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ABSTRACT: 
 
Land cover information is fundamental for a wide range of fields, such as research and policymaking. Remote sensing has 
historically been a source of data on land cover and recognized as the only practical systematic and wall-to-wall source for crop 
mapping. The European Copernicus programme and its free data policy for Sentinel-2 made accessible large volumes of imagery for 
frequent mapping and updating, generating new challenges. One such challenge is timely mapping through supervised image 
classification. The need for a prompt classification workflow requires training to become automatic, which typically relies on 
samples collected manually via fieldwork or image interpretation. Another challenge is to map land cover classes that traditionally 
have been troublesome to identify when satellite observations were sparse. For instance, crops have a spectral response that changes 
substantially throughout the year or during narrow time windows, which cannot be observed with few image acquisitions. This paper 
presents research ongoing in Portugal to develop a methodology for automatic image classification using training samples labelling 
with no human intervention. Rather, auxiliary datasets are used to randomly extract labelled points from large training samples to 
produce a land cover and crop map in raster format at 10 m spatial resolution using 2018 Sentinel-2 images. The proposed 
methodology was tested with the Random Forest classifier achieving an overall accuracy of 76%. These results are promising and 
support the idea of refining the methodology to move towards an annual land cover map production at the national scale.  
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Land cover analysis have evolved from studying a small 
geographic region at a determined period to global studies using 
smaller spatial resolution and higher temporal periods 
(Stehman, Foody, 2019). The new paradigm in land cover 
production -Land Cover 2.0- takes advantage on the 
developments in computer hardware; increased spatial, spectral, 
and temporal resolutions of satellite imagery; open-access data 
and automated data processing using classification algorithms to 
generate timely, reproducible and accurate land cover maps 
(Wulder et al., 2018). Currently, it is possible to classify large 
geographic areas over multiple decades at an annual time step, 
as reported by Hermosilla et al. (2018) that generated a 29-year 
data cube of land cover for the years 1984 to 2012. Moreover, 
automated systems as the Sen2-Agri can ingest and process 
multi-sensor imagery (Sentinel-2 and Landsat 8 time series) for 
operational agriculture monitoring systems (Defourny et al., 
2019). Countries such as France and Germany are aiming to 
produce automatically robust large-scale land cover mapping 
using supervised classification, time series of high-resolution 
optical imagery, and existing databases for data training 
(Inglada et al., 2017; Griffiths et al., 2019). Yet, supervised land 
cover approaches remain an intricate process as the critical 
component is the availability of training data (ground truth or 
reference data) for the signature generation (Hermosilla et al., 
2018). Additionally, training data collection is delicate in large 
jurisdictions and over remote areas (Inglada et al., 2017).  
 

The European Copernicus programme and its free and open 
data policy for Sentinel-2 made available substantial volumes of 
data for periodic updates of land cover products over extensive 
territories. These time series of Sentinel-2 collected over 
relatively narrow time intervals allows monitoring subtle 
variations in crop phenology as well as abrupt changes in land 
cover (Gómez et al., 2016). This increased frequency on data 
availability enables the mapping of crops, which have a 
changing spectral response throughout the year; making them 
very difficult to identify when time series of satellite data are 
sparse (i.e., Landsat). Nevertheless, to fully exploit the open-
access of time-series, automated classification methods are 
required to generate, for example, annual land cover maps 
(Hermosilla et al., 2018). The automatization entails no human 
intervention in the labelling of training samples, which typically 
are collected manually via fieldwork or image interpretation. 
 
This paper presents an experimental automatic workflow to 
classify land cover and agriculture crop types at 10m resolution 
in a test area of Portugal using existing databases, intra-annual 
time series of Sentinel-2, and supervised classification with 
Random Forest. The focus is to (i) test if a pre-defined set of 
pre-processing rules could remove possible sources of 
mislabelling from existing land cover and crop types datasets, 
i.e. allowing us to extract samples for training and testing 
automatically. Complementary, (ii) the evaluation of the 
accuracy metrics reached by each class provides insight into the 
main confusions of the classifier. This information is a criterion 
to assess the robustness of the workflow and its viability to 
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produce a land cover and crop map at a national scale. The 
structure of the paper first provides the experimental 
methodology for the automatic classification workflow. Then, 
the results of the classification and main findings are presented 
and analysed. 
 

2. METHODS AND EXPERIMENTAL SETUP 

The proposed methodology is based on an automatic sample 
extraction from reference datasets of land cover. Afterwards, the 
collected samples are used to retrieve the spectral information 
of the land cover classes of interest from the intra-annual time-
series of Sentinel-2. This dataset is used in a Random Forest 
classification algorithm, splitting the data into testing and 
training datasets for independent training and validation (Figure 
1). 
 

 
Figure 1. Flowchart for the automatic production of a land 

cover and crop type map 
 
Land cover information is retrieved from several Portuguese 
reference datasets. The land cover classes like urban, forest and 
water are derived from the official Land Cover Land Use 
(LCLU) map of Continental Portugal (COS); agriculture which 
comprises annual and permanent crop as well as agricultural 
pastures are obtained from the Land Parcel Identification 
System (LPIS) of the Instituto de Financiamento da Agricultura 
e Pescas (IFAP); finally, burnt areas are identified from the 
maps of the Instituto para a Conservação da Natureza e das 
Florestas (ICNF). This information is processed to filter out 
potentially mislabeled pixels. Mislabeling of pixels occurs for 
several reasons such as the large Minimum Mapping Unit 
(MMU) of the reference data sets. For example, land cover 
patches smaller than 1 hectare are not represented in COS due 
to mapping generalization. This filtering processing comprises 
spatial inner buffer operation to avoid errors related to mapping 
uncertainty along the borders between classes. Then, all the 
areas that burnt between 2015 and 2018 were removed to 
ensure that vegetated classes are trained with unburnt pixels. 
Likewise, additional filtering based on the Normalized 
Difference Vegetation Index (NDVI) calculated from Landsat 8 
imagery (2015-2018) is applied to ensure that vegetated classes 
are associated with acceptable levels of NDVI, which avoids, 
for example, sampling cases of forest in recent clear-cuts. 
Furthermore, the Copernicus High-Resolution Layers (HRL), 
particularly Dominant Leaf Type (DLT) and Tree Cover 
Density (TCD), are used to distinguish between forest types and 
forest density, as well as to eliminate non-forest pixels. Cross-
comparing different datasets such as COS and HLR increases 
the reliability of the automatic sample extraction. 

The automatic extraction of samples from the pre-processed 
datasets is performed twice to get two independent sample 
datasets, one for training and one for testing. For each sample, 
the spectral signatures are retrieved at the pixel level from all 
the spectral information previously collected. Then, the Random 
Forest model is fitted to the training dataset and the 
classification performance is quantified based on the predicted 
labels in the testing dataset. Afterwards, the model is applied to 
unlabelled data allowing to generate the final map for the tested 
region. 
 
2.1 Study area 

The test area used for this experiment is shown in Figure 2. This 
area has about 1,223,890 ha in the south of Portugal, covers 
most of the valleys of the Tejo and Sado rivers and contains a 
great diversity of land uses as well as multiple crop types.  
 

 
Figure 2. Test area of Portugal represented by the red line 

 
2.2 Reference datasets 

A total of 31 LCLU classes were used for this classification 
experiment. The most detailed level of the nomenclature was 
used, as it can be observed in Table 1. This nomenclature is 
derived from the COS nomenclature levels. The 31 classes were 
extracted from three reference datasets: IFAP 2018, COS 2018 
and ICNF 2018. The IFAP is the Portuguese LPIS comprised of 
two independent datasets: the “national parcel registry” that was 
used for training and the “controlled parcels” used for testing. 
Several studies, including the Sen2-Agri system, have reported 
the use of the LPIS to extract samples from agricultural parcels 
for countrywide crop mapping studies (Costa et al., 2018; 
Griffiths et al., 2019; Defourny et al., 2019). Secondly, a 
reclassification of COS was carried out to derive a more 
generalized number of land cover classes for this study. Lastly, 
the ICNF is responsible for the execution of an annual map of 
burnt areas for Portugal based on visual interpretation of 
Landsat TM/ETM. 
 
2.3 Filtering of the data 

A spatial buffer was performed in the IFAP reference dataset 
classes to avoid selecting pixels for which the spectral signature 
does not match the class label. No other crossing with ancillary 
data was applied, and training (national parcel registry), as well 
as testing (controlled parcels), were kept independent (Figure 
3).  
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Level-1 Level-2 Level-3 Level-4 
Artificial land Artificial land Artificial land Build up 

Agriculture 
Temporary crops 

Rainfed temporary crops 
Wheat, Barley, Oatmeal, 
Ryegrass, Lupin 

Irrigated temporary crops 
Maize, Sorghum, Rice, 
Tomato, Potato 

Permanent crops Permanent crops Vineyards, Orchards, Olives  

Herbaceous vegetation Herbaceous vegetation 
Agricultural grassland Agricultural grassland 
Natural grassland Natural grassland 

Forest 

Broadleaf forest Broadleaf forest 
Cork oak, Holm oak, 
Eucalyptus, Other broadleaf 
forests 

Coniferous forest Coniferous forest 
Closed maritime pine, Open 
maritime pine, Stone pine, 
Other coniferous 

Shrubland Shrubland Shrubland Shrubland 
Sealed or sparse 
vegetation spaces 

Sealed or sparse 
vegetation spaces 

Sealed or sparse 
vegetation spaces 

Baresoil, Bare rock, Sparse 
vegetation 

Wetlands Wetlands Wetlands Wetlands 
Water Water Water Water 
Burnt areas Burnt areas Burnt areas Burnt areas 

Table 1. Nomenclature for Land Cover and Crop type map  
 

 
Figure 3. Filtering workflow for reference datasets 

 
The buffer strategy was also applied to COS 2018 classes. 
However, it is critical to emphasize that the MMU of COS is 1 
ha and classification at the pixel level for Sentinel-2 
contemplates a 100 m2 MMU. Therefore, some pre-processing 
steps are required to prevent the selection of pixels with spectral 
information that mismatch the class label inherited from COS, 
which has a larger MMU. The first filter was to intersect all 
COS polygons with the ICNF burnt mask from recent years, 
hence removing areas burnt by wildfires (Figure 4- left). 
 

 
Figure 4. COS2018 polygon overlaid with the burnt mask (left) 

and clear-cuts in Eucalyptus plantation (right) 
 

Afterwards, forest polygons were crossed with the result of a 
change detection analysis based on NDVI differencing (Costa et 
al., 2020) to remove the areas where trees have been uniformly 
cut down (i.e., clear cuts). For example in the case of forest 

plantations like eucalyptus (i.e. Figure 4- right), clear-cuts are 
part of the forest management cycle; as a new forest is expected 
to follow, the land use remains forest and mapped as such in the 
reference datasets used, which can cause clear cut pixels to be 
selected to train eucalyptus if not accounted for.  
 
The final step was to cross the forest and shrubland areas with 
the Copernicus HRL data. A set of masks were created 
following the rules in Table 2. The idea is to double-filter the 
training data to have areas more suitable to represent patches of 
forest and shrubland, avoiding for example clear-cuts not 
represented in the reference datasets. 

 
Dominant Leaf 
Type (DLT) 

Tree Cover 
Density (TCD) 

Class 

Broadleaf > 60% 
Cork oak, Holm oak, 
Other broadleaf, 
Eucalyptus 

Coniferous 
> 60% 

Stone pine, Closed 
maritime pine, Other 
coniferous 

> 10% &<60% Open maritime pine  
Any 0% Shrubland 

Table 2. Filtering rules based on the HRL 
 
2.4 Sentinel-2 monthly composites 

A crucial input in this research is the intra-annual time series of 
Sentinel-2 satellite from the European Spatial Agency (ESA). 
The 5-days Sentinel-2 revisit time allows the collection of high-
quality spatial and temporal data (Defourny et al., 2019). 
Sentinel-2 level-2 (L2A) products were downloaded from the 
Theia Land Data Centre (THEIA), acquired between October 
2017 and September 2018, corresponding to the agricultural 
year of 2018. The imagery was pre-processed with the 
cloud/shadow mask to avoid clouds being mistaken with bright 
landscapes and cloud shadows with water pixels, burnt areas or 
topographic shadows (Baetens et al., 2019). After the imagery 
pre-processing, five spectral indices are calculated including the 
Normalized Vegetation Index (NDVI) (Tucker, 1979), 
Normalized Difference Build up Index (NDBI) (Zha et al., 
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2003), Normalized Difference Water Index (NDMI) 
(McFeeters, 2013), Normalized Burn Ratio (NBR) (Key,  
Benson, 2006), and the Normalized Burn Ratio 2 (NBR2) 
(Hislop et al., 2018). 
 
The imagery was used to create a multi-spectral composite for 
every month, including spectral indices. Composites can 
provide data free of missing values in opposition to single date 
acquisitions which are often affected by cloud coverage. All the 
monthly composites and the indices were linearly interpolated 
in time to create a pixel-level consistent reflectance composite 
that can capture field level phenologies (Griffiths et al., 2019), 
as seen in Figure 5. 
 

 
Figure 5. Series of monthly composites (1 year); the pointed 

area corresponds to an agricultural area 
 
2.5 Automatic sample extraction, classification and 
accuracy assessment 

After the reference datasets were filtered, the vector datasets 
were rasterized to 10 m cell size and the centroids were 
converted to points. This step permitted the creation of a point 
grid for random selection of samples, as seen in Figure 6. If the 
number of samples available per class was higher than 5000, the 
dataset was divided into 4000 training and 1000 testing pixels. 
However, four classes did not meet this requirement, and for 
these, the available pixels were divided into the proportion of 
75% for training and 25% for testing. The information that was 
provided to the classifier corresponds to the surface reflectance 
values of the Sentinel-2 composites and the spectral indices 
derived. A total of 180 features were extracted, equivalent to 10 
bands and 5 spectral indices for the 12 months of the 2018 
agricultural year. A Random Forest model composed of 500 
trees without pruning was used. 
  

 
Figure 6 Automatic sample extraction from a COS polygon 

 
The quality of the map was assessed quantitatively by 
summarizing the classification performance using the Overall 
Accuracy, the User’s Accuracy (UA), Producer’s Accuracy 
(PA), F1-Score (F1) as displayed in Table 3. 
 
 

CLASS UA (%) PA (%) F1 
Build up 86 88 87 
Wheat 70 67 68 
Barley 85 54 66 
Oatmeal 50 49 49 
Ryegrass 57 62 59 
Lupin 62 55 59 
Maize 99 99 99 
Sorghum 84 64 72 
Rice 100 98 99 
Tomato 93 100 96 
Potato 78 84 81 
Vineyards 76 94 84 
Orchards 73 35 47 
Olive trees 61 46 52 
Agricultural grassland 48 72 58 
Natural grassland 56 68 61 
Cork oak forest 64 70 67 
Holm oak forest 91 94 92 
Eucalyptus forest 88 82 85 
Other broadleaf forest 65 81 72 
Closed maritime pine forest 75 75 75 
Open maritime pine forest 78 78 78 
Stone pine forest 84 84 84 
Other coniferous forests 100 54 70 
Shrubland 70 63 67 
Baresoil 82 80 81 
Bare Rock 95 92 94 
Sparse vegetation 88 94 91 
Wetlands 90 94 92 
Water 97 95 96 
Burnt areas 68 72 70 

Table 3. User’s Accuracy (UA), Producer’s Accuracy (PA), and 
F1-Score of the map produced 

 
3. RESULTS AND DISCUSSION 

3.1 Accuracy assessment of the Land Cover and Crop Type 
Classification 

The map produced is presented in Figure 7. The overall 
accuracy of the land cover and crop map using monthly 
composites features and derived indices is 76% for the 31 
classes. Among the temporary crop types, the best-performing 
classes are maize, rice, and tomato with UA and PA values 
above 90%. In general, the irrigated crops (summer crops) are 
more stable in their classifications, whereas the rainfed crops 
(winter crops) have more confusion within themselves. In terms 
of permanent crops, vineyards achieved UA and PA higher than 
75%; similar results are reported in Schmedtmann and 
Campagnolo (2015), who achieved 85% in parcels classified as 
maize, rice, wheat or vineyard in the same study area. On the 
other hand, orchards and olive trees have the lowest PA (35% 
and 46% respectively), being incorrectly classified primarily as 
agricultural and natural grasslands as well as other crop types. 
Permanent crops are usually planted in 2m separation, meaning 
that the surface reflectance values captured in the Sentinel-2 
pixels correspond to a mixture of the crop and soil. In general, 
crop mapping in the study area can benefit from the use of time 
series of Sentinel-2 as their average size of the parcels is 
between 2 and 3 ha. However, for very fragmented landscapes 
where the parcels are comparatively smaller, it would require 
higher resolution imagery to meet the same accuracy (Fritz et 
al., 2019).  
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Figure 7. (a) Land Cover and Crop Type in raster format, (b) detail of the map, (c) false-colour (RGB: B8, B4, and B3) for august 

2018 Sentinel-2 composite, (d) the Iberian Peninsula with Portugal and test area highlighted 
 

 
Figure 8. Average surface reflectance in the Red Edge (B5), NIR (B8a), and SWIR (B11) for wheat (a) and rice (b) from October17 

to September18 
 
For the non-agriculture land cover classes, the highest UA and 
PA (> 90% for both) are observed for water, bare rock, holm 
oak, and wetlands, whereas the lowest PA (54%) is observed for 
other coniferous forests, which was more associated with stone 
pine. In general, there is confusion between the forest classes. 
For example, the cork oak has a low UA of 65% meaning that 
the commission error is high, and this class could be mistaken 
with broadleaf or coniferous forest. The direct mapping of 
shrublands is challenging as its spectral signal is composed of 
green vegetation and non-photosynthetic vegetation as well as 
varying fractions of soil, grass, and shadow (Suess et al., 2018). 

In the classification, shrubland was often mixed with build-up, 
grasslands, bare soil, and sparse vegetation. Yet, there were 
fewer confusions with the forest classes as the HRL filter 
allowed the removal of broadleaf and coniferous pixels from 
shrubland samples, which improved the quality of the automatic 
training. 
 
The Random Forest classifier required few hyperparameters to 
tune as opposed to other classifiers and proved to be 
computationally efficient as it was possible to parallelize it 
(multi-core processing) to classify the whole area. Also, it 
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allowed extracting the most important features during the 
classification. As expected, the most relevant features from the 
time series correspond to the spring and summer months and the 
bands on the Red Edge (B5, B6, B7), NIR (B8a) and SWIR 
(B11 and B12). The inclusion of spectral indices slightly 
improved the accuracy but was not a predominant variable. 
 
3.2 The relevance of time series in crop type classification 

Smoothed spectro-temporal profiles were computed from the 
cloud-free monthly composites using the averaged reflectance 
values in the testing dataset. Figure 8 presents the averaged 
spectro-temporal profiles for a) wheat that is a temporary 
rainfed crop grown during autumn/winter and b) rice mainly 
grown during the spring/summer (temporarily irrigated); the 
illustrations in false colour are for a specific parcel for 
visualization purposes. It is possible to envisage the growing 
window for wheat from January to May, characterized by the 
noticeable increasing values in reflectance on the NIR. On 
average, in the information extracted from the testing set, there 
is regrowth after the harvest in June. This is not the case for the 
specific parcel used as visualization example, as farmers can 
decide to grow multiple crops during the year, implement 
leguminous plants for soil recovery or leave the plot as fallow 
land. This variation on the plot usage for the rainfed crops 
entails several confusions for the classifier. In rice fields, the 
SWIR band captures the flooding period (March) and the NIR 
the flowering period (July to September); possibly, these peaks 
allow for characterizing the crop accurately. The multi-temporal 
information permitted to capture the phenological variation of 
the crops that cannot be distinguished from single-date 
acquisitions, justifying the relevance of intra-annual time series 
in crop type classification for a specific year.  
 

4. CONCLUSIONS 

Up-to-date land cover and crop type information play an 
essential role in commercial and environmental monitoring and 
planning. For its updating, they have benefited from remote 
sensing imagery at a national, continental and global level. 
However, many challenges remain to produce accurate and 
timely land cover and crop type maps. This experimental 
automated land cover exercise on a regional test area of 
Portugal focused on the use of intra-annual composites of 
Sentinel-2, supervised classification with random forest, and 
automatic sample extraction based on a pre-processing set of 
rules. The overall accuracy of 76% was achieved for 31 land 
cover and crop type classes. Some classes achieved high 
accuracies, such as for example water, wetlands, some forest 
classes and some crop types. The filtering rules allowed these 
forest classes (i.e., holm oak and eucalyptus) to achieve 
accuracies higher than 80% (UA and PA) by identifying areas 
with more than 60% of tree cover and by removing clear cuts. It 
also helped to reduce confusion between shrublands and forest 
classes. Agriculture classes such as irrigated crops benefited 
from the monthly time-series for accurate predictions. However, 
some confusion is verified for other forest classes, rainfed crops 
and grassland classes. Nevertheless, this experiment considers a 
larger than usual number of LCLU classes, which represent an 
additional challenge for supervised image classification. These 
are good indicators for the implementation of an operational 
chain process using automatic satellite multi-temporal 
classification based on Sentinel-2 to have a national land cover 
map every year. The idea is to expand and refine the 
methodology applied in this study area to move towards an 
annual LCLU production at a national scale. 
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