and ions.
Total Electron Content (TEC) is often used to describe iono-
spheric variability and is space and time varying. it is widely
known that ionosphere exhibits significant variations with:

• latitude and longitude: the most disturbed region is the
aurora zone (between 60◦ to 70◦ N geomagnetic latitude)
followed by the polar zone( >70◦ N), while irregularities
at equatorial ionosphere follow,

• local time: during the sunny hours of the day, the iono-
spheric condition variations are higher than those in night-
time period,

• solar cycle and geomagnetic activity.
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The GNSS signal travels through the ionosphere and due to the
severe spatio-temporal changes of the electron density, signific-
ant disruptions on the traveling GNSS radio wave are caused.
As a consequence of ionosphere’s dispersive nature, is that for
different carrier wave frequencies, different delays are caused.
This fact provides one of the greatest advantages of a dual-
frequency receiver over the single-frequency receivers: appro-
priate mathematical combinations among the different frequen-
cies can eliminate ionosphere delay error. Hence, the use of
multiple navigation signals of distinct center frequency trans-
mitted from the same GNSS satellite allows direct observation
and removal of the great majority of the ionospheric delay. It
is worth mentioned that, the severity of the ionosphere’s effect
on a GNSS signal depends on the amount of time that signal
spends traveling through it. A signal originating from a satellite
near the observer’s horizon (low satellite elevation) must pass
through a larger amount of the ionosphere to reach the receiver
than does a signal from a satellite near the observer’s zenith
(high satellite elevation). Thus, the longer the signal is in the
ionosphere, the greater the ionosphere’s effect on it.

3. THE PRE-PROCESSING STARATEGY

In this paper, STEC values are extracted using the undifferenced
and uncombined observations in dual-frequency PPP processing.
The observation equations are written as (Zhang et al., 2019a):

P s(fi)r = ρsr + c · (dt+ dT ) +Dtrop + I(fi)+

c · (d(fi)r − d
s
fi) + ξsP(fi)

(1)

φs(fi)r = ρsr + c · (dt+ dT ) +Dtrop − I(fi)+
λNs

(fi) + c · (δ(fi)r − δ
s
fi) + ζsφ(fi)

(2)

where P s(fi)r and φs(fi)r are the pseudorange and carrier phase
observables, respectively, between a receiver r and a satellite s
in a frequency band fi; ρsr is the geometric distance between the
satellite at the emission time and the receiver antenna at the re-
ception time; c is the speed of light; dt and dT are the receiver
and satellite clock offsets from the reference satellite system
time, respectively; d(fi)r is the frequency-dependent receiver
uncalibrated code delay (UCD) while dsfi is the frequency de-
pendent satellite UCD (in seconds); Dtrop is troposphere delay
(in meters); I(fi) is the slant ionospheric delay on the frequency
fi (in meters); δ(fi)r and δsfi are the frequency-dependent re-
ceiver and satellite uncalibrated phase delay, respectively (in
seconds); Ns

(fi) denotes the ambiguity; ξsP(fi)
and ζsφ(fi)

are
unmodelled errors including the sum of measurement noise and
multi-path error for pseudorange and carrier phase observations
respectively. For dual-frequency GPS receivers (G), and assum-
ing the frequencies f1 and f2 noted as “1” and “2”, respectively,
the Equation (1) is:

PG1r = ρGr + c · (dt+ dTG) +Dtrop + I1+

+c · (d1r − d
G
1 ) + ξGP1

(3)

PG2r = ρGr + c · (dtr + dtG) + T + I2+

+c · (d2r − d
G
2 ) + εGP2

(4)

thus, the code biases are commonly referred as differential code
biases (DCBs): DCB = DCBP1/P2 = d1 − d2 and also,
given that γ2 = f2

1 /f
2
2 , we have:

d1 = dIF + 1/(1− γ2) ·DCB and

d2 = dIF + γ2/(1− γ2) ·DCB
(5)

and then,

d1r − d
G
1 = d(IF )r − d

G
IF+

+
1

(1− γ2)
· (DCBr −DCBs)

(6)

d2r − d
G
2 = d(IF )r − d

G
IF+

+
γ2

(1− γ2)
· (DCBr −DCBs)

(7)

The term I1 is grouped with differential code biases, thus:

Ĩ1 = I1 −
1

(1− γ2)
DCBs +

1

(1− γ2)
DCBr (8)

In our case, the uncombined PPP (UPPP) model computes the
ionosphere delay as unknown parameter, in contrast to the tra-
ditional ionosphere-free (IF) model which combines multiple
frequency observations to eliminate the ionospheric error. How-
ever, for the estimation of TEC values using pseudorange and
phase GNSS observables, the DCB biases should also considered,
as 1ns in a DCB, causes an ∼ 2.9 TECU error in TEC estim-
ation:

Ĩ1 =MFI · vtec−
1

(1− γ2)
DCBs +

1

(1− γ2)
DCBr (9)

Having the DCBs corrected, the STEC can be converted into
the vertical total electron content VTEC by applying a mapping
function MFI (Bergeot et al., 2014):

MFI =
stec

vtec
=

1

(1− ( Re
Re+hs

cosθ)2)1/2
(10)

whereRe is the mean Earth’s radius; θ is the satellite’s elevation
angle; h is the height of the ionospheric layer and usually has
been taken about 350 km.

4. IONOSPHERE PREDICTION PROBLEM
FORMULATION BASED ON GNSS OBSERVATIONS

The combination of observations from different satellites (dis-
tinguished by their respective pseudorandom noise -PRN) and
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Figure 1. Temporal CNN network architecture.

different frequency bands, resulting in the successful estima-
tion of VTEC values. According to the typical ionospheric pre-
diction model, it is assumed that the ionosphere is a thin shell
above the Earth, with the single-layer height ranging between
300 and 550 km. The intersection between the line of sight of
a GNSS satellite and this shell is called the Ionospheric Pierce
Point (IPP). At different epochs, at every IPP point, each indi-
vidual satellite provides a different VTEC measurement. Our
model takes into consideration previous TEC values and pre-
dicts the future ones. Thus, the proposed CNN model is a non-
linear autoregressive model:

vtect+1 = f(φIPP {1 : t}, λIPP {1 : t}, vtec{1 : t}) (11)

5. THE PROPOSED CNN FOR TEC MODELLING

5.1 Seq2seq temporal 1D CNN regression model for TEC
prediction

At first, we model the unknown function f(·) through a feed-
forward neural network. Assuming L hidden neurons and a
linear output layer, the estimate vtecs every time, is given by
(Doulamis et al., 2003):

vtecs(t) = uT (t) · v (12)

u(t) =

u1(t)
...

uL(t)

 =

tanh(w
T
1 · x(t))
...

tanh(wT
L · x(t))

 (13)

tanh(·) is the hyperbolic tangent, x(t) is the input vector (see
Equation 11), wi, i = 1, . . . , L, are the weights connect the in-
put vector x(t), with the i-th hidden neuron. The term u(t)
gathers the outputs of all L hidden neurons ui with values ran-
ging between -1 and 1. Similarly, v -vector (see Equation 12)
encloses weights that connect the hidden neurons with the out-
put neuron.

Convolutional Neural Network (CNN) is a more complex vari-
ant than a simple feed forward neural network, has its origins in
the field of computer vision, but nowadays, due to its popular-
ity, is spread in a wide range of applications. Its name is derived
from the type of hidden layers that it consists of. Typically, the
hidden layers of a CNN consist of convolutional layers, pooling
layers, fully connected layers, and normalization layers. In case
of one-dimensional convolutional neural networks, the major

advantage is the model’s low computational complexity since
the only operation with a significant cost is a sequence of 1D
convolutions which are weighted sums of two 1D arrays. For a
given layer l, each (hidden or output) unit zlk in such a network,
computes a function given by:

zlk = f(blk +

l−1∑
j=1

(wl−1
kj , s

l−1
j )) (14)

where xlk is defined as the output/hidden unit, blk is defined as
the bias of the kth neuron at layer l − 1, sl−1

j is the output of
the jth neuron at layer l − 1, wl−1

kj is the kernel from the jth

neuron at layer l − 1 to the kth neuron at layer l.

5.2 The CNN network configuration for TEC modelling

As illustrated in Figure 1, our proposed network configuration
consists of two convolutional layers. The first convolutional
layer has 60 filters of height 5 and the second one 120 filters
of the same size. Then, a layer that flattens the output of con-
volutional neural network layer follows. Dense layer assigns a
linear operation in which the input of the previous layer is con-
nected to the output by a weight and is followed by a non-linear
activation function. In our case, the activation function is the
hyperbolic tangent function. For the training, the number of
epochs is selected 600. The optimizer is the Adam and the loss
function is the mean squared error.

6. EXPERIMENTAL RESULTS

6.1 Dataset

The experimental setup consists of a selected small group of
permanent GNSS stations of the global network of International
GNSS Service (IGS). The time granularity of the data is 30s.
Table 1 shows the position of the selected ground receiver IGS
stations (Montenbruck et al., 2017), across central Europe in
close proximity to each other.

The GAMP software (Zhou et al., 2018), a secondary devel-
opment software based on RTKLIB (Kaselimi et al., 2018) has
been used for precise point positioning. We have used the un-
combined PPP (UPPP) ionosphere constraint model to estimate
the slant TEC values as unknown parameters. The observation
and navigation files, the precise orbit and clock information, the
antenna phase centre corrections for both receivers network and
satellites, as well as ocean tide loading coefficients and the dif-
ferential code biases are processed using the GAMP software
in static PPP mode.
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Table 2. A comparative table that summarizes the performance achieved by the CONV1D network in predicting the VTEC (TECU)
values over the site stations (bor1, ganp, graz, leij, pots and wtzz).

Site bor1 ganp graz
Metric maer minr maxr rmser maer minr maxr rmser maer minr maxr rmser

CONV1D 0.91 0.02 2.41 1.09 0.93 0.06 2.21 1.08 0.88 0.01 2.25 1.03
LSTM 0.98 0.04 3.05 1.18 1.24 0.02 2.88 1.45 1.09 0.03 2.76 1.26
ARMA 1.41 0.01 3.76 1.76 1.63 0.02 3.94 2.03 1.70 0.04 3.85 2.03

AR 1.91 0.04 4.40 2.29 1.85 0.02 4.28 2.25 1.77 0.02 3.98 2.13
Site leij pots wtzz

Metric maer minr maxr rmser maer minr maxr rmser maer minr maxr rmser

CONV1D 0.71 0.02 2.07 0.88 0.84 0.02 2.39 1.03 0.83 0.03 2.25 0.99
LSTM 0.93 0.02 2.66 1.14 1.19 0.01 3.52 1.42 1.03 0.04 2.68 1.23
ARMA 1.63 0.01 3.96 1.98 1.71 0.01 4.12 2.07 1.54 0.01 3.78 1.91

AR 1.87 0.01 4.22 2.22 1.94 0.01 4.33 2.30 1.79 0.01 4.10 2.15

6.2 Performance Evaluation

Table 2 provides comparative results for the proposed CONV1D
method and (i) the recurrent LSTM (Long Short-term Memory)
network (Kaselimi et al., 2020b), (ii) the AR model (Autore-
gressive) and (iii) the ARMA model (Autoregressive moving
Average) model. AR and ARMA models are traditional stocha-
stic models used for timeseries modeling, while recurrent neural
networks allow previous outputs to be used as inputs for the
next step, enhancing their recurrent character and their ability
to successfully deal with sequential data. For each individual
PRN, we compute the absolute difference between the ground
truth v̂tec

si
r, t value, as computed using the GAMP software

with PPP processing, and the respective VTEC values as being
estimated from our Conv1d model vtecsir, t. Thus, every epoch

t, the absolute difference is
∣∣∣vtecsir, t − v̂tecsir, t∣∣∣. The metrics

for comparison where selected to be:

(i) the mean absolute error maer , which is the average value of
the mean absolute errors MAEsir per individual PRN si,

maer =
1

S

S∑
si=1

MAEsir

=
1

S

S∑
si=1

(∑T
t=1

∣∣∣vtecsir, t − v̂tecsir, t∣∣∣
T

) (15)

(ii)minr is the average of all si minimum difference values per
station,

minr =
1

S

S∑
si=1

(min
∀t∈T

(
∣∣∣vtecsir, t − v̂tecsir, t∣∣∣)) (16)

(iii) in accordance to minr metric, maxr is the average of all
si maximum differences values per station, and

maxr =
1

S

S∑
si=1

(max
∀t∈T

(
∣∣∣vtecsir, t − v̂tecsir, t∣∣∣)) (17)

(iv) rmser is the average of si root mean squared errorRMSEsir
of all PRNs (satellites) per station.

rmser =
1

S

S∑
si=1

RMSEsir

=
1

S

S∑
si=1

(√√√√ 1

T − 1

T∑
t=1

(vtecsir, t − v̂tec
si
r, t)2

) (18)

The maer error ranges between 0.71 and 0.91 for our pro-
posed CONV1D method, which is better than 1 TECU . As
regards the recurrent LSTM method, the maer error is 0.93 to
1.24 TECU , while for the autoregressive methods, the respect-
ive mean absolute error is greater than 1.5 TECU . The rmser
values for CONV1D are between 0.88 and 1.09, while in the
other methods used for comparison, the results shown values
greater than 1TECU . As derived from the results, CONV1D
extracts the temporal information and models successfully the
TEC sequential problem.

Figure 2 shows the estimated TEC timeseries for each indi-
vidual PRN for bor1 station for a single day of observations.
Satellites with PRNs G01, G08, G11, G17 and G27 have the
best performance, while G16 and G23, appear the worst one.
Overall, as noticed, the predicted values are close to the estim-
ated ones and the CONV1D network can successfully model
TEC values per PRN.

Figure 3 shows the MAE results for two different test sets.
Here, we can notice that the proposed results with the CONV1D
method achieve slightly better performance than the traditional
recurrent networks used for timeseries modelling.

Figure 4 illustrates the mean VTEC values at every site, as ob-
tained from NeQuick, IRI2001 and GIM TEC estimates com-
pared to the ground truth values (GRD) and CONV1D TEC pre-
dictions, during the day. The maximum VTEC values appeared
the time duration between 8:00 and 12:00 A.M. In most cases,
the CONV1D values are similar to those of GPS TEC derived
values. This is as it expected, because the CONV1D model
has been trained using as training set these values. However, it
is noted that our model underestimates VTEC values, showing
lower values than those of GPS TEC. GIM-aided TEC values
are also close to CONV1D derived TEC values, which is also
expected as the processing PPP strategy uses GIM TEC val-
ues for input (ionosphere constrained model). Finally, NeQuick
and IRI2001 values show wider variability during the day with
higher maximum and lower minimum values, compared those
of GIM and GPS TEC methods.
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Figure 2. Conv1d versus ground truth per satellite PRN for bor1 station.

Figure 3. Conv1d versus ground truth per satellite PRN.
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Figure 4. Conv1d versus ground truth per satellite PRN.

7. CONCLUSION

In this paper, we propose a non-linear autoregressive network
based on convolutions for TEC modelling. Temporal convolu-
tional neural networks can successfully model sequential data.
In contrast to the recurrent neural networks that traditionally
have been used for timeseries modelling, our CONV1D method
except for higher accuracy, present lower complexity since the
only operation with a significant cost is a sequence of 1D con-
volutions which are weighted sums of two 1D arrays. The aim
of the paper, is to define the characteristics of the GNSS iono-
spheric delays, especially at mid-latitudes, using multiple fre-
quency observations and data from multiple PRNs. Also, the
paper aiming at derive models that apply accurate ionosphere
TEC corrections, to increase the accuracy and convergence time
for single station and single frequency techniques. propose
an efficient model for constructing dynamic changing, regional
TEC models. The experimental results indicate that mean ab-
solute error ranges between 0.71 and 0.91 for the CONV1D
method, which means that the error is better than 1 TECU .
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